Morphology of the Myocardium after Experimental Bone Tissue Trauma and the Use of Extracellular Vesicles Derived from Mesenchymal Multipotent Stromal Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation, Cultivation, and Characteristics of MSCs, Isolation of MSC EVs
2.2. Introduction of MSC EVs into a Bone Defect
2.3. Morphological Research Methods
3. Research Findings and Their Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodrigues, M.; Yates, C.C.; Nuschke, A.; Griffith, L.; Wells, A. The Matrikine Tenascin-C Protects Multipotential Stromal Cells/Mesenchymal Stem Cells from Death Cytokines Such as FasL. Tissue Eng. Part A 2013, 19, 1972–1983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maiborodin, I.V.; Matveeva, V.A.; Maslov, R.V.; Onoprienko, N.V.; Kuznetsova, I.V.; Chastikin, G.A. Fluorescent macrophages in the lymph nodes after application of multipotent mesenchymal stromal cells with transfected GFP gene. Novosti Khirurgii 2014, 22, 526–532. [Google Scholar] [CrossRef] [Green Version]
- Maiborodin, I.V.; Matveyeva, V.A.; Maslov, R.V.; Onopriyenko, N.V.; Kuznetsova, I.V.; Chastikin, G.A.; Anikeyev, A.A. Some reactions of the regional lymph nodes of rats after implantation of multipotent stromal cells adsorbed on polyhydroxyalkanoate into a bone tissue defect. Morfologiia 2016, 149, 21–26. (In Russian) [Google Scholar]
- Yates, C.C.; Nuschke, A.; Rodrigues, M.; Whaley, D.; Dechant, J.J.; Taylor, D.P.; Wells, A. Improved transplanted stem cell survival in a polymer gel supplemented with Tenascin C accelerates healing and reduces scarring of murine skin wounds. Cell Transplant. 2017, 26, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Maiborodin, I.V.; Morozov, V.V.; Anikeev, A.A.; Figurenko, N.F.; Maslov, R.V.; Chastikin, G.A.; Matveeva, V.A.; Maiborodina, V.I. Macrophage reaction to multipotent mesenchymal stromal cells introduction into surgical trauma site in rats. Novosti Khirurgii 2017, 25, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Belostotskaya, G.; Hendrikx, M.; Galagudza, M.; Suchkov, S. How to Stimulate Myocardial Regeneration in Adult Mammalian Heart: Existing Views and New Approaches. BioMed Res. Int. 2020, 2020, 7874109. [Google Scholar] [CrossRef]
- Bheri, S.; Hoffman, J.R.; Park, H.J.; Davis, M.E. Biomimetic nanovesicle design for cardiac tissue repair. Nanomedicine 2020, 15, 1873–1896. [Google Scholar] [CrossRef] [PubMed]
- Femminò, S.; Penna, C.; Margarita, S.; Comità, S.; Brizzi, M.F.; Pagliaro, P. Extracellular vesicles and cardiovascular system: Biomarkers and Cardioprotective Effectors. Vasc. Pharmacol. 2020, 135, 106790. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z.; Zhao, L.; Lu, F.; Gao, X.; Dong, Y.; Zhao, Y.; Wei, M.; Yang, G.; Xing, C.; Liu, L. Mononuclear phagocyte system blockade improves therapeutic exosome delivery to the myocardium. Theranostics 2020, 10, 218–230. [Google Scholar] [CrossRef] [PubMed]
- Maiborodin, I.; Shevela, A.; Toder, M.; Marchukov, S.; Tursunova, N.; Klinnikova, M.; Maiborodina, V.; Lushnikova, E.; Shevela, A. Multipotent Stromal Cell Extracellular Vesicle Distribution in Distant Organs after Introduction into a Bone Tissue Defect of a Limb. Life 2021, 11, 306. [Google Scholar] [CrossRef]
