Effect of TRPM8 and TRPA1 Polymorphisms on COPD Predisposition and Lung Function in COPD Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Lung Function Measurement
2.3. Genotyping
2.4. Statistical Analysis
3. Results
3.1. Clinical and Functional Characteristics of the Studied Subjects
3.2. Role of TRPM8 and TRPA1 Polymorphisms in COPD Predisposition
3.3. Effect of TRPM8 and TRPA1 Polymorphisms on Lung Function in COPD
3.4. Associations of TRPM8 and TRPA1 Polymorphisms with the Airway Response to Bronchodilator
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for Diagnosis, Management, and Prevention of COPD. 2010. Available online: http://www.goldcopd.org/ (accessed on 28 November 2013).
- Adeloye, D.; Chua, S.; Lee, C.; Basquill, C.; Papana, A.; Theodoratou, E.; Nair, H.; Gasevic, D.; Sridhar, D.; Campbell, H.; et al. Global and regional estimates of COPD prevalence: Systematic review and meta–analysis. J. Glob. Health 2015, 5, 020415. [Google Scholar] [CrossRef]
- Lortet-Tieulent, J.; Soerjomataram, I.; López-Campos, J.L.; Ancochea, J.; Coebergh, J.W.; Soriano, J.B. International trends in COPD mortality, 1995–2017. Eur. Respir. J. 2019, 54, 1901791. [Google Scholar] [CrossRef]
- Mirza, S.; Benzo, R.P. Chronic Obstructive Pulmonary Disease Phenotypes: Implications for Care. Mayo Clin. Proc. 2017, 92, 1104–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terzikhan, N.; Verhamme, K.M.C.; Hofman, A.; Stricker, B.H.; Brusselle, G.G.; LaHousse, L. Prevalence and incidence of COPD in smokers and non-smokers: The Rotterdam Study. Eur. J. Epidemiol. 2016, 31, 785–792. [Google Scholar] [CrossRef] [Green Version]
- Eisner, M.D.; Anthonisen, N.; Coultas, D.; Kuenzli, N.; Perez-Padilla, R.; Postma, D.; Romieu, I.; Silverman, E.K.; Balmes, J.R. An Official American Thoracic Society Public Policy Statement: Novel Risk Factors and the Global Burden of Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2010, 182, 693–718. [Google Scholar] [CrossRef]
- Clapham, D.E. TRP channels as cellular sensors. Nat. Cell Biol. 2003, 426, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Grace, M.S.; Baxter, M.; Dubuis, E.; A Birrell, M.; Belvisi, M. Transient receptor potential (TRP) channels in the airway: Role in airway disease. Br. J. Pharmacol. 2013, 171, 2593–2607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kichko, T.I.; Kobal, G.; Reeh, P.W. Cigarette smoke has sensory effects through nicotinic and TRPA1 but not TRPV1 receptors on the isolated mouse trachea and larynx. Am. J. Physiol. Cell. Mol. Physiol. 2015, 309, L812–L820. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Y.; Xu, M.; Zhang, H.; Chen, Y.; Chung, K.F.; Adcock, I.M.; Li, F. Roles of TRPA1 and TRPV1 in cigarette smoke-induced airway epithelial cell injury model. Free. Radic. Biol. Med. 2019, 134, 229–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, M.; Zhang, Y.; Wang, M.; Zhang, H.; Chen, Y.; Adcock, I.M.; Chung, K.F.; Mo, J.; Zhang, Y.; Li, F. TRPV1 and TRPA1 in Lung Inflammation and Airway Hyperresponsiveness Induced by Fine Particulate Matter (PM2.5). Oxidative Med. Cell. Longev. 2019, 2019, 7450151-15. [Google Scholar] [CrossRef] [Green Version]
