Different Weight Loss Intervention Approaches Reveal a Lack of a Common Pattern of Gut Microbiota Changes
Abstract
:1. Introduction
2. Results
2.1. Changes in Gut Microbiota Diversity after Weight Loss Interventions
2.2. Changes in Gut Microbiota Profile after Weight Loss Interventions
2.3. Common Core Microbiome at the End of the Weight Loss Interventions
2.4. Functional Analysis of Predicted Metagenomes after Weight Loss Interventions
3. Discussion
4. Material and Methods
4.1. Anthropometric and Laboratory Measurements
4.2. Gut Microbiota Analysis
4.3. Sequence Data and Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | body mass index |
BS | bariatric surgery |
CRP | C-reactive protein |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
HDL-cholesterol | High density lipoprotein cholesterol |
LDL-cholesterol | Low density lipoprotein cholesterol |
MedDiet | hypocaloric Mediterranean diet |
VLCKD | very-low-calorie ketogenic diet (VLCKD) |
References
- Whitman, W.B.; Coleman, D.C.; Wiebe, W.J. Prokaryotes: The unseen majority. Proc. Natl. Acad. Sci. USA 1998, 95, 6578–6583. [Google Scholar] [CrossRef] [Green Version]
- Ley, R.E. Obesity and the human microbiome. Curr. Opin. Gastroenterol. 2010, 26, 5–11. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nat. Cell Biol. 2006, 444, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Ley, R.E.; Bäckhed, F.; Turnbaugh, P.; Lozupone, C.A.; Knight, R.D.; Gordon, J.I. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 2005, 102, 11070–11075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turnbaugh, P.J.; Hamady, M.; Yatsunenko, T.; Cantarel, B.L.; Duncan, A.; Ley, R.E.; Sogin, M.L.; Jones, W.J.; Roe, B.A.; Affourtit, J.P.; et al. A core gut microbiome in obese and lean twins. Nat. Cell Biol. 2008, 457, 480–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwiertz, A.; Taras, D.; Schaefer, K.; Beijer, S.; Bos, N.A.; Donus, C.; Hardt, P.D. Microbiota and SCFA in Lean and Overweight Healthy Subjects. Obesity 2010, 18, 190–195. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, M.; Xue, J.; Huang, J.; Zhuang, R.; Zhou, X.; Zhang, H.; Fu, Q.; Hao, Y. Body Mass Index Differences in the Gut Microbiota Are Gender Specific. Front. Microbiol. 2018, 9, 1250. [Google Scholar] [CrossRef]
- Crovesy, L.; Masterson, D.; Rosado, E.L. Profile of the gut microbiota of adults with obesity: A systematic review. Eur. J. Clin. Nutr. 2020, 74, 1251–1262. [Google Scholar] [CrossRef]
- Gutiérrez-Repiso, C.; Hernández-García, C.; García-Almeida, J.M.; Bellido, D.; Martín-Núñez, G.M.; Sánchez-Alcoholado, L.; Alcaide-Torres, J.; Sajoux, I.; Tinahones, F.J.; Moreno-Indias, I. Effect of Synbiotic Supplementation in a Very-Low-Calorie Ketogenic Diet on Weight Loss Achievement and Gut Microbiota: A Randomized Controlled Pilot Study. Mol. Nutr. Food Res. 2019, 63, e1900167. [Google Scholar] [CrossRef] [PubMed]
- Haro, C.; Montes-Borrego, M.; Rangel-Zúñiga, O.A.; Alcalá-Díaz, J.F.; Gómez-Delgado, F.; Pérez-Martínez, P.; Delgado-Lista, J.; Quintana-Navarro, G.M.; Tinahones, F.J.; Landa, B.B.; et al. Two Healthy Diets Modulate Gut Microbial Community Improving Insulin Sensitivity in a Human Obese Population. J. Clin. Endocrinol. Metab. 2016, 101, 233–242. [Google Scholar] [CrossRef] [Green Version]
