Cirrhosis-Associated RAS-Inflammation-Coagulation Axis Anomalies: Parallels to Severe COVID-19
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Patient Characteristics
3.2. Parameters of Endothelial Dysfunction and Coagulation/Fibrinolysis in Cirrhotic Patients
3.3. Parameters of Inflammation and RAS Activation in Cirrhotic Patients
3.4. Differences between COVID-19 Patients with and without ARDS
3.5. Cirrhotic Patients Resemble Patients with COVID-19 Regarding VWF, Parameters of Coagulation/Fibrinolysis, and Inflammation
3.6. Correlations of ACE and Parameters of Coagulation, Fibrinolysis, and Inflammation in Cirrhosis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atzrodt, C.L.; Maknojia, I.; McCarthy, R.D.P.; Oldfield, T.M.; Po, J.; Ta, K.T.L.; Stepp, H.E.; Clements, T.P. A Guide to COVID-19: A global pandemic caused by the novel coronavirus SARS-CoV-2. FEBS J. 2020, 287, 3633–3650. [Google Scholar] [CrossRef] [PubMed]
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020, 324, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Nardo, A.D.; Schneeweiss-Gleixner, M.; Bakail, M.; Dixon, E.D.; Lax, S.F.; Trauner, M. Pathophysiological mechanisms of liver injury in COVID-19. Liver Int. 2021, 41, 20–32. [Google Scholar] [CrossRef]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Lax, S.F.; Skok, K.; Zechner, P.; Kessler, H.H.; Kaufmann, N.; Koelblinger, C.; Vander, K.; Bargfrieder, U.; Trauner, M. Pulmonary Arterial Thrombosis in COVID-19 With Fatal Outcome: Results From a Prospective, Single-Center, Clinicopathologic Case Series. Ann. Intern. Med. 2020, 173, 350–361. [Google Scholar] [CrossRef]
- Buso, G.; Becchetti, C.; Berzigotti, A. Acute splanchnic vein thrombosis in patients with COVID-19: A systematic review. Dig. Liver Dis. 2021, 53, 937–949. [Google Scholar] [CrossRef]
- Aid, M.; Busman-Sahay, K.; Vidal, S.J.; Maliga, Z.; Bondoc, S.; Starke, C.; Terry, M.; Jacobson, C.A.; Wrijil, L.; Ducat, S.; et al. Vascular Disease and Thrombosis in SARS-CoV-2-Infected Rhesus Macaques. Cell 2020, 183, 1354–1366.e13. [Google Scholar] [CrossRef]
- Zemlin, A.E.; Wiese, O.J. Coronavirus disease 2019 (COVID-19) and the renin-angiotensin system: A closer look at angiotensin-converting enzyme 2 (ACE2). Ann. Clin. Biochem. 2020, 57, 339–350. [Google Scholar] [CrossRef]
- Lanza, K.; Perez, L.G.; Costa, L.B.; Cordeiro, T.M.; Palmeira, V.A.; Ribeiro, V.T.; Simões, E.S.A.C. Covid-19: The renin-angiotensin system imbalance hypothesis. Clin. Sci. 2020, 134, 1259–1264. [Google Scholar] [CrossRef]
- Sarzani, R.; Giulietti, F.; Di Pentima, C.; Giordano, P.; Spannella, F. Disequilibrium between the classic renin-angiotensin system and its opposing arm in SARS-CoV-2-related lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 2020, 319, L325–L336. [Google Scholar] [CrossRef]