- Baxter, M.; Eltom, S.; Dekkak, B.; Yew-Booth, L.; Dubuis, E.D.; A Maher, S.; Belvisi, M.G.; A Birrell, M. Role of transient receptor potential and pannexin channels in cigarette smoke-triggered ATP release in the lung. Thorax 2014, 69, 1080–1089. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Kanju, P.; Patterson, M.; Chew, W.-L.; Cho, S.-H.; Gilmour, I.; Oliver, T.; Yasuda, R.; Ghio, A.; Simon, S.A.; et al. TRPV4-Mediated Calcium Influx into Human Bronchial Epithelia upon Exposure to Diesel Exhaust Particles. Environ. Health Perspect. 2011, 119, 784–793. [Google Scholar] [CrossRef] [Green Version]
- Lin, A.-H.; Liu, M.-H.; Ko, H.-K.B.; Perng, D.-W.; Lee, T.-S.; Kou, Y.R. Inflammatory Effects of Menthol vs. Non-menthol Cigarette Smoke Extract on Human Lung Epithelial Cells: A Double-Hit on TRPM8 by Reactive Oxygen Species and Menthol. Front. Physiol. 2017, 8, 263. [Google Scholar] [CrossRef] [Green Version]
- Deering-Rice, C.E.; Johansen, M.E.; Roberts, J.K.; Thomas, K.C.; Romero, E.G.; Lee, J.; Yost, G.S.; Veranth, J.M.; Reilly, C.A. Transient Receptor Potential Vanilloid-1 (TRPV1) Is a Mediator of Lung Toxicity for Coal Fly Ash Particulate Material. Mol. Pharmacol. 2011, 81, 411–419. [Google Scholar] [CrossRef] [Green Version]
- Zhu, G.; ICGN Investigators; Gulsvik, A.; Bakke, P.; Ghatta, S.; Anderson, W.; Lomas, D.A.; Silverman, E.K.; Pillai, S.G. As-sociation of TRPV4 gene polymorphisms with chronic obstructive pulmonary disease. Hum. Mol. Genet. 2009, 18, 2053–2062. [Google Scholar] [CrossRef]
- Xiong, M.; Wang, J.; Guo, M.; Zhou, Q.; Lu, W. TRPM8 genetic variations associated with COPD risk in the Chinese Han population. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 2563–2571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, M.; Guo, M.; Huang, D.; Li, J.; Zhou, Y. TRPV1 genetic polymorphisms and risk of COPD or COPD combined with PH in the Han Chinese population. Cell Cycle 2020, 19, 3066–3073. [Google Scholar] [CrossRef] [PubMed]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Taylor, J.A. SNPinfo: Integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. Nucleic Acids Res. 2009, 37, W600–W605. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, J.A.; Pierce, K.E.; Rice, J.E.; Wangh, L. Linear-After-The-Exponential (LATE)–PCR: An advanced method of asymmetric PCR and its uses in quantitative real-time analysis. Proc. Natl. Acad. Sci. USA 2004, 101, 1933–1938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Kelly, T.N.; Zhao, Q.; Li, H.; Huang, J.; Wang, L.; Jaquish, C.E.; Sung, Y.J.; Shimmin, L.C.; Lu, F.; et al. Genome-wide association study identifies 8 novel loci associated with blood pressure responses to interventions in Han Chinese. Circ. Cardiovasc. Genet. 2013, 6, 598–607. [Google Scholar] [CrossRef] [Green Version]
- Igoshin, A.V.; Gunbin, K.V.; Yudin, N.S.; Voevoda, M.I. Searching for Signatures of Cold Climate Adaptation in TRPM8 Gene in Populations of East Asian Ancestry. Front. Genet. 2019, 10, 759. [Google Scholar] [CrossRef]
