The Differential Systemic Biological Effects between Computer Navigation and Conventional Total Knee Arthroplasty (TKA) Surgeries: A Prospective Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuo, S.J.; Hsu, H.C.; Wang, C.J.; Siu, K.K.; Hsu, Y.H.; Ko, J.Y.; Tang, C.H. Effects of computer-assisted navigation versus conventional total knee arthroplasty on the levels of inflammation markers: A prospective study. PLoS ONE 2018, 13, e0197097. [Google Scholar] [CrossRef] [PubMed]
- Lalmohamed, A.; Vestergaard, P.; Klop, C.; Grove, E.L.; de Boer, A.; Leufkens, H.G.; van Staa, T.P.; de Vries, F. Timing of acute myocardial infarction in patients undergoing total hip or knee replacement: A nationwide cohort study. Arch. Intern. Med. 2012, 172, 1229–1235. [Google Scholar] [CrossRef] [PubMed]
- Keller, K.; Hobohm, L.; Barco, S.; Schmidtmann, I.; Munzel, T.; Engelhardt, M.; Eckhard, L.; Konstantinides, S.V.; Drees, P. Venous thromboembolism in patients hospitalized for knee joint replacement surgery. Sci. Rep. 2020, 10, 22440. [Google Scholar] [CrossRef]
- Andre, P.; Hartwell, D.; Hrachovinova, I.; Saffaripour, S.; Wagner, D.D. Pro-coagulant state resulting from high levels of soluble P-selectin in blood. Proc. Natl. Acad. Sci. USA 2000, 97, 13835–13840. [Google Scholar] [CrossRef]
- Antonopoulos, C.N.; Sfyroeras, G.S.; Kakisis, J.D.; Moulakakis, K.G.; Liapis, C.D. The role of soluble P selectin in the diagnosis of venous thromboembolism. Thromb. Res. 2014, 133, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Q.; Mao, Y.; Wang, B.; Lu, X.T.; Bai, W.W.; Sun, Y.Y.; Liu, Y.; Liu, H.M.; Zhang, L.; Zhao, Y.X.; et al. Specific matrix metalloproteinases play different roles in intraplaque angiogenesis and plaque instability in rabbits. PLoS ONE 2014, 9, e107851. [Google Scholar] [CrossRef]
- Nguyen, K.P.; McGilvray, K.C.; Puttlitz, C.M.; Mukhopadhyay, S.; Chabasse, C.; Sarkar, R. Matrix Metalloproteinase 9 (MMP-9) Regulates Vein Wall Biomechanics in Murine Thrombus Resolution. PLoS ONE 2015, 10, e0139145. [Google Scholar] [CrossRef]
- Yip, H.K.; Wu, C.J.; Chang, H.W.; Yang, C.H.; Yeh, K.H.; Chua, S.; Fu, M. Levels and values of serum high-sensitivity C-reactive protein within 6 hours after the onset of acute myocardial infarction. Chest 2004, 126, 1417–1422. [Google Scholar] [CrossRef]
- Cermak, J.; Key, N.S.; Bach, R.R.; Balla, J.; Jacob, H.S.; Vercellotti, G.M. C-reactive protein induces human peripheral blood monocytes to synthesize tissue factor. Blood 1993, 82, 513–520. [Google Scholar] [CrossRef]
- van Aken, B.E.; Reitsma, P.H.; Rosendaal, F.R. Interleukin 8 and venous thrombosis: Evidence for a role of inflammation in thrombosis. Br. J. Haematol. 2002, 116, 173–177. [Google Scholar] [CrossRef]
- Kadi, F.A.; Yuniati, T.; Sribudiani, Y.; Rachmadi, D. The association of rs187238, rs19465518 and rs1946519 IL-8 polymorphisms with acute kidney injury in preterm infants. Biomedicine 2021, 11, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Boekholdt, S.M.; Peters, R.J.; Hack, C.E.; Day, N.E.; Luben, R.; Bingham, S.A.; Wareham, N.J.; Reitsma, P.H.; Khaw, K.T. IL-8 plasma concentrations and the risk of future coronary artery disease in apparently healthy men and women: The EPIC-Norfolk prospective population study. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 1503–1508. [Google Scholar] [CrossRef] [PubMed]