- Hartl, L.; Jachs, M.; Desbalmes, C.; Schaufler, D.; Simbrunner, B.; Paternostro, R.; Schwabl, P.; Bauer, D.J.M.; Semmler, G.; Scheiner, B.; et al. The differential activation of cardiovascular hormones across distinct stages of portal hypertension predicts clinical outcomes. Hepatol. Int. 2021, 15, 1160–1173. [Google Scholar] [CrossRef] [PubMed]
- Zermatten, M.G.; Fraga, M.; Moradpour, D.; Bertaggia Calderara, D.; Aliotta, A.; Stirnimann, G.; De Gottardi, A.; Alberio, L. Hemostatic Alterations in Patients With Cirrhosis: From Primary Hemostasis to Fibrinolysis. Hepatology 2020, 71, 2135–2148. [Google Scholar] [CrossRef]
- Simbrunner, B.; Mandorfer, M.; Trauner, M.; Reiberger, T. Gut-liver axis signaling in portal hypertension. World J. Gastroenterol. 2019, 25, 5897–5917. [Google Scholar] [CrossRef]
- Intagliata, N.M.; Caldwell, S.H.; Tripodi, A. Diagnosis, Development, and Treatment of Portal Vein Thrombosis in Patients With and Without Cirrhosis. Gastroenterology 2019, 156, 1582–1599.e81. [Google Scholar] [CrossRef] [PubMed]
- Trebicka, J.; Reiberger, T.; Laleman, W. Gut-Liver Axis Links Portal Hypertension to Acute-on-Chronic Liver Failure. Visc. Med. 2018, 34, 270–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iavarone, M.; D’Ambrosio, R.; Soria, A.; Triolo, M.; Pugliese, N.; Del Poggio, P.; Perricone, G.; Massironi, S.; Spinetti, A.; Buscarini, E.; et al. High rates of 30-day mortality in patients with cirrhosis and COVID-19. J. Hepatol. 2020, 73, 1063–1071. [Google Scholar] [CrossRef]
- Boettler, T.; Newsome, P.N.; Mondelli, M.U.; Maticic, M.; Cordero, E.; Cornberg, M.; Berg, T. Care of patients with liver disease during the COVID-19 pandemic: EASL-ESCMID position paper. JHEP Rep. 2020, 2, 100113. [Google Scholar] [CrossRef]
- Ferlitsch, A.; Bota, S.; Paternostro, R.; Reiberger, T.; Mandorfer, M.; Heinisch, B.; Salzl, P.; Schwarzer, R.; Sieghart, W.; Peck-Radosavljevic, M.; et al. Evaluation of a new balloon occlusion catheter specifically designed for measurement of hepatic venous pressure gradient. Liver Int. 2015, 35, 2115–2120. [Google Scholar] [CrossRef]
- Reiberger, T.; Schwabl, P.; Trauner, M.; Peck-Radosavljevic, M.; Mandorfer, M. Measurement of the Hepatic Venous Pressure Gradient and Transjugular Liver Biopsy. J. Vis. Exp. JoVE 2019. [Google Scholar] [CrossRef]
- Reiberger, T.; Puspok, A.; Schoder, M.; Baumann-Durchschein, F.; Bucsics, T.; Datz, C.; Dolak, W.; Ferlitsch, A.; Finkenstedt, A.; Graziadei, I.; et al. Austrian consensus guidelines on the management and treatment of portal hypertension (Billroth III). Wien. Klin. Wochenschr. 2017, 129 (Suppl. 3), 135–158. [Google Scholar] [CrossRef]
- Wilkinson, S.P.; Williams, R. Renin-angiotensin-aldosterone system in cirrhosis. Gut 1980, 21, 545–554. [Google Scholar] [CrossRef]