- Freilinger, T.; International Headache Genetics Consortium; Anttila, V.; De Vries, B.; Malik, R.; Kallela, M.; Terwindt, G.M.; Pozo-Rosich, P.; Winsvold, B.S.; Nyholt, D.R.; et al. Genome-wide association analysis identifies susceptibility loci for migraine without aura. Nat. Genet. 2012, 44, 777–782. [Google Scholar] [CrossRef]
- Key, F.M.; Abdul-Aziz, M.A.; Mundry, R.; Peter, B.M.; Sekar, A.; D’Amato, M.; Dennis, M.Y.; Schmidt, J.M.; Andrés, A.M. Human local adaptation of the TRPM8 cold receptor along a latitudinal cline. PLoS Genet. 2018, 14, e1007298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naumov, D.; Kotova, O.; Gassan, D.; Prikhodko, A.; Kolosov, V. Sex-Dependent Effect of TRPM8 rs10166942 Polymorphism on Cold-Induced Airway Hyperresponsiveness in Asthma. Am. J. Respir. Crit. Care Med. 2019, 199, A3823. [Google Scholar] [CrossRef]
- Naumov, D.E.; Perelman, J.M.; Kolosov, V.P.; Potapova, T.A.; Maksimov, V.N.; Zhou, X. Transient receptor potential melastatin 8 gene polymorphism is associated with cold-induced airway hyperresponsiveness in bronchial asthma. Respirology 2015, 20, 1192–1197. [Google Scholar] [CrossRef] [PubMed]
- Naumov, D.E.; Gassan, D.A.; Kotova, O.O.; Prikhodko, A.G.; Perelman, J.M.; Kolosov, V.P. Polymorphism of TRPM8 gene as an independent factor of bronchial obstruction in asthma. Bull. Physiol. Pathol. Respir. 2019, 71, 31–36. [Google Scholar] [CrossRef]
- Naumov, D.E.; Kotova, O.O.; Gassan, D.A.; Prikhodko, A.G.; Perelman, J.M.; Kolosov, V.P. Role of TRPM8 polymorphisms in the formation of asthma phenotype with cold airway hyperresponsiveness. Bull. Physiol. Pathol. Respir. 2017, 1, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Binder, A.; May, D.; Baron, R.; Maier, C.; Tölle, T.R.; Treede, R.D.; Berthele, A.; Faltraco, F.; Flor, H.; Gierthmühlen, J.; et al. Transient receptor potential channel polymorphisms are associated with the somatosensory function in neuropathic pain patients. PLoS ONE 2011, 6, e17387. [Google Scholar] [CrossRef]
- Gallo, V.; Dijk, F.N.; Holloway, J.W.; Ring, S.M.; Koppelman, G.H.; Postma, D.S.; Strachan, D.P.; Granell, R.; De Jongste, J.C.; Jaddoe, V.W.V.; et al. TRPA1 gene polymorphisms and childhood asthma. Pediatr. Allergy Immunol. 2016, 28, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Deering-Rice, C.E.; Shapiro, D.; Romero, E.G.; Stockmann, C.; Bevans, T.S.; Phan, Q.M.; Stone, B.L.; Fassl, B.; Nkoy, F.; Uchida, D.A.; et al. Activation of Transient Receptor Potential Ankyrin-1 by Insoluble Particulate Material and Association with Asthma. Am. J. Respir. Cell Mol. Biol. 2015, 53, 893–901. [Google Scholar] [CrossRef] [Green Version]
- Gassan, D.A.; Naumov, D.E.; Kotova, O.O.; Prikhodko, A.G.; Kolosov, V.P. TRPM8 gene polymorphism and smoking as the factors of severe bronchial obstruction in patients with asthma. Bull. Physiol. Pathol. Respir. 