A Network-Based Analysis of Disease Complication Associations for Obstetric Disorders in the UK Biobank
Abstract
:1. Introduction
2. Materials and Methods
2.1. UK Biobank PheWAS Summary Data
2.2. Egocentric Disease–Disease Networks for Obstetric Disorders
2.3. Network-Based Comorbidity Prediction for Obstetric Disorders
2.4. Analysis of Disease Stratification Using Individual-Level Genotype Data
3. Results
3.1. Network Construction
3.2. Results for Predicting Disease Complications
3.2.1. Generating Ground Truth
3.2.2. Performance Comparison
3.2.3. Clinical Implication for Predicted Scores
3.2.4. Analysis of Disease Comorbidity Risk Using Individual-Level Genotype Data
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plante, L.; Basualdo, M.N.; Plotnikow, G.G.; Vasquez, D.N. Obstetric Disorders in the ICU. Semin. Respir. Crit. Care Med. 2017, 38, 218–234. [Google Scholar] [CrossRef]
- Neiger, R. Long-Term Effects of Pregnancy Complications on Maternal Health. A Review. J. Clin. Med. 2017, 6, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramlakhan, K.P.; Johnson, M.R.; Roos-Hesselink, J.W. Pregnancy and cardiovascular disease. Nat. Rev. Cardiol. 2020, 17, 1–14. [Google Scholar] [CrossRef]
- Barabási, A.-L.; Gulbahce, N.; Loscalzo, J. Network medicine: A network-based approach to human disease. Nat. Rev. Genet. 2010, 12, 56–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goh, K.-I.; Cusick, M.E.; Valle, D.; Childs, B.; Vidal, M.; Barabási, A.-L. The human disease network. Proc. Natl. Acad. Sci. USA 2007, 104, 8685–8690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denny, J.; Bastarache, L.; Ritchie, M.D.; Carroll, R.J.; Zink, R.; Mosley, J.; Field, J.R.; Pulley, J.M.; Ramirez, A.H.; Bowton, E.; et al. Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat. Biotechnol. 2013, 31, 1102–1111. [Google Scholar] [CrossRef] [Green Version]
- Lee, S. Lee Lab Resources. Available online: https://www.leelabsg.org/resources (accessed on 16 February 2021).
- Wei, W.-Q.; Bastarache, L.A.; Carroll, R.J.; Marlo, J.E.; Osterman, T.J.; Gamazon, E.; Cox, N.J.; Roden, D.M.; Denny, J.C. Evaluating phecodes, clinical classification software, and ICD-9-CM codes for phenome-wide association studies in the electronic health record. PLoS ONE 2017, 12, e0175508. [Google Scholar] [CrossRef] [PubMed]
- Loh, P.-R.; Danecek, P.; Palamara, P.F.; Fuchsberger, C.; A Reshef, Y.; Finucane, H.K.; Schoenherr, S.; Forer, L.; McCarthy, S.; Abecasis, C.F.G.R.; et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat. Genet. 2016, 48, 1443–1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, W.; Nielsen, J.B.; Fritsche, L.G.; Dey, R.; Gabrielsen, M.E.; Wolford, B.N.; Lefaive, J.; VandeHaar, P.; Gagliano, S.A.; Gifford, A.; et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 2018, 50, 1335–1341. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wysocki, K.; Ritter, L. Diseasome. Annu. Rev. Nurs. Res. 2011, 29, 55–72. [Google Scholar] [CrossRef] [PubMed]
- Djomba, J.K.; Zaletel-Kragelj, L. A methodological approach to the analysis of egocentric social networks in public health research: A practical example. Slov. J. Public Health 2016, 55, 256–263. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Yang, X.; Xu, Z.; King, I. Graph-Based Semi-supervised Learning: A Comprehensive Review. Available online: http://arxiv.org/abs/2102.13303 (accessed on 26 October 2021).
- Melchiorre, K.; Sharma, R.; Thilaganathan, B. Cardiovascular Implications in Preeclampsia. Circulation 2014, 130, 703–714. [Google Scholar] [CrossRef] [PubMed]
- UK Biobank. Access Matter: Representativeness of UK Biobank Resource. Available online: https://www.ukbiobank.ac.uk/ (accessed on 14 August 2021).