- Seganfredo, F.B.; Blume, C.A.; Moehlecke, M.; Giongo, A.; Casagrande, D.S.; Spolidoro, J.V.N.; Padoin, A.V.; Schaan, B.D.; Mottin, C.C. Weight-loss interventions and gut microbiota changes in overweight and obese patients: A systematic review. Obes. Rev. 2017, 18, 832–851. [Google Scholar] [CrossRef]
- Ciobârcă, D.; Cătoi, A.F.; Copăescu, C.; Miere, D.; Crișan, G. Bariatric Surgery in Obesity: Effects on Gut Microbiota and Micronutrient Status. Nutrients 2020, 12, 235. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Alcoholado, L.; Gutiérrez-Repiso, C.; Gómez-Pérez, A.M.; García-Fuentes, E.; Tinahones, F.J.; Moreno-Indias, I. Gut microbiota adaptation after weight loss by Roux-en-Y gastric bypass or sleeve gastrectomy bariatric surgeries. Surg. Obes. Relat. Dis. 2019, 15, 1888–1895. [Google Scholar] [CrossRef]
- Morales-Marroquin, E.; Hanson, B.; Greathouse, L.; De La Cruz-Munoz, N.; Messiah, S.E. Comparison of methodological approaches to human gut microbiota changes in response to metabolic and bariatric surgery: A systematic review. Obes. Rev. 2020, 21. [Google Scholar] [CrossRef]
- Clarke, S.F.; Murphy, E.F.; O’Sullivan, O.; Ross, R.P.; O’Toole, P.W.; Shanahan, F.; Cotter, P.D. Targeting the Microbiota to Address Diet-Induced Obesity: A Time Dependent Challenge. PLoS ONE 2013, 8, e65790. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Q.; Li, D.; He, Y.; Li, Y.; Yang, Z.; Zhao, X.; Liu, Y.; Wang, Y.; Sun, J.; Feng, X.; et al. Discrepant gut microbiota markers for the classification of obesity-related metabolic abnormalities. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lv, Y.; Qin, X.; Jia, H.; Chen, S.; Sun, W.; Wang, X. The association between gut microbiota composition and BMI in Chinese male college students, as analysed by next-generation sequencing. Br. J. Nutr. 2019, 122, 986–995. [Google Scholar] [CrossRef]
- Louis, S.; Tappu, R.-M.; Damms-Machado, A.; Huson, D.H.; Bischoff, S.C. Characterization of the Gut Microbial Community of Obese Patients Following a Weight-Loss Intervention Using Whole Metagenome Shotgun Sequencing. PLoS ONE 2016, 11, e0149564. [Google Scholar] [CrossRef]
- Kong, L.-C.; Tap, J.; Aron-Wisnewsky, J.; Pelloux, V.; Basdevant, A.; Bouillot, J.-L.; Zucker, J.-D.; Doré, J.; Clément, K. Gut microbiota after gastric bypass in human obesity: Increased richness and associations of bacterial genera with adipose tissue genes. Am. J. Clin. Nutr. 2013, 98, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Cornejo-Pareja, I.; Muñoz-Garach, A.; Clemente-Postigo, M.; Tinahones, F.J. Importance of gut microbiota in obesity. Eur. J. Clin. Nutr. 2018, 72, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Gallardo-Becerra, L.; Cornejo-Granados, F.; García-López, R.; Valdez-Lara, A.; Bikel, S.; Canizales-Quinteros, S.; López-Contreras, B.E.; Mendoza-Vargas, A.; Nielsen, H.; Ochoa-Leyva, A. Metatranscriptomic analysis to define the Secrebiome, and 16S rRNA profiling of the gut microbiome in obesity and metabolic syndrome of Mexican children. Microb. Cell Fact. 2020, 19, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Liao, M.; Zhou, N.; Bao, L.; Ma, K.; Zheng, Z.; Wang, Y.; Liu, C.; Wang, W.; Wang, J.; et al. Parabacteroides distasonis Alleviates Obesity and Metabolic Dysfunctions via Production of Succinate and Secondary Bile Acids. Cell Rep. 2019, 26, 222–235.e5. [Google Scholar] [CrossRef] [Green Version]