- Granzow, M.; Schierwagen, R.; Klein, S.; Kowallick, B.; Huss, S.; Linhart, M.; Mazar, I.G.; Görtzen, J.; Vogt, A.; Schildberg, F.A.; et al. Angiotensin-II type 1 receptor-mediated Janus kinase 2 activation induces liver fibrosis. Hepatology 2014, 60, 334–348. [Google Scholar] [CrossRef] [Green Version]
- Sansoè, G.; Aragno, M.; Wong, F. Pathways of hepatic and renal damage through non-classical activation of the renin-angiotensin system in chronic liver disease. Liver Int. 2020, 40, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Paternostro, R.; Reiberger, T.; Mandorfer, M.; Schwarzer, R.; Schwabl, P.; Bota, S.; Ferlitsch, M.; Trauner, M.; Peck-Radosavljevic, M.; Ferlitsch, A. Plasma renin concentration represents an independent risk factor for mortality and is associated with liver dysfunction in patients with cirrhosis. J. Gastroenterol. Hepatol. 2017, 32, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Senchenkova, E.Y.; Russell, J.; Almeida-Paula, L.D.; Harding, J.W.; Granger, D.N. Angiotensin II-mediated microvascular thrombosis. Hypertension 2010, 56, 1089–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekholm, M.; Wallén, N.H.; Johnsson, H.; Eliasson, K.; Kahan, T. Long-term angiotensin-converting enzyme inhibition with ramipril reduces thrombin generation in human hypertension. Clin. Sci. 2002, 103, 151–155. [Google Scholar] [CrossRef]
- Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020, 367, 1260–1263. [Google Scholar] [CrossRef] [Green Version]
- Reindl-Schwaighofer, R.; Hödlmoser, S.; Eskandary, F.; Poglitsch, M.; Bonderman, D.; Strassl, R.; Aberle, J.H.; Oberbauer, R.; Zoufaly, A.; Hecking, M. ACE2 Elevation in Severe COVID-19. Am. J. Respir. Crit. Care Med. 2021, 203, 1191–1196. [Google Scholar] [CrossRef]
- Kolberg, E.S.; Wickstrøm, K.; Tonby, K.; Dyrhol-Riise, A.M.; Holten, A.R.; Amundsen, E.K. Serum ACE as a prognostic biomarker in COVID-19: A case series. APMIS 2021, 129, 237–238. [Google Scholar] [CrossRef]
- McFadyen, J.D.; Stevens, H.; Peter, K. The Emerging Threat of (Micro)Thrombosis in COVID-19 and Its Therapeutic Implications. Circ. Res. 2020, 127, 571–587. [Google Scholar] [CrossRef]
- Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020, 395, 1417–1418. [Google Scholar] [CrossRef]
- Mandorfer, M.; Schwabl, P.; Paternostro, R.; Pomej, K.; Bauer, D.; Thaler, J.; Ay, C.; Quehenberger, P.; Fritzer-Szekeres, M.; Peck-Radosavljevic, M.; et al. Von Willebrand factor indicates bacterial translocation, inflammation, and procoagulant imbalance and predicts complications independently of portal hypertension severity. Aliment. Pharmacol. Ther. 2018, 47, 980–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferlitsch, M.; Reiberger, T.; Hoke, M.; Salzl, P.; Schwengerer, B.; Ulbrich, G.; Payer, B.A.; Trauner, M.; Peck-Radosavljevic, M.; Ferlitsch, A. von Willebrand factor as new noninvasive predictor of portal hypertension, decompensation and mortality in patients with liver cirrhosis. Hepatology 2012, 56, 1439–1447. [Google Scholar] [CrossRef] [PubMed]