- Hidalgo, C.A.; Blumm, N.; Barabasi, A.; Christakis, N.A. A Dynamic Network Approach for the Study of Human Phenotypes. PLoS Comput. Biol. 2009, 5, e1000353. [Google Scholar] [CrossRef] [PubMed]
- Kersten, I.; Lange, A.E.; Haas, J.-P.; Fusch, C.; Lode, H.; Hoffmann, W.; Thyrian, J.R. Chronic diseases in pregnant women: Prevalence and birth outcomes based on the SNiP-study. BMC Pregnancy Childbirth 2014, 14, 75. [Google Scholar] [CrossRef] [Green Version]
- Porpora, M.G. Endometriosis and pelvic pain. Minerva Obstet. Gynecol. 2021, 73, 509–510. [Google Scholar] [CrossRef]
- Li, L.; Zhang, J.; Gao, H.; Ma, Y. Nestin is highly expressed in foetal spinal cord isolated from placenta previa patients and promotes inflammation by enhancing NF-κB activity. Biomarkers 2018, 23, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Aydogan, P.; Kahyaoglu, S.; Saygan, S.; Kaymak, O.; Mollamahmutoglu, L.; Danisman, N. Does cervical ureaplasma/mycoplasma colonization increase the lower uterine segment bleeding risk during cesarean section among patients with placenta previa? A cross-sectional study. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 2243–2247. [Google Scholar] [PubMed]
- Cuero, M.R.; Varelas, P.N. Neurologic Complications in Pregnancy. Crit. Care Clin. 2016, 32, 43–59. [Google Scholar] [CrossRef]
- Sun, L.-J.; Xu, G.-F.; Lv, M.; Zhou, H.; Huang, H.-F.; Luo, Q. Predictive Value of Maternal Serum Biomarkers for Preeclampsia and Birth Weight: A Case–Control Study in Chinese Pregnant Women. J. Womens Health 2018, 27, 1519–1524. [Google Scholar] [CrossRef] [PubMed]
- Emdin, C.A.; Khera, A.V.; Kathiresan, S. Mendelian Randomization. JAMA 2017, 318, 1925–1926. [Google Scholar] [CrossRef] [PubMed]
- Penn Medicine Biobank. Available online: https://pmbb.med.upenn.edu (accessed on 27 October 2021).
- Lewis, C.M.; Vassos, E. Polygenic risk scores: From research tools to clinical instruments. Genome Med. 2020, 12, 1–11. [Google Scholar] [CrossRef] [PubMed]
- BioRender. Available online: https://biorender.com (accessed on 30 September 2021).
PheCode | Phenotype Name |
---|---|
634 | Miscarriage/stillbirth |
635.3 | Placenta previa and abruptio placenta |
636.3 | Hemorrhage in early pregnancy |
642.1 | Preeclampsia and eclampsia |
651 | Multiple gestation |
Ego-Disease | Egocentric DDN | Full DDN | ||||
---|---|---|---|---|---|---|
AUC | p-Value | AUC | p-Value | |||
Multiple gestation | 0.852 | 0.272 | 4.05 × 10−2 | 0.526 | −0.021 | 0.531 |
Preeclampsia and eclampsia | 0.823 | 0.315 | 8.36 × 10−3 | 0.522 | 0.021 | 0.534 |
Hemorrhage in early pregnancy | 0.644 | 0.181 | 1.75 × 10−1 | 0.456 | 0.044 | 0.201 |
Placenta previa and abruption placenta | 0.822 | 0.484 | 2.94 × 10−5 | 0.638 | 0.129 | 1.47 × 10−4 |
Miscarriage/stillbirth | 0.729 | 0.344 | 4.13 × 10−3 | 0.529 | 0.030 | 0.382 |
Avg. metrics for five selected diseases | 0.774 | 0.319 | - | 0.534 | 0.041 | - |
Avg. metrics for 26 obstetric diseases | 0.744 | 0.210 | - | 0.550 | −7.33 × 10−3 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sriram, V.; Nam, Y.; Shivakumar, M.; Verma, A.; Jung, S.-H.; Lee, S.M.; Kim, D. A Network-Based Analysis of Disease Complication Associations for Obstetric Disorders in the UK Biobank. J. Pers. Med. 2021, 11, 1382. https://doi.org/10.3390/jpm11121382
Sriram V, Nam Y, Shivakumar M, Verma A, Jung S-H, Lee SM, Kim D. A Network-Based Analysis of Disease Complication Associations for Obstetric Disorders in the UK Biobank. Journal of Personalized Medicine. 2021; 11(12):1382. https://doi.org/10.3390/jpm11121382
Chicago/Turabian StyleSriram, Vivek, Yonghyun Nam, Manu Shivakumar, Anurag Verma, Sang-Hyuk Jung, Seung Mi Lee, and Dokyoon Kim. 2021. "A Network-Based Analysis of Disease Complication Associations for Obstetric Disorders in the UK Biobank" Journal of Personalized Medicine 11, no. 12: 1382. https://doi.org/10.3390/jpm11121382
APA StyleSriram, V., Nam, Y., Shivakumar, M., Verma, A., Jung, S.-H., Lee, S. M., & Kim, D. (2021). A Network-Based Analysis of Disease Complication Associations for Obstetric Disorders in the UK Biobank. Journal of Personalized Medicine, 11(12), 1382. https://doi.org/10.3390/jpm11121382