Transplant Prognosis in Kidney Transplant Recipients with Diabetes under Mycophenolic Acid-Focused Therapeutic Drug Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Study Design
2.3. Blood MPA Concentration
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- White, S.; Chadban, S. Diabetic kidney disease in Australia: Current burden and future projections. Nephrology 2014, 19, 450–458. [Google Scholar] [CrossRef]
- Grace, B.S.; Clayton, P.; McDonald, S.P. Increases in renal replacement therapy in Australia and New Zealand: Understanding trends in diabetic nephropathy. Nephrology 2012, 17, 76–84. [Google Scholar] [CrossRef]
- Bittar, J.; Cepeda, P.; de la Fuente, J.; Douthat, W.; de Arteaga, J.; Massari, P.U. Renal transplantation in diabetic patients. Transplant. Proc. 2006, 38, 895–898. [Google Scholar] [CrossRef]
- Boucek, P.; Saudek, F.; Pokorna, E.; Vitko, S.; Adamec, M.; Koznarova, R.; Lanska, V. Kidney transplantation in type 2 diabetic patients: A comparison with matched non-diabetic subjects. Nephrol. Dial. Transplant. 2002, 17, 1678–1683. [Google Scholar] [CrossRef] [Green Version]
- Nitsch, D.; Burden, R.; Steenkamp, R.; Ansell, D.; Byrne, C.; Caskey, F.; Roderick, P.; Feest, T. Patients with diabetic nephropathy on renal replacement therapy in England and Wales. QJM Int. J. Med. 2007, 100, 551–560. [Google Scholar] [CrossRef] [Green Version]
- Rocha, A.; Malheiro, J.; Martins, L.S.; Fonseca, I.; Dias, L.; Pedroso, S.; Almeida, M.; Henriques, A.C. Kidney transplantation in type 2 diabetic patients: A matched survival analysis. Transplant. Proc. 2013, 45, 2141–2146. [Google Scholar] [CrossRef]
- Suzuki, T.; Nakao, T.; Harada, S.; Nakamura, T.; Koshino, K.; Sakai, K.; Nobori, S.; Ito, T.; Ushigome, H.; Yoshimura, N. Results of kidney transplantation for diabetic nephropathy: A single-center experience. Transplant. Proc. 2014, 46, 464–466. [Google Scholar] [CrossRef] [PubMed]
- Van Gelder, T. Mycophenolate blood level monitoring: Recent progress: Minireview. Am. J. Transplant. 2009, 9, 1495–1499. [Google Scholar] [CrossRef] [PubMed]
- Van Gelder, T.; Silva, H.T.; De Fijter, J.W.; Budde, K.; Kuypers, D.; Tyden, G.; ComLohmus, A.; Sommerer, C.; Hartmann, A.; Le Meur, Y.; et al. Paring mycophenolate mofetil regimens for de novo renal transplant recipients: The fixed-dose concentration-controlled trial. Transplantation 2008, 86, 1043–1051. [Google Scholar] [CrossRef] [PubMed]
- Gwilt, P.R.; Nahhas, R.R.; Tracewell, W.G. The effects of diabetes mellitus on pharmacokinetics and pharmacodynamics in humans. Clin. Pharm. 1991, 20, 477–490. [Google Scholar] [CrossRef] [PubMed]
- Akhlaghi, F.; Patel, C.G.; Zuniga, X.P.; Halilovic, J.; Preis, I.S.; Gohh, R.Y. Pharmacokinetics of mycophenolic acid and metabolites in diabetic kidney transplant recipients. Drug Monit. 2006, 28, 95–101. [Google Scholar] [CrossRef]
- Van Hest, R.M.; Mathôt, R.A.A.; Vulto, A.G.; Meur YLe Van Gelder, T. Mycophenolic acid in diabetic renal transplant recipients: Pharmacokinetics and application of a limited sampling strategy. Drug Monit. 2004, 26, 620–625. [Google Scholar] [CrossRef]
- Patel, C.G.; Richman, K.; Yang, D.; Yan, B.; Gohh, R.Y.; Akhlaghi, F. Effect of diabetes mellitus on mycophenolate sodium pharmacokinetics and inosine monophosphate dehydrogenase activity in stable kidney transplant recipients. Drug Monit. 2007, 29, 735–742. [Google Scholar] [CrossRef] [Green Version]