- Jachs, M.; Hartl, L.; Simbrunner, B.; Bauer, D.; Paternostro, R.; Scheiner, B.; Schwabl, P.; Stättermayer, A.F.; Pinter, M.; Eigenbauer, E.; et al. Decreasing von Willebrand Factor Levels Upon Nonselective Beta Blocker Therapy Indicate a Decreased Risk of Further Decompensation, Acute-on-chronic Liver Failure, and Death. Clin. Gastroenterol. Hepatol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Starlinger, P.; Ahn, J.C.; Mullan, A.; Gyoeri, G.P.; Pereyra, D.; Alva-Ruiz, R.; Hackl, H.; Reiberger, T.; Trauner, M.; Santol, J.; et al. The Addition of C-Reactive Protein and von Willebrand Factor to Model for End-Stage Liver Disease-Sodium Improves Prediction of Waitlist Mortality. Hepatology 2021, 74, 1533–1545. [Google Scholar] [CrossRef]
- La Mura, V.; Reverter, J.C.; Flores-Arroyo, A.; Raffa, S.; Reverter, E.; Seijo, S.; Abraldes, J.G.; Bosch, J.; García-Pagán, J.C. Von Willebrand factor levels predict clinical outcome in patients with cirrhosis and portal hypertension. Gut 2011, 60, 1133–1138. [Google Scholar] [CrossRef] [PubMed]
- Violi, F.; Ferro, D.; Basili, S.; Saliola, M.; Quintarelli, C.; Alessandri, C.; Cordova, C. Association between low-grade disseminated intravascular coagulation and endotoxemia in patients with liver cirrhosis. Gastroenterology 1995, 109, 531–539. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Zocco, M.A.; Di Stasio, E.; De Cristofaro, R.; Novi, M.; Ainora, M.E.; Ponziani, F.; Riccardi, L.; Lancellotti, S.; Santoliquido, A.; Flore, R.; et al. Thrombotic risk factors in patients with liver cirrhosis: Correlation with MELD scoring system and portal vein thrombosis development. J. Hepatol. 2009, 51, 682–689. [Google Scholar] [CrossRef]
- Leebeek, F.W.; Kluft, C.; Knot, E.A.; de Maat, M.P.; Wilson, J.H. A shift in balance between profibrinolytic and antifibrinolytic factors causes enhanced fibrinolysis in cirrhosis. Gastroenterology 1991, 101, 1382–1390. [Google Scholar] [CrossRef]
- Sansoè, G.; Aragno, M.; Wong, F. COVID-19 and Liver Cirrhosis: Focus on the Nonclassical Renin-Angiotensin System and Implications for Therapy. Hepatology 2021, 74, 1074–1080. [Google Scholar] [CrossRef]
- Paces, J.; Strizova, Z.; Smrz, D.; Cerny, J. COVID-19 and the immune system. Physiol. Res. 2020, 69, 379–388. [Google Scholar] [CrossRef]
- Verdecchia, P.; Cavallini, C.; Spanevello, A.; Angeli, F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur. J. Intern. Med. 2020, 76, 14–20. [Google Scholar] [CrossRef]
- Balcar, L.; Semmler, G.; Pomej, K.; Simbrunner, B.; Bauer, D.; Hartl, L.; Jachs, M.; Paternostro, R.; Bucsics, T.; Pinter, M.; et al. Patterns of acute decompensation in hospitalized patients with cirrhosis and course of acute-on-chronic liver failure. United Eur. Gastroenterol. J. 2021, 9, 427–437. [Google Scholar] [CrossRef]