- Spinarelli, A.; Pesce, V.; Campagna, C.; Maccagnano, G.; Moretti, B. Painful knee prosthesis: CT scan to assess patellar angle and implant malrotation. Muscles Ligaments Tendons J. 2016, 6, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, R.; Petruccelli, D.; Devereaux, P.J.; Adili, A.; Hubmann, M.; de Beer, J. Incidence and timing of myocardial infarction after total joint arthroplasty. J. Arthroplast. 2006, 21, 874–877. [Google Scholar] [CrossRef] [PubMed]
- Santana, D.C.; Emara, A.K.; Orr, M.N.; Klika, A.K.; Higuera, C.A.; Krebs, V.E.; Molloy, R.M.; Piuzzi, N.S. An Update on Venous Thromboembolism Rates and Prophylaxis in Hip and Knee Arthroplasty in 2020. Medicina 2020, 56, 416. [Google Scholar] [CrossRef]
- Wang, J.C.; Piple, A.S.; Hill, W.J.; Chen, M.S.; Gettleman, B.S.; Richardson, M.; Heckmann, N.D.; Christ, A.B. Computer-Navigated and Robotic-Assisted Total Knee Arthroplasty: Increasing in Popularity Without Increasing Complications. J Arthroplast. 2022. [CrossRef] [PubMed]
- Bjornara, B.T.; Gudmundsen, T.E.; Dahl, O.E. Frequency and timing of clinical venous thromboembolism after major joint surgery. J. Bone Jt. Surg. Br. 2006, 88, 386–391. [Google Scholar] [CrossRef]
- Chen, J.W.; Kuo, F.C.; Kuo, S.J.; Siu, K.K.; Ko, J.Y. Avoidance of intramedullary violation in computer-assisted total knee arthroplasty lowers the incidence of periprosthetic joint infection compared with conventional total knee arthroplasty: A propensity score matching analysis of 5342 cases. Knee 2022, 35, 164–174. [Google Scholar] [CrossRef]
- Kuo, S.J.; Wang, F.S.; Wang, C.J.; Ko, J.Y.; Chen, S.H.; Siu, K.K. Effects of Computer Navigation versus Conventional Total Knee Arthroplasty on Endothelial Damage Marker Levels: A Prospective Comparative Study. PLoS ONE 2015, 10, e0126663. [Google Scholar] [CrossRef][Green Version]
- Siu, K.K.; Wu, K.T.; Ko, J.Y.; Wang, F.S.; Chou, W.Y.; Wang, C.J.; Kuo, S.J. Effects of computer-assisted navigation versus the conventional technique for total knee arthroplasty on levels of plasma thrombotic markers: A prospective study. Biomed. Eng. Online 2019, 18, 99. [Google Scholar] [CrossRef]
- Kayani, B.; Tahmassebi, J.; Ayuob, A.; Konan, S.; Oussedik, S.; Haddad, F.S. A prospective randomized controlled trial comparing the systemic inflammatory response in conventional jig-based total knee arthroplasty versus robotic-arm assisted total knee arthroplasty. Bone Jt. J. 2021, 103-B(1), 113–122. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.Z.; Li, L.L.; Fu, J.; Xu, C.; Zhang, G.Q.; Chai, W.; Hao, L.B.; Li, X.; Chen, J.Y. Comparison of serum inflammatory indicators and radiographic results in MAKO robotic-assisted versus conventional total knee arthroplasty for knee osteoarthritis: A retrospective study of Chinese patients. BMC Musculoskelet Disord. 2022, 23, 418. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.B.; Sun, Z.Q.; Chen, M.J.; Chen, L.L. The study of soluble P-selectin levels and it’s correlation to the severity of coronary artery lesions in coronary heart disease. Zhonghua Liu Xing Bing Xue Za Zhi 2005, 26, 617–621. [Google Scholar] [PubMed]
- Ramacciotti, E.; Blackburn, S.; Hawley, A.E.; Vandy, F.; Ballard-Lipka, N.; Stabler, C.; Baker, N.; Guire, K.E.; Rectenwald, J.E.; Henke, P.K.; et al. Evaluation of soluble P-selectin as a marker for the diagnosis of deep venous thrombosis. Clin. Appl. Thromb. Hemost. 2011, 17, 425–431. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Seidu, S.; Blom, A.W.; Khunti, K.; Laukkanen, J.A. Serum C-reactive protein increases the risk of venous thromboembolism: A prospective study and meta-analysis of published prospective evidence. Eur. J. Epidemiol. 2017, 32, 657–667. [Google Scholar] [CrossRef]