- Van Hest, R.M.; Mathot, R.A.A.; Pescovitz, M.D.; Gordon, R.; Mamelok, R.D.; Van Gelder, T. Explaining variability in mycophenolic acid exposure to optimize mycophenolate mofetil dosing: A population pharmacokinetic meta-analysis of mycophenolic acid in renal transplant recipients. J. Am. Soc. Nephrol. 2006, 17, 871–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A.; et al. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef]
- Haas, M.; Loupy, A.; Lefaucheur, C.; Roufosse, C.; Glotz, D.; Seron, B.J.; Nankivell, P.F.; Halloran, R.B.; Colvin Enver, A.; NAlachkar, S.; et al. The Banff 2017 Kidney Meeting Report: Revised diagnostic criteria for chronic active T cell–mediated rejection, antibody-mediated rejection, and prospects for integrative endpoints for next-generation clinical trials. Am. J. Transplant. 2018, 18, 293–307. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, K.; Fukuoka, N.; Kimura, S.; Watanabe, M.; Tani, K.; Tanaka, H.; Sofue, T.; Kosaka, S.; Inui, M.; Kakehi, Y.; et al. Limited sampling strategy for the estimation of mycophenolic acid area under the concentration-time curve treated in Japanese living-related renal transplant recipients with concomitant extended-release tacrolimus. Biol. Pharm. Bull. 2013, 36, 1036–1039. [Google Scholar] [CrossRef] [Green Version]
- Chantrel, F.; Enache, I.; Bouiller, M.; Kolb, I.; Kunz, K.; Petitjean, P.; Moulin, B.; Hannedouche, T. Abysmal prognosis of patients with type 2 diabetes entering dialysis. Nephrol. Dial. Transplant. 1999, 14, 129–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirschl, M.M. Renal transplantation in patients with type 2 diabetes mellitus. Nephrol. Dial. Transplant. 1995, 10 (Suppl. S7), 58–60. [Google Scholar] [CrossRef]
- Hotta, N.; Kawamori, R.; Fukuda, M.; Shigeta, Y. Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on progression of diabetic neuropathy and other microvascular complications: Multivariate epidemiological analysis based on patient background factors and severity of diabetic neuropathy. Diabetes Med. 2012, 29, 1529–1533. [Google Scholar]
- Johal, S.; Jackson-Spence, F.; Gillott, H.; Tahir, S.; Mytton, J.; Evison, F.; Stephenson, B.; Nath, J.; Sharif, A. Pre-existing diabetes is a risk factor for increased rates of cellular rejection after kidney transplantation: An observational cohort study. Diabetes Med. 2017, 34, 1067–1073. [Google Scholar] [CrossRef]
- Hale, M.D.; Nicholls, A.J.; Bullingham, R.E.S.; Hené, R.; Hoitsma, A.; Squifflet, J.P.; Squifflet MD, W.; Weimar, M.D.; Yves Vanrenterghem, M.D.; Fokko, J.; et al. The pharmacokinetic-pharmacodynamic relationship for mycophenolate mofetil in renal transplantation. Clin. Pharm. Ther. 1998, 64, 672–683. [Google Scholar] [CrossRef]
- Kiberd, B.A.; Lawen, J.; Fraser, A.D.; Keough-Ryan, T.; Belitsky, P. Early adequate mycophenolic acid exposure is associated with less rejection in kidney transplantation. Am. J. Transplant. 2004, 4, 1079–1083. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Ochiai, T.; Uchida, K.; Yasumura, T.; Ishibashi, M.; Suzuki, S.; Otsubo, O.; Isono, K.; Takagi, H.; Oka, T. Pilot study of mycophenolate mofetil (RS-61443) in the prevention of acute rejection following renal transplantation in Japanese patients. RS-61443 Investigation Committee—Japan. Transplant. Proc. 1995, 27, 1421–1424. [Google Scholar] [PubMed]
- Mourad, M.; Malaise, J.; Eddour, D.C.; De Meyer, M.; König, J.; Schepers, R.; Squifflet, J.P.; Wallemacq, P. Pharmacokinetic basis for the efficient and safe use of low-dose mycophenolate mofetil in combination with tacrolimus in kidney transplantation. Clin. Chem. 2001, 47, 1241–1248. [Google Scholar] [CrossRef] [PubMed]