- Moreau, R.; Jalan, R.; Gines, P.; Pavesi, M.; Angeli, P.; Cordoba, J.; Durand, F.; Gustot, T.; Saliba, F.; Domenicali, M.; et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology 2013, 144, 1426–1437.e9. [Google Scholar] [CrossRef]
- Trebicka, J.; Fernandez, J.; Papp, M.; Caraceni, P.; Laleman, W.; Gambino, C.; Giovo, I.; Uschner, F.E.; Jansen, C.; Jimenez, C.; et al. PREDICT identifies precipitating events associated with the clinical course of acutely decompensated cirrhosis. J. Hepatol. 2021, 74, 1097–1108. [Google Scholar] [CrossRef] [PubMed]
- Seaman, C.D.; Ragni, M.V. The Effect of Age on von Willebrand Factor and Bleeding Symptoms in von Willebrand Disease. Thromb. Haemost. 2020, 120, 1159–1165. [Google Scholar] [CrossRef] [PubMed]
- Scheiner, B.; Northup, P.G.; Gruber, A.B.; Semmler, G.; Leitner, G.; Quehenberger, P.; Thaler, J.; Ay, C.; Trauner, M.; Reiberger, T.; et al. The impact of ABO blood type on the prevalence of portal vein thrombosis in patients with advanced chronic liver disease. Liver Int. 2020, 40, 1415–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boettler, T.; Marjot, T.; Newsome, P.N.; Mondelli, M.U.; Maticic, M.; Cordero, E.; Jalan, R.; Moreau, R.; Cornberg, M.; Berg, T. Impact of COVID-19 on the care of patients with liver disease: EASL-ESCMID position paper after 6 months of the pandemic. JHEP Rep. 2020, 2, 100169. [Google Scholar] [CrossRef] [PubMed]
Patient Characteristics | All Patients (n = 127) | CTP Stage | p-Value | ||
---|---|---|---|---|---|
A (n = 65) | B (n = 52) | C (n = 10) | |||
Sex, male/female (% male) | 83/44 (65.4%) | 40/25 (61.5%) | 37/15 (71.2%) | 6/4 (60.0%) | 0.518 |
Age, years (IQR) | 56.6 (15.5) | 57.7 (16.4) | 54.3 (16.3) | 49.9 (7.4) | 0.076 |
Etiology of CLD | 0.002 | ||||
ALD, n (%) | 63 (49.6%) | 24 (36.9%) | 30 (57.7%) | 9 (90.0%) | |
Viral, n (%) | 19 (15.0%) | 16 (24.6%) | 3 (5.8%) | 0 (0.0%) | |
MIX (ALD/Viral), n (%) | 5 (3.9%) | 1 (1.5%) | 4 (7.7%) | 0 (0.0%) | |
NASH, n (%) | 8 (6.3%) | 8 (12.3%) | 0 (0.0%) | 0 (0.0%) | |
Cholestatic, n (%) | 11 (8.7%) | 7 (10.8%) | 4 (7.7%) | 0 (0.0%) | |
Other, n (%) | 21 (16.5%) | 9 (13.8%) | 11 (21.2%) | 1 (10.0%) | |
MELD, median (IQR) | 11 (6) | 9 (2) | 15 (5) | 19 (6) | <0.001 |
Decompensated ACLD, n (%) | 80 (63.0%) | 25 (38.5%) | 45 (86.5%) | 10 (100.0%) | <0.001 |
Severe/refractory ascites, n (%) | 9 (7.1%) | 0 (0.0%) | 8 (15.4%) | 1 (10.0%) | 0.005 |
History of bleeding, n (%) | 16 (12.6%) | 7 (10.8%) | 8 (15.4%) | 1 (10.0%) | 0.731 |
Hepatic venous pressure gradient, median (IQR) | 18 (9) | 14 (9) | 19 (8) | 21 (5) | <0.001 |
HVPG 6–9 mmHg, n (%) | 65 (51.2%) | 13 (20.0%) | 3 (5.8%) | 0 (0.0%) | 0.004 |