- Kasai, C.; Sugimoto, K.; Moritani, I.; Tanaka, J.; Oya, Y.; Inoue, H.; Tameda, M.; Shiraki, K.; Ito, M.; Takei, Y.; et al. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterol. 2015, 15, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Tims, S.; Derom, C.; Jonkers, D.; Vlietinck, R.; Saris, W.H.; Kleerebezem, M.; De Vos, W.M.; Zoetendal, E.G. Microbiota conservation and BMI signatures in adult monozygotic twins. ISME J. 2013, 7, 707–717. [Google Scholar] [CrossRef] [Green Version]
- Peters, B.A.; Shapiro, J.A.; Church, T.R.; Miller, G.; Trinh-Shevrin, C.; Yuen, E.; Friedlander, C.; Hayes, R.B.; Ahn, J. A taxonomic signature of obesity in a large study of American adults. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Huang, Z.-P.; Liu, C.-Q.; Qi, L.; Sheng, Y.; Zou, D.-J. Modulation of the gut microbiome: A systematic review of the effect of bariatric surgery. Eur. J. Endocrinol. 2018, 178, 43–56. [Google Scholar] [CrossRef]
- Palleja, A.; Kashani, A.; Allin, K.H.; Nielsen, T.; Zhang, C.; Li, Y.; Brach, T.; Liang, S.; Feng, Q.; Jørgensen, N.B.; et al. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Med. 2016, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Cerdó, T.; Ruiz, A.; Jáuregui, R.; Azaryah, H.; Torres-Espínola, F.J.; García-Valdés, L.; Segura, M.T.; Suárez, A.; Campoy, C. Maternal obesity is associated with gut microbial metabolic potential in offspring during infancy. J. Physiol. Biochem. 2017, 74, 159–169. [Google Scholar] [CrossRef]
- Jiao, N.; Baker, S.S.; Nugent, C.A.; Tsompana, M.; Cai, L.; Wang, Y.; Buck, M.J.; Genco, R.J.; Baker, R.D.; Zhu, R.; et al. Gut microbiome may contribute to insulin resistance and systemic inflammation in obese rodents: A meta-analysis. Physiol. Genom. 2018, 50, 244–254. [Google Scholar] [CrossRef] [Green Version]
- Tosar, J.P.; Cayota, A. Extracellular tRNAs and tRNA-derived fragments. RNA Biol. 2020, 17, 1149–1167. [Google Scholar] [CrossRef]
- Booth, I.R.; Kroll, R.G. Regulation of cytoplasmic pH (pH1) in bacteria and its relationship to metabolism. Biochem. Soc. Trans. 1983, 11, 70–72. [Google Scholar] [CrossRef] [Green Version]
- Davis, R.A.H.; Deemer, S.E.; Bergeron, J.M.; Little, J.T.; Warren, J.L.; Fisher, G.; Smith, D.L.; Fontaine, K.R.; Dickinson, S.L.; Allison, D.B.; et al. Dietary R,S-1,3-butanediol diacetoacetate reduces body weight and adiposity in obese mice fed a high-fat diet. FASEB J. 2018, 33, 2409–2421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, S.; Kashiwaya, Y.; King, M.T.; Baxa, U.; Tam, J.; Niu, G.; Chen, X.; Clarke, K.; Veech, R.L. Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet. FASEB J. 2012, 26, 2351–2362. [Google Scholar] [CrossRef] [Green Version]
- Stubbs, B.J.; Cox, P.J.; Evans, R.D.; Cyranka, M.; Clarke, K.; De Wet, H. A Ketone Ester Drink Lowers Human Ghrelin and Appetite. Obesity 2017, 26, 269–273. [Google Scholar] [CrossRef]
