Reverse Trendelenburg Lithotomy with Certain Inclination Angles Reduces Stone Retropulsion during Ureteroscopic Lithotripsy for Proximal Ureteral Stone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical Data
2.3. Operation Procedures
2.4. Patient Allocation
2.5. Statistic Methods
3. Results
3.1. Clinical Characteristics
3.2. Comparisons for Stone Retropulsion and SFR
3.3. Predictors for SFR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rabani, S.M.; Moosavizadeh, A. Management of Large Proximal Ureteral Stones: A Comparative Clinical Trial Between Transureteral Lithotripsy (TUL) and Shock Wave Lithotripsy (SWL). Nephrourol. Mon. 2012, 4, 556–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, T.; Chen, Y.; Liu, B.; Laguna, M.P.; de la Rosette, J.; Duan, X.; Wu, W.; Zeng, G. Systematic review and cumulative analysis of the managements for proximal impacted ureteral stones. World J. Urol. 2019, 37, 1687–1701. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.D.; Seo, S.I.; Kwon, J.; Kim, B.S. Laparoscopic Ureterolithotomy vs Ureteroscopic Lithotripsy for Large Ureteral Stones. JSLS 2019, 23, e2019.00008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elashry, O.M.; Tawfik, A.M. Preventing stone retropulsion during intracorporeal lithotripsy. Nat. Rev. Urol. 2012, 9, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Wang, Z.; Du, W.; Zhang, H. NTrap in prevention of stone migration during ureteroscopic lithotripsy for proximal ureteral stones: A meta-analysis. J. Endourol. 2012, 26, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Fathelbab, T.K.; Abdelhamid, A.M.; Anwar, A.Z.M.; Galal, E.M.; El-Hawy, M.M.; Abdelgawad, A.H.; Tawfiek, E.R. Prevention of stone retropulsion during ureteroscopy: Limitations in resources invites revival of old techniques. Arab. J. Urol. 2020, 18, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Male, M.; Yu, X.; Chen, Z.; Sun, F.; Yuan, H. Efficacy and Safety of NTrap® Stone Entrapment and Extraction Device for Ureteroscopic Lithotripsy. Urol. J. 2020, 18, 160–164. [Google Scholar]
- Shabana, W.; Teleb, M.; Dawod, T. Safety and efficacy of using the stone cone and an entrapment and extraction device in ureteroscopic lithotripsy for ureteric stones. Arab. J. Urol. 2015, 13, 75–79. [Google Scholar] [CrossRef]
- Bagbanci, S.; Dadali, M.; Dadalı, Y.; Emir, L.; Gorgulu, O.; Karabulut, A. Does a retropulsion prevention device equalize the surgical success of Ho:YAG laser and pneumatic lithotripters for upper ureteral stones? A prospective randomized study. Urolithiasis 2017, 45, 473–479. [Google Scholar] [CrossRef]
- Rane, A.; Bradoo, A.; Rao, P.; Shivde, S.; Elhilali, M.; Anidjar, M.; Pace, K.; JR, D.A.H. The use of a novel reverse thermosensitive polymer to prevent ureteral stone retropulsion during intracorporeal lithotripsy: A randomized, controlled trial. J. Urol. 2010, 183, 1417–1421. [Google Scholar] [CrossRef]
- Patel, R.M.; Walia, A.S.; Grohs, E.; Okhunov, Z.; Landman, J.; Clayman, R.V. Effect of positioning on ureteric stone retropulsion: ‘gravity works’. BJU Int. 2019, 123, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Wollin, D.A.; Ackerman, A.; Yang, C.; Chen, T.; Simmons, W.N.; Preminger, G.M.; Lipkin, M.E. Variable Pulse Duration From a New Holmium:YAG Laser: The Effect on Stone Comminution, Fiber Tip Degradation, and Retropulsion in a Dusting Model. Urology 2017, 103, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Enikeev, D.; Grigoryan, V.; Fokin, I.; Morozov, A.; Taratkin, M.; Klimov, R.; Kozlov, V.; Gabdullina, S.; Glybochko, P. Endoscopic lithotripsy with a SuperPulsed thulium-fiber laser for ureteral stones: A single-center experience. Int. J. Urol. 2021, 28, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Zehri, A.A.; Patel, M.; Adebayo, P.B.; Ali, A. Inadvertent Stone Migration During Pneumatic Lithotripsy: Still a Conundrum in the 21st Century. Cureus 2020, 12, e10521. [Google Scholar] [CrossRef] [PubMed]