HVPG 10–19 mmHg, n (%) | 52 (40.9%) | 37 (56.9%) | 24 (46.2%) | 3 (30.0%) | |
HVPG ≥20 mmHg, n (%) | 10 (7.9%) | 15 (23.1%) | 25 (48.1%) | 7 (70.0%) | |
Albumin, g × L−1 (IQR) | 36.5 (7.6) | 39.6 (4.9) | 33.8 (6.1) | 27.3 (8.4) | <0.001 |
Bilirubin, mg × dL−1 (IQR) | 1.21 (1.26) | 0.87 (0.49) | 1.81 (1.60) | 3.34 (1.25) | <0.001 |
INR, median (IQR) | 1.4 (0.3) | 1.3 (0.2) | 1.4 (0.2) | 1.9 (0.7) | <0.001 |
Creatinine, mg × dL−1 (IQR) | 0.72 (0.25) | 0.74 (0.23) | 0.75 (0.37) | 0.62 (0.20) | 0.384 |
Sodium, mmol × L−1 (IQR) | 139.0 (5.0) | 140.0 (2.0) | 137.0 (4.0) | 134.5 (7.0) | <0.001 |
Angiotensin converting enzyme, U × L−1 (IQR) | 48.9 (39.2) | 41.3 (35.9) | 54.4 (45.6) | 71.3 (66.9) | 0.006 |
Plasma renin concentration, µIU × mL−1 (IQR) | 22.0 (103.9) | 12.4 (26.7) | 55.1 (115.9) | 594.1 (949.8) | <0.001 |
Plasma aldosterone concentration, pg × mL−1 (IQR) | 109.5 (247.0) | 84.5 (442.0) | 240.0 (442.0) | 397.0 (238.0) | <0.001 |
D-dimer, µg × mL−1 (IQR) | 0.62 (1.75) | 0.48 (0.41) | 1.40 (2.90) | 3.19 (3.08) | <0.001 |
Von Willebrand factor antigen, % (IQR) | 267.0 (136.0) | 223.4 (114.0) | 307.0 (133.0) | 396.0 (91.0) | <0.001 |
Prothrombin fragment F1,2, pmol × L−1 (IQR) | 282.0 (265.0) | 287.0 (292.0) | 292.5 (241.0) | 176.0 (194.0) | 0.079 |
Plasminogen activator inhibitor, IU × mL−1 (IQR) | 0.89 (2.01) | 0.89 (1.60) | 0.92 (2.06) | 2.68 (1.73) | 0.149 |
α-2 antiplasmin activity, % (IQR) | 67.0 (24.0) | 74.5 (16.0) | 60.0 (24.0) | 39.0 (11.0) | <0.001 |
Plasminogen activity, % (IQR) | 65.5 (21.0) | 75.0 (21.0) | 59.0 (12.0) | 42.0 (9.0) | <0.001 |
C-reactive protein, mg × dL−1 (IQR) | 0.29 (0.51) | 0.18 (0.29) | 0.47 (0.67) | 0.47 (1.23) | <0.001 |
Interleukin-6, pg × mL−1 (IQR) | 8.86 (11.1) | 5.15 (5.65) | 13.70 (20.57) | 15.21 (25.60) | <0.001 |
Patient Characteristics | Healthy Subjects (n = 10) | Cirrhosis (n = 127) | Mild-COVID (n = 9) | ARDS-COVID (n = 11) | p-Value |
---|---|---|---|---|---|
Sex, male/female (% male) | 6/4 (60.0%) | 83/44 (65.4%) | 2/7 (22.2%) | 6/5 (54.5%) | 0.075 |
Age, years (IQR) | 30.2 (15.4) | 54.6 (15.9) | 57.1 (19.6) | 57.4 (20.5) | <0.001 |
Angiotensin converting enzyme, U × L−1 (IQR) | 30.2 (39.2) | 48.6 (39.2) | 23.7 (16.3) | 25.4 (27.7) | <0.001 |
Plasma renin concentration, µIU × mL−1 (IQR) | 22.2 (15.8) | 22.0 (103.9) | 11.1 (14.6) | 62.7 (107.1) | 0.050 |
Plasma aldosterone concentration, pg × mL−1 (IQR) | 174.0 (161.0) | 109.5 (247.0) | 39.5 (78.0) | 49.0 (48.0) | <0.001 |
D-dimer, µg × mL−1 (IQR) | 0.28 (0.15) | 0.62 (1.75) | 0.54 (0.58) | 2.94 (4.75) | <0.001 |
Von Willebrand factor antigen, % (IQR) | 94.0 (44.0) | 268.0 (130.0) | 247.5 (73.0) | 420.0 (99.0) | <0.001 |
Prothrombin fragment F1,2, pmol × L−1 (IQR) | 137.5 (181.0) | 282.0 (265.0) | 151.5 (252.0) | 429.0 (2687.0) | <0.001 |
Plasminogen activator inhibitor, IU × mL−1 (IQR) | 1.41 (2.64) | 0.89 (2.02) | 0.58 (4.76) | 0.61 (5.02) | 0.135 |