- Cheng, H.; Chang, S.; Xu, R.; Chen, L.; Song, X.; Wu, J.; Qian, J.; Zou, Y.; Ma, J. Hypoxia-challenged MSC-derived exosomes deliver miR-210 to attenuate post-infarction cardiac apoptosis. Stem Cell Res. Ther. 2020, 11, 224. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Zhao, P.; Zhou, Y.; Xing, C.; Zhao, L.; Li, Z.; Yuan, L. Ultrasound targeted microbubble destruction assisted exosomal delivery of miR-21 protects the heart from chemotherapy associated cardiotoxicity. Biochem. Biophys. Res. Commun. 2020, 532, 60–67. [Google Scholar] [CrossRef]
- Undale, A.H.; Westendorf, J.J.; Yaszemski, M.J.; Khosla, S. Mesenchymal stem cells for bone repair and metabolic bone diseases. Mayo Clin. Proc. 2009, 84, 893–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaza, T.; Kentaro, A.; Chen, C.; Liu, Y.; Shi, Y.; Gronthos, S.; Wang, S.; Shi, S. Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res. Ther. 2010, 1, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.; Xu, R.; Sun, X.; Duan, Y.; Han, Y.; Zhao, Y.; Qian, H.; Zhu, W.; Xu, W. Safety evaluation of exosomes derived from human umbilical cord mesenchymal stromal cell. Cytotherapy 2016, 18, 413–422. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, D.; Chen, X.; Li, D.; Zhu, L.; Zhang, Y.; Li, J.; Bian, Z.; Liang, X.; Cai, X.; et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: Evidence of cross-kingdom regulation by microRNA. Cell Res. 2012, 22, 107–126. [Google Scholar] [CrossRef]
- Lawson, C.; Kovacs, D.; Finding, E.; Ulfelder, E.; Luis-Fuentes, V. Extracellular Vesicles: Evolutionarily Conserved Mediators of Intercellular Communication. Yale J. Biol. Med. 2017, 90, 481–491. [Google Scholar]
- Maiborodin, I.V.; Shevela, A.A.; Marchukov, S.V.; Morozov, V.V.; Matveeva, V.A.; Maiborodina, V.I.; Novikov, A.M.; Shevela, A.I. Regeneration of the bone defect at experimental application of extracellular microvesicles from multipotent stromal cells. Novosti Khirurgii 2020, 28, 359–369. [Google Scholar] [CrossRef]
- Sukhikh, G.T.; Pekarev, O.G.; Maiborodin, I.V.; Silachev, D.N.; Shevtsova, Y.A.; Goryunov, K.V.; Onoprienko, N.V.; Maiborodina, V.I.; Galenok, R.V.; Novikov, A.V.; et al. Preservation of mesenchymal stem cell-derived extracellular vesicles after abdominal delivery in the experiment. Bull. Exp. Biol. Med. 2020, 169, 122–129. [Google Scholar] [CrossRef]
- Lötvall, J.; Hill, A.F.; Hochberg, F.; Buzás, E.I.; Di Vizio, D.; Gardiner, C.; Gho, Y.S.; Kurochkin, I.V.; Mathivanan, S.; Quesenberry, P.; et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 2014, 3, 26913. [Google Scholar] [CrossRef]
- Witwer, K.W.; Soekmadji, C.; Hill, A.F.; Wauben, M.H.; Buzás, E.I.; Di Vizio, D.; Falcon-Perez, J.M.; Gardiner, C.; Hochberg, F.; Kurochkin, I.V.; et al. Updating the MISEV minimal requirements for extracellular vesicle studies: Building bridges to reproducibility. J. Extracell. Vesicles 2017, 6, 1396823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, M.V.; Martins, V.R.; Hajj, G.N. Stress-Inducible Protein 1 (STI1): Extracellular Vesicle Analysis and Quantification. Methods Mol. Biol. 2016, 1459, 161–174. [Google Scholar] [CrossRef]
- Zhang, S.; Chu, W.C.; Lai, R.C.; Lim, S.K.; Hui, J.H.; Toh, W.S. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthr. Cartil. 2016, 24, 2135–2140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.X.; Xu, L.L.; Rui, Y.F.; Huang, S.; Lin, S.E.; Xiong, J.H.; Li, Y.H.; Lee, W.Y.; Li, G. The effects of secretion factors from umbilical cord derived mesenchymal stem cells on osteogenic differentiation of mesenchymal stem cells. PLoS ONE 2015, 10, e0120593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torreggiani, E.; Perut, F.; Roncuzzi, L.; Zini, N.; Baglìo, S.R.; Baldini, N. Exosomes: Novel effectors of human platelet lysate activity. Eur. Cell Mater. 2014, 28, 137–151. [Google Scholar] [CrossRef]