- Dahi, S.; Lee, J.G.; Lovett, D.H.; Sarkar, R. Differential transcriptional activation of matrix metalloproteinase-2 and membrane type-1 matrix metalloproteinase by experimental deep venous thrombosis and thrombin. J. Vasc. Surg. 2005, 42, 539–545. [Google Scholar] [CrossRef]
- Gong, Y.; Hart, E.; Shchurin, A.; Hoover-Plow, J. Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice. J. Clin. Investig. 2008, 118, 3012–3024. [Google Scholar] [CrossRef]
- Varma, M.R.; Varga, A.J.; Knipp, B.S.; Sukheepod, P.; Upchurch, G.R.; Kunkel, S.L.; Wakefield, T.W.; Henke, P.K. Neutropenia impairs venous thrombosis resolution in the rat. J. Vasc. Surg. 2003, 38, 1090–1098. [Google Scholar] [CrossRef]
- Wang, Z.W.; Wang, J.J.; Zhang, J.Z.; Xue, Z.J.; Miao, J.; Li, L.; Hu, W.X. Thrombolysis of deep vein thrombosis and inhibiting chemotaxis of macrophage by MCP-1 blockage. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 1695–1701. [Google Scholar]
- Henke, P.K.; Wakefield, T.W.; Kadell, A.M.; Linn, M.J.; Varma, M.R.; Sarkar, M.; Hawley, A.; Fowlkes, J.B.; Strieter, R.M. Interleukin-8 administration enhances venous thrombosis resolution in a rat model. J. Surg. Res. 2001, 99, 84–91. [Google Scholar] [CrossRef]
- Notarnicola, A.; Maccagnano, G.; Fiore, A.; Spinarelli, A.; Montenegro, L.; Paoloni, M.; Pastore, F.; Tafuri, S.; Moretti, B. Baropodometry on patients after total knee arthroplasty. Musculoskelet Surg. 2018, 102, 129–137. [Google Scholar] [CrossRef] [PubMed]
Navigation (n = 34) | Conventional (n = 34) | p-Value | |
---|---|---|---|
Gender (male/female) | 5/29 | 10/24 | 0.144 |
Age (years) | 67.0 (64.0; 73.0) | 66.0 (61.0; 69.0) | 0.300 |
Side (left/right) | 16/18 | 11/23 | 0.215 |
Deformity (valgus/varus) | 9/25 | 5/29 | 0.230 |
Body mass index (kg/m2) | 27.10 (25.70; 29.20) | 28.70 (25.70; 31.00) | 0.124 |
Diabetes | 8 | 5 | 0.355 |
Hypertension | 23 | 23 | 1.000 |
Coronary artery disease | 1 | 2 | 1.000 |
Stroke | 1 | 0 | 1.000 |
Navigation (n = 34) A | Conventional (n = 34) B | # p-Value | |
---|---|---|---|
Baseline | 20.36 (9.55; 41.83) ab | 15.19 (11.54; 35.86) cd | 0.897 |
24 h | 37.46 (27.85; 62.82) a | 68.35 (45.63; 70.97) c | < 0.001 |
72 h | 43.15 (29.25; 66.93) b | 62.26 (33.4;, 66.47) d | 0.352 |
24 h-baseline | 21.94 (−0.79; 36.17) | 41.20 (18.57; 55.63) | 0.002 |
72 h-baseline | 19.50 (−1.19; 43.71) | 43.59 (17.55; 53.44) | 0.046 |
Navigation (n = 34) A | Conventional (n = 34) B | # p-Value | |
---|---|---|---|
Baseline | 243.14 (167.04; 369.10) ab | 217.56 (172.23; 354.21) cd | 0.682 |
24 h | 841.79 (583.57; 1073.78) a | 903.34 (505.68; 1310.89) c | 0.818 |
72 h | 927.37 (681.93; 1430.69) b | 1119.43 (594.61; 1846.24) d | 0.920 |
24 h-baseline | 520.88 (353.43; 771.57) | 576.94 (279.84; 1094.34) | 0.803 |
72 h-baseline | 724.08 (423.66; 1054.85) | 710.52 (357.28; 1563.52) | 0.904 |
Navigation (n = 34) A | Conventional (n = 34) B | # p-Value | |
---|---|---|---|
Baseline | 1282.17 (350.45; 2741.22) ab | 1059.40 (681.85; 4560.36) cd | 0.263 |
24 h | 5782.79 (5530.72; 6516.73) a | 7522.12 (7009.85; 8018.18) c | <0.001 |
72 h | 5987.70 (5804.76; 7429.90) b | 8127.07 (7630.61; 8161.80) d | <0.001 |
24 h-baseline | 4260.38 (3373.61; 5334.24) | 6280.45 (3053.30; 6780.72) | 0.016 |
72 h-baseline | 4098.27 (2700.19; 5332.74) | 6843.20 (5039.93; 7513.91) | 0.004 |