- Finley, D.S.; Petersen, J.; Abdelshehid, C.; Ahlering, M.; Chou, D.; Borin, J.; Eichel, L.; McDougall, E.; Clayman, R.V. Effect of holmium:YAG laser pulse width on lithotripsy retropulsion in vitro. J. Endourol. 2005, 19, 1041–1044. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Xue, W.; Xia, L.; Zhong, H.; Zhu, Y.; Du, Z.; Chen, Q.; Huang, Y. Ureteroscopic lithotripsy in Trendelenburg position for proximal ureteral calculi: A prospective, randomized, comparative study. Int. Urol. Nephrol. 2014, 46, 1895–1901. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Han, C.; Hao, L.; Chen, B.; Zang, G.; Fan, T.; Zhou, J.; Dong, Y.; Ma, W.; Pang, K. Ureteroscopic lithotripsy in the Trendelenburg position for extracting obstructive upper ureteral obstruction stones: A prospective, randomized, comparative trial. Scand J. Urol. 2018, 52, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Arvizo, C.; Mehta, S.T.; Yunker, A. Adverse events related to Trendelenburg position during laparoscopic surgery: Recommendations and review of the literature. Curr. Opin. Obstet. Gynecol. 2018, 30, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Lei, Z.T.; Shi, Y.Q.; Yang, L.; Liu, W.G.; Gao, Q.; Sima, J. The efficacy of supine half-sitting lithotomy position in the treatment of upper ureteral calculi by surgery of ureteroscopic Holmium laser lithotripsy. Chin. J. Urol. 2017, 38, 937–940. [Google Scholar] [CrossRef]
Variables | Inclination Angles | p Value | |||
---|---|---|---|---|---|
0° | 10° | 20° | 30° | ||
Patient number | 85 (44.9) | 38 (20.1) | 43 (22.8) | 23 (12.2) | |
Gender | 0.216 | ||||
male | 68 (80.0) | 26 (68.4) | 30 (69.8) | 14 (60.9) | |
female | 17 (20.0) | 12 (31.6) | 13 (30.2) | 9 (39.1) | |
Age (year) | 55 ± 13 | 54 ± 15 | 54 ± 12 | 54 ± 14 | 0.946 |
Stone largest diameter (mm) | 9.3 ± 3.9 | 11 ± 4 | 10.6 ± 4.5 | 10.4 ± 4 | 0.109 |
Stone side | 0.919 | ||||
left | 54 (63.5) | 22 (57.9) | 26 (60.5) | 15 (65.2) | |
right | 31 (36.5) | 16 (42.1) | 17 (39.5) | 8 (34.8) | |
CT density of stone (Hu) | 616 ± 194 | 683 ± 243 | 614 ± 206 | 723 ± 153 | 0.062 |
BMI | 26 ± 4 | 26 ± 4 | 26 ± 4 | 28 ± 4 | 0.161 |
Distance from stone to UPJ (cm) | 3.7 ± 1.0 | 3.4 ± 1.6 | 3.8 ± 1.1 | 3.5 ± 2.3 | 0.14 |
Ureter diameter above stone (mm) | 9.2 ± 2.9 | 9.7 ± 2.5 | 8.5 ± 2.9 | 8.8 ± 3.0 | 0.09 |
Operation duration (min) | 57 ± 28 | 66 ± 27 | 58 ± 28 | 64 ± 20 | 0.14 |
Complications | |||||
Clavien grade I | 6 (40.0) | 3 (20.0) | 4 (26.7) | 2 (13.3) | 0.940 |
Clavien grade II | 4 (50.0) | 1 (12.5) | 2 (25.0) | 1 (12.5) | 1.000 |
Inclination Angle | Total | χ2 | p Value | |||||
---|---|---|---|---|---|---|---|---|
0° | 10° | 20° | 30° | |||||
Retropulsion | No | 43 a (50.6) | 20 a (52.6) | 35 b (81.4) | 21 b (91.3) | 119 | 21.508 | <0.01 |
Yes | 42 (49.4) | 18 (47.4) | 8 (18.6) | 2 (8.7) | 70 | |||
Stone residual | No | 50 a (58.8) | 24 a (63.2) | 39 b (90.7) | 22 b (95.7) | 135 | 22.328 | <0.01 |
Yes | 35 (41.2) | 14 (36.8) | 4 (9.3) | 1 (4.3) | 54 | |||
total | 85 | 38 | 43 | 23 | 189 |
Wald Value | p Value | OR | 95% CI | ||
---|---|---|---|---|---|
Upper | Lower | ||||
Distance from stone to UPJ | 10.276 | 0.001 | 0.592 | 0.429 | 0.815 |
Inclination angle * | 18.901 | 0.000 | |||
10° | 0.941 | 0.332 | 0.654 | 0.277 | 1.542 |
20° | 11.733 | 0.001 | 0.138 | 0.044 | 0.428 |
30° | 9 | 0.003 | 0.038 | 0.005 | 0.323 |
CT density of stone | 0.696 | 0.404 | 0.999 | 0.997 | 1.001 |
Operation duration | 1.043 | 0.307 | 1.007 | 0.994 | 1.021 |
Stone largest diameter | 1.633 | 0.201 | 0.943 | 0.863 | 1.032 |
Ureter diameter above stone | 2.352 | 0.125 | 1.1 | 0.974 | 1.243 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Wu, J.; Li, Q.; Zhang, J. Reverse Trendelenburg Lithotomy with Certain Inclination Angles Reduces Stone Retropulsion during Ureteroscopic Lithotripsy for Proximal Ureteral Stone. J. Pers. Med. 2022, 12, 2020. https://doi.org/10.3390/jpm12122020
Li S, Wu J, Li Q, Zhang J. Reverse Trendelenburg Lithotomy with Certain Inclination Angles Reduces Stone Retropulsion during Ureteroscopic Lithotripsy for Proximal Ureteral Stone. Journal of Personalized Medicine. 2022; 12(12):2020. https://doi.org/10.3390/jpm12122020
Chicago/Turabian StyleLi, Shihai, Jianchen Wu, Qiang Li, and Jiawei Zhang. 2022. "Reverse Trendelenburg Lithotomy with Certain Inclination Angles Reduces Stone Retropulsion during Ureteroscopic Lithotripsy for Proximal Ureteral Stone" Journal of Personalized Medicine 12, no. 12: 2020. https://doi.org/10.3390/jpm12122020
APA StyleLi, S., Wu, J., Li, Q., & Zhang, J. (2022). Reverse Trendelenburg Lithotomy with Certain Inclination Angles Reduces Stone Retropulsion during Ureteroscopic Lithotripsy for Proximal Ureteral Stone. Journal of Personalized Medicine, 12(12), 2020. https://doi.org/10.3390/jpm12122020