- Head, J.R.; Seeling, L.L., Jr. Lymphatic vessels in the uterine endometrium of virgin rats. J. Reprod. Immunol. 1984, 6, 157–166. [Google Scholar] [CrossRef]
- Avtandilov, G.G. Computerized Microtelephotometry in Diagnostic Histocytopathology; Folium Publishing Company: Moscow, Russia, 1998; p. 144. [Google Scholar]
- Maiborodin, I.; Shevela, A.; Matveeva, V.; Morozov, V.; Toder, M.; Krasil’nikov, S.; Koryakina, A.; Shevela, A.; Yanushevich, O. First Experimental Study of the Influence of Extracellular Vesicles Derived from Multipotent Stromal Cells on Osseointegration of Dental Implants. Int. J. Mol. Sci. 2021, 22, 8774. [Google Scholar] [CrossRef]
- Harrell, C.R.; Miloradovic, D.; Sadikot, R.; Fellabaum, C.; Markovic, B.S.; Miloradovic, D.; Acovic, A.; Djonov, V.; Arsenijevic, N.; Volarevic, V. Molecular and cellular mechanisms responsible for beneficial effects of mesenchymal stem cell-derived product "Exo-d-MAPPS" in attenuation of chronic airway inflammation. Anal. Cell. Pathol. 2020, 2020, 3153891. [Google Scholar] [CrossRef] [Green Version]
- Simonson, O.E.; Mougiakakos, D.; Heldring, N.; Bassi, G.; Johansson, H.J.; Dalén, M.; Jitschin, R.; Rodin, S.; Corbascio, M.; El Andaloussi, S.; et al. In vivo effects of mesenchymal stromal cells in two patients with severe acute respiratory distress syndrome. Stem Cells Transl. Med. 2015, 4, 1199–1213. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.G.; Feng, X.M.; Abbott, J.; Fang, X.H.; Hao, Q.; Monsel, A.; Qu, J.M.; Matthay, M.A.; Lee, J.W. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells 2014, 32, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Blazquez, R.; Sanchez-Margallo, F.M.; de la Rosa, O.; Dalemans, W.; Alvarez, V.; Tarazona, R.; Casado, J. Immunomodulatory potential of human adipose mesenchymal stem cells derived exosomes on in vitro stimulated T cells. Front. Immunol. 2014, 5, 556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, J.L.; Lau, S.N.; Leaw, B.; Nguyen, H.P.T.; Salamonsen, L.A.; Saad, M.I.; Chan, S.T.; Zhu, D.; Krause, M.; Kim, C.; et al. Amnion epithelial cell-derived exosomes restrict lung injury and enhance endogenous lung repair. Stem Cells Transl. Med. 2018, 7, 180–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.C.; Liang, Y.; Su, Z.B. Prophylactic treatment with MSC-derived exosomes attenuates traumatic acute lung injury in rats. Am. J. Physiol. Lung Cell Mol. Physiol. 2019, 316, L1107–L1117. [Google Scholar] [CrossRef] [PubMed]
- Hoang, D.H.; Nguyen, T.D.; Nguyen, H.P.; Nguyen, X.H.; Do, P.T.X.; Dang, V.D.; Dam, P.T.M.; Bui, H.T.H.; Trinh, M.Q.; Vu, D.M.; et al. Differential wound healing capacity of mesenchymal stem cell-derived exosomes originated from bone marrow, adipose tissue and umbilical cord under serum- and Xeno-free condition. Front. Mol. Biosci. 2020, 7, 119. [Google Scholar] [CrossRef] [PubMed]
- Qu, Q.; Pang, Y.; Zhang, C.; Liu, L.; Bi, Y. Exosomes derived from human umbilical cord mesenchymal stem cells inhibit vein graft intimal hyperplasia and accelerate reendothelialization by enhancing endothelial function. Stem Cell Res. Ther. 2020, 11, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, M.; Liu, W.; Li, J.; Lu, J.; Lu, H.; Jia, W.; Liu, F. Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway. Stem Cell Res. Ther. 2020, 11, 350. [Google Scholar] [CrossRef] [PubMed]