- Blaut, M. Gut microbiota and energy balance: Role in obesity. Proc. Nutr. Soc. 2015, 74, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-N.; Yao, Y.; Ju, S.Y. Short Chain Fatty Acids and Fecal Microbiota Abundance in Humans with Obesity: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 2512. [Google Scholar] [CrossRef] [Green Version]
- Farup, P.G.; Valeur, J. Changes in Faecal Short-Chain Fatty Acids after Weight-Loss Interventions in Subjects with Morbid Obesity. Nutrients 2020, 12, 802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sowah, S.A.; Riedl, L.; Damms-Machado, A.; Johnson, T.S.; Schübel, R.; Graf, M.; Kartal, E.; Zeller, G.; Schwingshackl, L.; Stangl, G.I.; et al. Effects of Weight-Loss Interventions on Short-Chain Fatty Acid Concentrations in Blood and Feces of Adults: A Systematic Review. Adv. Nutr. 2019, 10, 673–684. [Google Scholar] [CrossRef] [PubMed]
- De Filippis, F.; Pellegrini, N.; Vannini, L.; Jeffery, I.B.; La Storia, A.; Laghi, L.; Serrazanetti, D.I.; Di Cagno, R.; Ferrocino, I.; Lazzi, C.; et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 2016, 65, 1812–1821. [Google Scholar] [CrossRef]
- Cani, P.; Bibiloni, R.; Knauf, C.; Waget, A.; Neyrinck, A.M.; Delzenne, N.M.; Burcelin, R. Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet-Induced Obesity and Diabetes in Mice. Diabetes 2008, 57, 1470–1481. [Google Scholar] [CrossRef] [Green Version]
- Chambers, E.S.; Viardot, A.; Psichas, A.; Morrison, D.J.; Murphy, K.G.; Zac-Varghese, S.E.K.; MacDougall, K.; Preston, T.; Tedford, C.; Finlayson, G.S.; et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 2014, 64, 1744–1754. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Huelgas, R.; Jansen-Chaparro, S.; Baca-Osorio, A.; Mancera-Romero, J.; Tinahones, F.J.; Bernal-Lopez, M. Effects of a long-term lifestyle intervention program with Mediterranean diet and exercise for the management of patients with metabolic syndrome in a primary care setting. Eur. J. Intern. Med. 2015, 26, 317–323. [Google Scholar] [CrossRef]
- Callahan, B.J.; Mcmurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [Green Version]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Dhariwal, A.; Chong, J.; Habib, S.; King, I.L.; Agellon, L.B.; Xia, J. MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 2017, 45, W180–W188. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [Green Version]
- Oliveros, J.C. Venny 2.1.0. Available online: https://bioinfogp.cnb.csic.es/tools/venny/ (accessed on 30 April 2020).
- Caspi, R.; Billington, R.; Keseler, I.M.; Kothari, A.; Krummenacker, M.; Midford, P.E.; Ong, W.K.; Paley, S.; Subhraveti, P.; Karp, P.D. The MetaCyc database of metabolic pathways and enzymes—A 2019 update. Nucleic Acids Res. 2020, 48, D445–D453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parks, D.H.; Tyson, G.W.; Hugenholtz, P.; Beiko, R.G. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics 2014, 30, 3123–3124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, T.; Larson, J.; Meulemans, J.; Hillmann, B.; Lynch, J.; Sidiropoulos, D.; Spear, J.; Caporaso, G.; Ran, B.K.R. Bugbase predicts organism level microbiome phenotypes. bioRxiv 2017, 133462. [Google Scholar] [CrossRef]