- Westley, I.S.; Sallustio, B.C.; Morris, R.G. Validation of a high-performance liquid chromatography method for the measurement of mycophenolic acid and its glucuronide metabolites in plasma. Clin. Biochem. 2005, 38, 824–829. [Google Scholar] [CrossRef] [PubMed]
DM | Non-DM | p-Value | |
---|---|---|---|
Recipients, n | 15 | 49 | |
Age, years (SD) | 51.1 (13.3) | 47.9 (12.2) | 0.39 |
Men, n (%) | 11 (73%) | 36 (73%) | 1.00 |
Body mass index, kg/m2 (SD) | 22.6 (3.7) | 22.4 (4.3) | 0.86 |
Dialysis vintage, months (IQR) | 8.5 (4.8–36) | 9.0 (0–46) | 0.84 |
HbA1c, % (SD) | 5.6 (0.6) | 4.9 (0.4) | <0.01 * |
MMF morning dose, mg (SD) | 696 (107) | 690 (108) | 0.85 |
CyA/Tac (n) | 2/13 | 6/43 | 1.00 |
CyA/Tac daily dose (mg) | 175/5.8 | 203/4.6 | 0.55/0.19 |
CyA/Tac trough concentration (µg/L) | 129/8.2 | 205/10.1 | 0.30/0.74 |
PSL daily dose (mg) | 4.0 (0) | 4.1 (0.5) | 0.33 |
ABO-blood type incompatible, n (%) | 7 (46%) | 19 (39%) | 0.76 |
HLA mismatch, n (SD) | 4.7 (1.35) | 3.5 (1.65) | 0.04 * |
FCXM positive for T-cell, n (%) | 0/9 (0%) | 4/31 (12.9%) | 0.56 |
FCXM positive for B-cell, n (%) | 4/9 (44.4%) | 9/31 (29.0%) | 0.44 |
Results | |
---|---|
Type 1 diabetes | 1 (7%) |
Duration of diabetes, months (IQR) | 240 (156–252) |
Diabetic retinopathy, n (%) | 14 (93%) |
Use of insulin, n (%) | 14 (93%) |
Use of DPP-4 inhibitor, n (%) | 1 (7%) |
Use of GLP-1 receptor agonist, n (%) | 0 (0%) |
DM | Non-DM | p-Value | |
---|---|---|---|
Recipients, n | 15 | 49 | |
Tmax (h) | 3.5 (2.3) | 2.3 (1.4) | 0.02 * |
Morning trough levels (mg/L) | 3.6 (2.4) | 3.3 (1.9) | 0.63 |
Cmax (mg/L) | 8.4 (4.2) | 10.7 (4.8) | 0.11 |
AUC0–12 (µg/h/mL) | 54.8 (25.9) | 57.7 (23.7) | 0.69 |
Dose-normalized AUC (mg/h/L) † | 79.7 (40.1) | 85.6 (37.4) | 0.61 |
DM | Non-DM | p-Value | |
---|---|---|---|
Recipients, n | 15 | 49 | |
Tmax (h) | 2.8 (2.1) | 1.9 (1.1) | 0.02 * |
Morning trough levels (mg/L) | 3.5 (2.0) | 3.0 (1.9) | 0.39 |
Cmax (mg/L) | 8.2 (4.4) | 11.5 (5.5) | 0.04 * |
AUC0–12 (µg/h/mL) | 51.2 (19.8) | 53.8 (24.6) | 0.72 |
Dose-normalized AUC (mg/h/L) † | 90.1 (45.5) | 110.0 (58.6) | 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakamura, E.; Sofue, T.; Kunisho, Y.; Onishi, K.; Yamaguchi, K.; Ibuki, E.; Taoka, R.; Ueda, N.; Sugimoto, M.; Minamino, T. Transplant Prognosis in Kidney Transplant Recipients with Diabetes under Mycophenolic Acid-Focused Therapeutic Drug Monitoring. J. Pers. Med. 2021, 11, 1224. https://doi.org/10.3390/jpm11111224
Nakamura E, Sofue T, Kunisho Y, Onishi K, Yamaguchi K, Ibuki E, Taoka R, Ueda N, Sugimoto M, Minamino T. Transplant Prognosis in Kidney Transplant Recipients with Diabetes under Mycophenolic Acid-Focused Therapeutic Drug Monitoring. Journal of Personalized Medicine. 2021; 11(11):1224. https://doi.org/10.3390/jpm11111224
Chicago/Turabian StyleNakamura, Eisuke, Tadashi Sofue, Yasushi Kunisho, Keisuke Onishi, Kazunori Yamaguchi, Emi Ibuki, Rikiya Taoka, Nobufumi Ueda, Mikio Sugimoto, and Tetsuo Minamino. 2021. "Transplant Prognosis in Kidney Transplant Recipients with Diabetes under Mycophenolic Acid-Focused Therapeutic Drug Monitoring" Journal of Personalized Medicine 11, no. 11: 1224. https://doi.org/10.3390/jpm11111224
APA StyleNakamura, E., Sofue, T., Kunisho, Y., Onishi, K., Yamaguchi, K., Ibuki, E., Taoka, R., Ueda, N., Sugimoto, M., & Minamino, T. (2021). Transplant Prognosis in Kidney Transplant Recipients with Diabetes under Mycophenolic Acid-Focused Therapeutic Drug Monitoring. Journal of Personalized Medicine, 11(11), 1224. https://doi.org/10.3390/jpm11111224