α-2 antiplasmin activity, % (IQR) | 104.5 (13.0) | 67.0 (24.0) | 110.0 (15.0) | 108.0 (27.0) | <0.001 |
Plasminogen activity, % (IQR) | 96.0 (14.0) | 66.0 (21.0) | 100.0 (26.0) | 92.0 (46.0) | <0.001 |
C-reactive protein, mg × dL−1 (IQR) | 0.08 (0.08) | 0.29 (0.51) | 0.50 (1.42) | 15.10 (14.69) | <0.001 |
Interleukin-6, pg × mL−1 (IQR) | 1.58 (0.19) | 8.86 (11.09) | 7.66 (14.74) | 65.70 (357.90) | <0.001 |
(i) | (ii) | (iii) | (iv) | |||||
---|---|---|---|---|---|---|---|---|
B | p | aB | p | aB | p | aB | p | |
Age, per 10 years | −2.49 | 0.267 | - | - | - | - | - | - |
Sex (male) | 5.28 | 0.365 | - | - | - | - | - | - |
MELD, points | 1.76 | 0.005 | 1.02 | 0.147 | 0.69 | 0.396 | 0.24 | 0.769 |
HVPG, mmHg | 0.84 | 0.069 | −0.08 | 0.882 | 0.02 | 0.970 | −0.14 | 0.790 |
Albumin, g × L−1 | −1.32 | 0.008 | −0.21 | 0.758 | −1.32 | 0.007 | 0.24 | 0.737 |
Sodium, mmol × L−1 | −1.13 | 0.140 | - | - | - | - | - | - |
Mean arterial pressure, mmHg | −0.09 | 0.605 | - | - | - | - | - | - |
Von Willebrand factor antigen, % | 0.10 | 0.001 | 0.10 | 0.001 | - | - | - | - |
Prothrombin fragment F1,2, pmol × L−1 | −0.03 | 0.027 | - | - | −0.03 | 0.023 | - | - |
α-2 antiplasmin activity, % | −0.62 | <0.001 | - | - | - | - | −0.58 | 0.006 |
C-reactive protein, mg × dL−1 | −1.87 | 0.551 | - | - | - | - | - | - |
Interleukin-6, pg × mL−1 | 0.12 | 0.411 | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hartl, L.; Jachs, M.; Simbrunner, B.; Bauer, D.J.M.; Semmler, G.; Gompelmann, D.; Szekeres, T.; Quehenberger, P.; Trauner, M.; Mandorfer, M.; et al. Cirrhosis-Associated RAS-Inflammation-Coagulation Axis Anomalies: Parallels to Severe COVID-19. J. Pers. Med. 2021, 11, 1264. https://doi.org/10.3390/jpm11121264
Hartl L, Jachs M, Simbrunner B, Bauer DJM, Semmler G, Gompelmann D, Szekeres T, Quehenberger P, Trauner M, Mandorfer M, et al. Cirrhosis-Associated RAS-Inflammation-Coagulation Axis Anomalies: Parallels to Severe COVID-19. Journal of Personalized Medicine. 2021; 11(12):1264. https://doi.org/10.3390/jpm11121264
Chicago/Turabian StyleHartl, Lukas, Mathias Jachs, Benedikt Simbrunner, David J. M. Bauer, Georg Semmler, Daniela Gompelmann, Thomas Szekeres, Peter Quehenberger, Michael Trauner, Mattias Mandorfer, and et al. 2021. "Cirrhosis-Associated RAS-Inflammation-Coagulation Axis Anomalies: Parallels to Severe COVID-19" Journal of Personalized Medicine 11, no. 12: 1264. https://doi.org/10.3390/jpm11121264
APA StyleHartl, L., Jachs, M., Simbrunner, B., Bauer, D. J. M., Semmler, G., Gompelmann, D., Szekeres, T., Quehenberger, P., Trauner, M., Mandorfer, M., Scheiner, B., & Reiberger, T. (2021). Cirrhosis-Associated RAS-Inflammation-Coagulation Axis Anomalies: Parallels to Severe COVID-19. Journal of Personalized Medicine, 11(12), 1264. https://doi.org/10.3390/jpm11121264