Navigation (n = 34) A | Conventional (n = 34) B | # p-Value | |
---|---|---|---|
Baseline | 13.48 (9.80; 28.46) ab | 15.08 (10.19; 32.20) cd | 0.992 |
24 h | 61.49 (29.23; 65.79) a | 62.94 (32.06; 70.33) c | 0.263 |
72 h | 58.30 (30.35; 66.96) b | 38.88 (33.20; 65.48) d | 0.881 |
24 h-baseline | 27.39 (7.93; 52.12) | 28.61 (12.31; 55.20) | 0.617 |
72 h-baseline | 32.90 (2.55; 50.41) | 21.45 (0.74; 52.93) | 0.826 |
Participants | Design | Results | |
---|---|---|---|
Kuo et al. (2015) [19] | 44N/33C | Prospective cohort | Patients undergoing navigation TKAs had fewer blood loss and lower CAMs in serum and hemovac drainage. Milder post-op elevation of serum PECAM-1 (p = 0.003) and ICAM-1 (p = 0.022) from the pre-op basis was also noted. |
Kuo et al. (2018) [1] | 44N/53C | Prospective cohort | Serum levels of IL-6, IL-10, TNF-α and TGF-β1 were increased from baseline by smaller increments in the navigation cohort compared with the conventional cohort at 24 h and at 72 h. IL-10 levels in hemovac drainage 24 h after TKA were also significantly lower in the navigation cohort. |
Siu et al. (2019) [20] | 89N/85C | Prospective cohort | A decreased plasma D-dimer level and a less apparent increase in the plasma D-dimer level were seen in patients undertaking navigation TKA in contrast to patients undertaking conventional TKA 24 h after operation. |
Kayani et al. (2021) [21] | 30R/30C | Prospective RCT | Participants undertaking conventional TKA and robotic TKA had commensurate changes in the systemic inflammatory and localized thermal response at 6 h, 24 h, 48 h, and day 28 after surgery. Robotic TKA had apparently lower levels of IL-6 (p < 0.001), TNF-α (p = 0.021), ESR (p = 0.001), CRP (p = 0.004), lactate dehydrogenase (p = 0.007), and creatine kinase (p = 0.004) at day 7 after operation compared with conventional TKA. |
Xu et al. (2022) [22] | 34R/31C | Retrospective | IL-6 serum concentrations were apparently lower in the MA-TKA group on postop day 1 (11.4 (5.2, 21.0) vs. 24.6 (86.3, 170.8), p = 0.031). This difference in inflammatory markers was more pronounced at 3 days after the TKA because IL-6, ESR, CRP and CK values were significantly lower in the MA-TKA group 72 h after operation (p < 0.05). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, S.-J.; Siu, K.-K.; Wu, K.-T.; Ko, J.-Y.; Wang, F.-S. The Differential Systemic Biological Effects between Computer Navigation and Conventional Total Knee Arthroplasty (TKA) Surgeries: A Prospective Study. J. Pers. Med. 2022, 12, 1835. https://doi.org/10.3390/jpm12111835
Kuo S-J, Siu K-K, Wu K-T, Ko J-Y, Wang F-S. The Differential Systemic Biological Effects between Computer Navigation and Conventional Total Knee Arthroplasty (TKA) Surgeries: A Prospective Study. Journal of Personalized Medicine. 2022; 12(11):1835. https://doi.org/10.3390/jpm12111835
Chicago/Turabian StyleKuo, Shu-Jui, Ka-Kit Siu, Kuan-Ting Wu, Jih-Yang Ko, and Feng-Sheng Wang. 2022. "The Differential Systemic Biological Effects between Computer Navigation and Conventional Total Knee Arthroplasty (TKA) Surgeries: A Prospective Study" Journal of Personalized Medicine 12, no. 11: 1835. https://doi.org/10.3390/jpm12111835
APA StyleKuo, S.-J., Siu, K.-K., Wu, K.-T., Ko, J.-Y., & Wang, F.-S. (2022). The Differential Systemic Biological Effects between Computer Navigation and Conventional Total Knee Arthroplasty (TKA) Surgeries: A Prospective Study. Journal of Personalized Medicine, 12(11), 1835. https://doi.org/10.3390/jpm12111835