2017, 1, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kim, W.J.; Lee, C.H.; Lee, S.H.; Lee, M.G.; Shin, K.C.; Yoo, K.H.; Lee, J.H.; Lim, S.Y.; Na, J.O.; et al. Which bronchodilator reversibility criteria can predict severe acute exacerbation in chronic obstructive pulmonary disease patients? Respir. Res. 2017, 18, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Li, Q.; Yang, G.; Kolosov, V.P.; Perelman, J.M.; Zhou, X.D. Cold temperature induces mucin hypersecretion from normal human bronchial epithelial cells in vitro through a transient receptor potential melastatin 8 (TRPM8)–mediated mechanism. J. Allergy Clin. Immunol. 2011, 128, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Kolosov, V.; Naumov, D.; Gassan, D.; Kilimichenko, K.; Afanaseva, E.; Sheludko, E.; Zhou, X.-D. TRPM8 is overexpressed in the respiratory tract of steroid-naive asthma patients. Asian Pac. J. Trop. Med. 2018, 11, 16. [Google Scholar] [CrossRef]
- Kim, J.H.; Jang, Y.S.; Kim, H.I.; Park, J.Y.; Park, S.H.; Hwang, Y.I.; Jang, S.H.; Jung, K.S.; Park, H.S.; Park, C.S. Activation of Transient Receptor Potential Melastatin Family Member 8 (TRPM8) Receptors Induces Proinflammatory Cytokine Expressions in Bronchial Epithelial Cells. Allergy Asthma Immunol Res. 2020, 12, 684–700. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Q.; Hua, L.; Pan, J. Inhibition of transient receptor potential melastatin 8 alleviates airway inflammation and remodeling in a murine model of asthma with cold air stimulus. Acta Biochim. et Biophys. Sin. 2018, 50, 499–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Yang, G.; Li, M.; Zhou, X. Transient Receptor Potential Melastatin 8 (TRPM8)-Based Mechanisms Underlie Both the Cold Temperature-Induced Inflammatory Reactions and the Synergistic Effect of Cigarette Smoke in Human Bronchial Epithelial (16HBE) Cells. Front. Physiol. 2019, 10, 285. [Google Scholar] [CrossRef] [Green Version]
- Bautista, D.M.; Pellegrino, M.; Tsunozaki, M. TRPA1: A Gatekeeper for Inflammation. Annu. Rev. Physiol. 2013, 75, 181–200. [Google Scholar] [CrossRef] [Green Version]
- Nassenstein, C.; Kwong, K.; Taylor-Clark, T.; Kollarik, M.; MacGlashan, D.M.; Braun, A.; Undem, B.J. Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs. J. Physiol. 2008, 586, 1595–1604. [Google Scholar] [CrossRef]
- Nassini, R.; Pedretti, P.; Moretto, N.; Fusi, C.; Carnini, C.; Facchinetti, F.; Viscomi, A.R.; Pisano, A.R.; Stokesberry, S.; Brunmark, C.; et al. Transient Receptor Potential Ankyrin 1 Channel Localized to Non-Neuronal Airway Cells Promotes Non-Neurogenic Inflammation. PLoS ONE 2012, 7, e42454. [Google Scholar] [CrossRef] [Green Version]
- Kotova, O.O.; Gassan, D.A.; Naumov, D.E.; Sheludko, E. Effect of TRPA1 gene polymorphisms on predisposition to the formation of bronchial asthma. Bull. Physiol. Pathol. Respir. 2019, 73, 27–33. [Google Scholar] [CrossRef]
- Kozyreva, T.V.; Tkachenko, E.Y.; Potapova, T.A.; Romashchenko, A.G.; Voevoda, M.I. Single-nucleotide polymorphism rs11562975 of the thermosensitive ion channel TRPM8 gene and human sensitivity to cold and menthol. Hum. Physiol. 2011, 37, 188–192. [Google Scholar] [CrossRef]
- Kozyreva, T.V.; Tkachenko, E.Y.; Potapova, T.A.; Voevoda, M.I. Respiratory system response to local cooling in subjects with single nucleotide polymorphism rs11562975 of the TRPM8 temperature-sensitive ion channel gene. Hum. Physiol. 2014, 40, 197–200. [Google Scholar] [CrossRef]