Mediterranean Diet n = 21 | Bariatric Surgery n = 22 | VLCKD n = 18 | |
---|---|---|---|
Sex (M/F) | 10/11 | 9/13 | 8/10 |
Age (years) | 64.0 (4.7) a | 47.5 (5.5) b | 42.6 (10.8) c |
Weight (kg) | |||
Pre | 88.1 (11.2) a | 128.5 (17.4) b | 93.1 (10.2) a |
Post | 80.3 (10.9) *** | 104.6 (13.2) *** | 80.2 (7.4) *** |
Change | −7.8 (1.9) a | −23.9 (7.5) b | −12.9 (3.0) c |
BMI (kg/m2) | |||
Pre | 33.4 (3.3) a | 45.0 (5.0) b | 33.0 (1.4) a |
Post | 30.6 (3.3) *** | 37.3 (4.3) *** | 28.5 (1.3) *** |
Change | −2.7 (0.9) a | −7.9 (2.0) b | −4.5 (0.7) c |
Waist circumference (cm) | |||
Pre | 112.0 (8.1) a | 131.7 (11.1) b | 110.4 (6.5) a |
Post | 104.2 (8.1) *** | 116.9 (9.2) *** | 97.8 (6.6) *** |
Change | −7.7 (2.5) a | −15.9 (5.6) b | −12.5 (4.4) c |
Glucose (mg/dL) | |||
Pre | 106.2 (18.9) a | 112.7 (33.8) a | 87.2 (9.4) b |
Post | 100.3 (10.3) | 88.4 (12.6) *** | 83.1 (9.2) |
Change | −5.9 (17.4) a | −24.0 (27.5) b | −4.0 (10.8) a |
Total cholesterol (mg/dL) | |||
Pre | 213.3 (32.6) a | 191.4 (22.4) b | 203.9 (31.6) ab |
Post | 198.2 (35.6) * | 186.3 (23.6) | 185.8 (30.0) * |
Change | −10.7 (25.9) | −3.3 (20.7) | −18.0 (29.3) |
Triglycerides (mg/dL) | |||
Pre | 155.1 (45.2) | 206.2 (181.4) | 137.1 (63.2) |
Post | 119.7 (46.3) ** | 123 (38.7) ** | 83.1 (23.9) ** |
Change | −32.7 (37.4) | −85.4 (170.5) | −54.0 (59.2) |
HDL-chol (mg/dL) | |||
Pre | 51.3 (12.7) | 45.6 (10.1) | 53.5 (13.1) |
Post | 56.2 (13.2) * | 45.9 (9.8) | 53.2 (12.7) |
Change | 5.3 (9.3) | 0.1 (8.5) | 0.7 (7.4) |
LDL-chol (mg/dL) | |||
Pre | 131.1 (31.6) | 109.5 (23.4) | 125.4 (30.5) |
Post | 118.0 (33.6) * | 115.8 (21.5) | 116.0 (27.3) |
Change | −9.7 (21.8) a | 8.4 (23.4) b | −7.2 (24.4) a |
HbA1c (%) | |||
Pre | 5.8 (0.5) a | 5.9 (0.9) a | 5.3 (0.2) b |
Post | 5.5 (0.2) *** | 5.3 (0.3) ** | 5.1 (0.2) |
Change | −0.3 (0.3) | −0.5 (0.8) | −0.3 (0.2) |
SBP (mm Hg) | |||
Pre | 138.2 (12.4) | 140 (22.2) | 129.4 (16.5) |
Post | 132.1 (13.0) | 132.4 (21.7) * | 118.3 (11.9) ** |
Change | −6.0 (13.5) | −6.7 (20.9) | −11.0 (10.8) |
DBP (mm Hg) | |||
Pre | 75.7 (10.2) a | 85.8 (10.8) b | 79.5 (7.4) a |
Post | 73.7 (10.8) | 82.1 (12.9) | 74.3 (8.7) * |
Change | −2.0 (7.9) | −4.2 (14.3) | −5.1 (7.7) |
Ketone bodies (mmol/L) | |||
Pre | 0.20 (0.03) | 0.31 (0.14) | 0.42 (0.72) |
Post | 0.25 (0.15) | 0.31 (0.25) | 0.67 (1.09) * |
Change | 0.04 (0.14) a | 0.006 (0.25) a | 0.24 (0.45) b |
CRP (mg/dL) | |||
Pre | 1.63 (1.54) a | 6.61 (4.16) b | 3.80 (3.64) c |
Post | 1.63 (1.60) | 4.89 (3.93) ** | 3.19 (2.57) |
Change | −0.004 (1.57) a | −1.72 (3.56) b | −0.12 (1.65) ab |
Zonulin (ng/mL) | |||
Pre | 259.3 (63.4) | 274.8 (42.1) | 302.1 (144.1) |
Post | 243.3 (86.8) | 295.6 (59.5) | 379.4 (188.5) * |
Change | −16.0 (70.4) a | 20.8 (56.5) ab | 66.9 (120.5) b |
Mediterranean Diet n = 21 | Bariatric Surgery n = 22 | VLCKD n = 18 | |
---|---|---|---|
Aerobic | |||
Pre | 0.0668 (0.04514) | 0.0621 (0.0480) | 0.0932 (0.0673) |
Post | 0.0453 (0.0334) | 0.0499 (0.0362) | 0.0668 (0.0509) |
Change | −0.0215 (0.0413) | −0.0144 (0.0571) | −0.0237 (0.0631) |
Anaerobic | |||
Pre | 0.8007 (0.1198) | 0.8294 (0.1133) | 0.7127 (0.1307) |
Post | 0.8074 (0.1017) | 0.7968 (0.1348) | 0.7505 (0.1107) |
Change | 0.0067 (0.1089) | −0.0269 (0.1642) | 0.0406 (0.1448) |
Contains Mobile Elements | |||
Pre | 0.1518 (0.0865) | 0.1291 (0.0611) | 0.2026 (0.1305) |
Post | 0.1152 (0.0486) | 0.2012 (0.1746) | 0.2427 (0.1094) |
Change | −0.0365 (0.0842) a | 0.0672 (0.1658) b | 0.0402 (0.1117) ab |
Facultatively Anaerobic | |||
Pre | 0.0742 (0.0933) | 0.0532 (0.0567) | 0.0899 (0.1252) |
Post | 0.0669 (0.0711) | 0.1109 (0.1463) | 0.0834 (0.0730) |
Change | −0.0072 (0.0723) | 0.0561 (0.1600) | −0.0117 (0.1093) |
Form Biofilms | |||
Pre | 0.1735 (0.0900) | 0.1665 (0.1184) | 0.2947 (0.1391) |
Post | 0.1495 (0.0739) | 0.1914 (0.1481) | 0.2464 (0.1036) * |
Change | −0.0240 (0.0881) | 0.0203 (0.1562) | −0.0584 (0.1171) |
Gram Negative | |||
Pre | 0.6103 (0.1102) | 0.5516 (0.1705) | 0.6545 (0.0707) |
Post | 0.5561 (0.0872) | 0.5684 (0.1867) | 0.6305 (0.1098) |
Change | −0.0542 (0.1167) | −0.0012 (0.2010) | −0.0224 (0.08892) |
Gram Positive | |||
Pre | 0.3896 (0.1102) | 0.4483 (0.1705) | 0.3454 (0.0707) |
Post | 0.4438 (0.0872) | 0.4315 (0.1867) | 0.3694 (0.1098) |
Change | 0.0542 (0.1167) | 0.0012 (0.2010) | 0.0224 (0.0889) |
Potentially Pathogenic | |||
Pre | 0.6429 (0.1171) | 0.5674 (0.1499) | 0.6053 (0.1164) |
Post | 0.5874 (0.1167) * | 0.6116 (0.1621) | 0.6145 (0.0887) |
Change | −0.0555 (0.1280) | 0.0305 (0.1768) | 0.0142 (0.1466) |
Stress Tolerant | |||
Pre | 0.1063 (0.0863) | 0.0947 (0.0557) | 0.1726 (0.1306) |
Post | 0.0695 (0.0594) * | 0.1360 (0.1535) | 0.1182 (0.0859) |
Change | −0.0368 (0.0575) ab | 0.0376 (0.1501) b | −0.0574 (0.1232) a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-Repiso, C.; Molina-Vega, M.; Bernal-López, M.R.; Garrido-Sánchez, L.; García-Almeida, J.M.; Sajoux, I.; Moreno-Indias, I.; Tinahones, F.J. Different Weight Loss Intervention Approaches Reveal a Lack of a Common Pattern of Gut Microbiota Changes. J. Pers. Med. 2021, 11, 109. https://doi.org/10.3390/jpm11020109
Gutiérrez-Repiso C, Molina-Vega M, Bernal-López MR, Garrido-Sánchez L, García-Almeida JM, Sajoux I, Moreno-Indias I, Tinahones FJ. Different Weight Loss Intervention Approaches Reveal a Lack of a Common Pattern of Gut Microbiota Changes. Journal of Personalized Medicine. 2021; 11(2):109. https://doi.org/10.3390/jpm11020109
Chicago/Turabian StyleGutiérrez-Repiso, Carolina, María Molina-Vega, M. Rosa Bernal-López, Lourdes Garrido-Sánchez, José M. García-Almeida, Ignacio Sajoux, Isabel Moreno-Indias, and Francisco J. Tinahones. 2021. "Different Weight Loss Intervention Approaches Reveal a Lack of a Common Pattern of Gut Microbiota Changes" Journal of Personalized Medicine 11, no. 2: 109. https://doi.org/10.3390/jpm11020109
APA StyleGutiérrez-Repiso, C., Molina-Vega, M., Bernal-López, M. R., Garrido-Sánchez, L., García-Almeida, J. M., Sajoux, I., Moreno-Indias, I., & Tinahones, F. J. (2021). Different Weight Loss Intervention Approaches Reveal a Lack of a Common Pattern of Gut Microbiota Changes. Journal of Personalized Medicine, 11(2), 109. https://doi.org/10.3390/jpm11020109