- Veldhuis, N.A.; Poole, D.P.; Grace, M.; McIntyre, P.; Bunnett, N.W. The G Protein–Coupled Receptor–Transient Receptor Potential Channel Axis: Molecular Insights for Targeting Disorders of Sensation and Inflammation. Pharmacol. Rev. 2015, 67, 36–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowalska, M.; Prendecki, M.; Kapelusiak-Pielok, M.; Grzelak, T.; Łagan-Jędrzejczyk, U.; Wiszniewska, M.; Kozubski, W.; Dorszewska, J. Analysis of Genetic Variants in SCN1A, SCN2A, KCNK18, TRPA1 and STX1A as a Possible Marker of Migraine. Curr. Genom. 2020, 21, 224–236. [Google Scholar] [CrossRef]
RefSNP No. | Gene | Chromosome and Position (GRCh38) | Region | Nucleotide (Amino-acid) Substitution | Selection Criteria |
rs7577262 | TRPM8 | 2:233910224 | 5′-near gene | g.233910224G >A | [22,23] |
rs10166942 | TRPM8 | 2:233916448 | 5′-near gene | c.-990T > C | [24,25,26] |
rs11562975 | TRPM8 | 2:233945906 | exon | c.750G > C (p.Leu250 =) | [27,28] |
rs2052030 | TRPM8 | 2:234018966 | 3′-UTR | c.*1710C > G | possible miRNA binding site |
rs17865682 | TRPM8 | 2:234019581 | 3′-near gene | c.*2325A > G | [29] |
rs920829 | TRPA1 | 8:72065468 | exon | c.535G > A (p.Glu179Lys) | [30,31] |
rs7819749 | TRPA1 | 8:72063566 | exon | c.558A > C (p.Lys186Asn) | missense SNP, possible exonic splicing silencer |
rs4738202 | TRPA1 | 8:72028626 | intron | c.2937+1275T > C | [31] |
rs959976 | TRPA1 | 8:72023910 | exon | c.3053A > G (p.His1018Arg) | [32] |
rs959974 | TRPA1 | 8:72023604 | intron | c.3149+210C > A | [31] |
rs6996723 | TRPA1 | 8:72021397 | 3′-UTR | c.*1509G > A | possible miRNA binding site |
Characteristics | Chronic Obstructive Pulmonary Disease (COPD) (n = 143) | Healthy Smokers (n = 104) | p-Value |
---|---|---|---|
Age (years) | 61.0 (56.0–66.0) | 43.5 (34.5–52.0) | <0.001 |
Gender (M/F, %) | 85/15 | 74/26 | 0.03 |
Pack-year index | 40.0 (26.0–45.0) | 15.0 (6.0–22.5) | <0.001 |
Pack-year ≥ 10 (%) | 97 | 67 | <0.001 |
Forced expiratory volume in one second (FEV1) (% pred.) | 40.2 (30.3–58.1) | 100.0 (92.8–114.5) | <0.001 |
Forced vital capacity (FVC) (% pred.) | 60.1 (47.0–75.7) | 104.5 (96.0–116.5) | <0.001 |
FEV1/FVC (%) | 46.2 (38.0–54.2) | 80.4 (76.1–85.2) | <0.001 |
Peak expiratory flow (PEF) (% pred.) | 41.0 (31.7–55.0) | 95.2 (86.5–111.0) | <0.001 |
Forced expiratory flow (FEF)50 (% pred.) | 13.0 (8.0–23.5) | 87.5 (73.0–101.5) | <0.001 |
FEF75 (% pred.) | 11.9 (1.4–20.9) | 76.7 (60.7–88.8) | <0.001 |
Maximum mid-expiratory flow (MMEF) (% pred.) | 15.0 (11.1–23.5) | 85.8 (68.7–100.0) | <0.001 |
∆FEV1 (%) | 13.7 (5.0–23.0) | 5.1 (2.5–8.8) 1 | <0.001 |
∆FEV1/FVC (%) | 4.2 (0.1–9.9) | 2.3 (0–5.0) 1 | 0.05 |
PostBD-FEV1 (% pred.) | 48.0 (36.4–62.5) | 103.1 (94.3–115.0) 1 | <0.001 |
PostBD-FEV1/FVC (%) | 48.3 (40.4–55.7) | 79.8 (75.0–82.7) 1 | <0.001 |
Polymorphism | Genotypes | COPD | Healthy Smokers | p-Value | p-Value Adjusted 2 | False Discovery Rate (FDR) p |
---|---|---|---|---|---|---|
TRPM8 rs7577262 1 | GG | 118 (82.5%) | 82 (78.8%) | 0.47 | 0.79 | |
GA | 24 (16.8%) | 19 (18.3%) | 0.98 | |||
AA | 1 (0.7%) | 3 (2.9%) | ||||
TRPM8 rs10166942 1 | TT | 96 (67.1%) | 69 (66.3%) | 0.89 | 0.79 | |
TC | 40 (28.0%) | 31 (29.8%) | 0.98 | |||
CC | 7 (4.9%) | 4 (3.9%) | ||||
TRPM8 rs11562975 1 | GG | 113 (79.0%) | 86 (82.7%) | 0.47 | 0.49 | |
GC | 28 (19.6%) | 17 (16.3%) | 0.92 | |||
CC | 2 (1.4%) | 1 (1.0%) | ||||
TRPM8 rs2052030 | CC | 81 (56.6%) | 44 (42.3%) | 0.01 | 0.08 | |
CG | 48 (33.6%) | 54 (51.9%) | 0.30 | |||
GG | 14 (9.8%) | 6 (5.8%) | ||||
TRPM8 rs17865682 1 | AA | 105 (73.4%) | 75 (72.1%) | 0.82 | 0.61 | |
AG | 33 (23.1%) | 27 (26.0%) | 0.98 | |||
GG | 5 (3.5%) | 2 (1.9%) | ||||
TRPA1 rs920829 1 | AA | 2 (1.4%) | 3 (2.9%) | 0.10 | 0.15 | |
AG | 30 (21.0%) | 30 (28.8%) | 0.43 | |||
GG | 111 (77.6%) | 71 (68.3%) | ||||
TRPA1 rs7819749 | GG | 60 (42.0%) | 46 (44.2%) | 0.87 | 0.98 | |
GT | 68 (47.5%) | 49 (47.1%) | 0.98 | |||
TT | 15 (10.5%) | 9 (8.7%) | ||||
TRPA1 rs4738202 | AA | 9 (6.3%) | 8 (7.7%) | 0.71 | 0.85 | |
AG | 51 (35.7%) | 41 (39.4%) | 0.98 | |||
GG | 83 (58.0%) | 55 (52.9%) | ||||
TRPA1 rs959976 1 | AA | 92 (64.3%) | 61 (58.7%) | 0.36 | 0.17 | |
AG | 44 (30.8%) | 39 (37.5%) | 0.43 | |||
GG | 7 (4.9%) | 4 (3.8%) | ||||
TRPA1 rs959974 | GG | 28 (19.6%) | 20 (19.2%) | 0.86 | 0.97 | |
GT | 71 (49.6%) | 55 (52.9%) | 0.98 | |||
TT | 44 (30.8%) | 29 (27.9%) | ||||
TRPA1 rs6996723 1 | GG | 107 (74.8%) | 77 (74.0%) | 0.89 | 0.43 | |
GA | 34 (23.8%) | 25 (24.0%) | 0.92 | |||
AA | 2 (1.4%) | 2 (2.0%) |
Genetic Model | Genotypes | OR (95%CI) | p-Value | OR (95%CI) Adjusted 1 | p-Value Adjusted 1 | FDR p |
---|---|---|---|---|---|---|
Dominant | CC vs. CG+GG | 0.56 (0.34–0.94) | 0.03 | 0.47 (0.24–0.93) | 0.03 | 0.22 |
Recessive | CC+CG vs. GG | 1.77 (0.66–4.78) | 0.34 | 0.94 (0.23–3.80) | 0.93 | 0.98 |
Over-dominant | CC+GG vs. CG | 0.47 (0.28–0.79) | 0.004 | 0.47 (0.24–0.93) | 0.03 | 0.22 |
Log-additive | 0.78 (0.52–1.15) | 0.21 | 0.60 (0.35–1.04) | 0.07 | 0.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naumov, D.E.; Kotova, O.O.; Gassan, D.A.; Sugaylo, I.Y.; Afanas’eva, E.Y.; Sheludko, E.G.; Perelman, J.M. Effect of TRPM8 and TRPA1 Polymorphisms on COPD Predisposition and Lung Function in COPD Patients. J. Pers. Med. 2021, 11, 108. https://doi.org/10.3390/jpm11020108
Naumov DE, Kotova OO, Gassan DA, Sugaylo IY, Afanas’eva EY, Sheludko EG, Perelman JM. Effect of TRPM8 and TRPA1 Polymorphisms on COPD Predisposition and Lung Function in COPD Patients. Journal of Personalized Medicine. 2021; 11(2):108. https://doi.org/10.3390/jpm11020108
Chicago/Turabian StyleNaumov, Denis E., Olesya O. Kotova, Dina A. Gassan, Ivana Y. Sugaylo, Evgeniya Y. Afanas’eva, Elizaveta G. Sheludko, and Juliy M. Perelman. 2021. "Effect of TRPM8 and TRPA1 Polymorphisms on COPD Predisposition and Lung Function in COPD Patients" Journal of Personalized Medicine 11, no. 2: 108. https://doi.org/10.3390/jpm11020108
APA StyleNaumov, D. E., Kotova, O. O., Gassan, D. A., Sugaylo, I. Y., Afanas’eva, E. Y., Sheludko, E. G., & Perelman, J. M. (2021). Effect of TRPM8 and TRPA1 Polymorphisms on COPD Predisposition and Lung Function in COPD Patients. Journal of Personalized Medicine, 11(2), 108. https://doi.org/10.3390/jpm11020108