- Sadallah, S.; Eken, C.; Schifferli, J.A. Ectosomes as modulators of inflammation and immunity. Clin. Exp. Immunol. 2011, 163, 26–32. [Google Scholar] [CrossRef]
- Silachev, D.N.; Goryunov, K.V.; Shpilyuk, M.A.; Beznoschenko, O.S.; Morozova, N.Y.; Kraevaya, E.E.; Popkov, V.A.; Pevzner, I.B.; Zorova, L.D.; Evtushenko, E.A.; et al. Effect of MSCs and MSC-derived extracellular vesicles on human blood coagulation. Cells 2019, 8, 258. [Google Scholar] [CrossRef]
Structures | Intact Control | Time after Surgery | ||
---|---|---|---|---|
3 Days | 7 Days | 10 Days | ||
Damage of PCT without MSC EVs | ||||
Vessels blood (AA) lymphatic (AA) | 0.778 ± 0.833 0.889 ± 0.782 | 1.11 ± 1.17 3.78 ± 1.09 # | 4.78 ± 0.833 #,$ 5.56 ± 1.33 # | 1.33 ± 1.12 & 2.56 ± 1.01 |
Interstitial spaces (AA) | 0.778 ± 0.833 | 12 ± 1.66 # | 13 ± 1.22 # | 2 ± 0.707 $,& |
Lymphocytes (%) (NA) | 79.7 ± 3.57 443 ± 63 | 63.3 ± 2.29 # 606 ± 107 | 53.7 ± 3.61 #,$ 477 ± 56.8 | 57.7 ± 4.53 # 532 ± 78.9 |
Neutrophils (%) (NA) | 1.89 ± 0.782 10.3 ± 3.97 | 7.67 ± 1.32 # 72.8 ± 16.5 # | 7.78 ± 0.833 # 69.2 ± 10.9 # | 4 ± 0.707 #,$,& 37 ± 8.86 #,& |
Erythrocytes (%) (NA) | 1.56 ± 0.726 8.78 ± 5.07 | 3.78 ± 0.667 # 36.3 ± 9.23 # | 3.56 ± 0.527 # 31.6 ± 5.53 # | 2 ± 0.866 17.9 ± 7.06 |
Macrophages (%) (NA) | 12 ± 2.55 66.3 ± 14.4 | 13.7 ± 1.32 130 ± 23.3 # | 24.8 ± 2.6 #,$ 220 ± 34.6 #,$ | 27.7 ± 3.39 #,$ 256 ± 45.5 #,$ |
Damage of PCT with MSC EV introduction | ||||
Vessels blood (AA) lymphatic (AA) | 0.778 ± 0.833 0.889 ± 0.782 | 4.25 ± 0.754 #,* 6.75 ± 0.965 #,* | 3.78 ± 0.667 # 4.11 ± 0.782 #,$ | 1 ± 1.12 $,& 1.89 ± 0.928 $ |
Interstitial spaces (AA) | 0.778 ± 0.833 | 8.17 ± 0.937 #,* | 12.3 ± 1.32 #,$ | 14.4 ± 1.59 #,$,* |
Lymphocytes (%) (NA) | 79.7 ± 3.57 443 ± 63 | 50.1 ± 3.26 #,* 380 ± 71.2 | 50.3 ± 3.67 # 459 ± 62.9 | 51.4 ± 4.42 # 550 ± 96.3 |
Neutrophils (%) (NA) | 1.89 ± 0.782 10.3 ± 3.97 | 4.25 ± 0.754 #,* 32.6 ± 9.49 #,* | 7.56 ± 1.13 #,$ 69.1 ± 14.8 #,$ | 7.44 ± 1.01 #,$,* 78.6 ± 7.89 #,$,* |
Erythrocytes (%) (NA) | 1.56 ± 0.726 8.78 ± 5.07 | 6.5 ± 1.17 #,* 48.9 ± 9.91 # | 4 ± 0.866 # 36.1 ± 7.13 # | 1.78 ± 0.833 $ 18.9 ± 9.25 $ |
Macrophages (%) (NA) | 12 ± 2.55 66.3 ± 14.4 | 26.3 ± 2.86 #,* 199 ± 37.4 # | 23.9 ± 1.45 # 217 ± 26.9 # | 27.1 ± 3.3 # 288 ± 42 # |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maiborodin, I.; Klinnikova, M.; Kuzkin, S.; Maiborodina, V.; Krasil’nikov, S.; Pichigina, A.; Lushnikova, E. Morphology of the Myocardium after Experimental Bone Tissue Trauma and the Use of Extracellular Vesicles Derived from Mesenchymal Multipotent Stromal Cells. J. Pers. Med. 2021, 11, 1206. https://doi.org/10.3390/jpm11111206
Maiborodin I, Klinnikova M, Kuzkin S, Maiborodina V, Krasil’nikov S, Pichigina A, Lushnikova E. Morphology of the Myocardium after Experimental Bone Tissue Trauma and the Use of Extracellular Vesicles Derived from Mesenchymal Multipotent Stromal Cells. Journal of Personalized Medicine. 2021; 11(11):1206. https://doi.org/10.3390/jpm11111206
Chicago/Turabian StyleMaiborodin, Igor, Marina Klinnikova, Sergey Kuzkin, Vitalina Maiborodina, Sergey Krasil’nikov, Aleksandra Pichigina, and Elena Lushnikova. 2021. "Morphology of the Myocardium after Experimental Bone Tissue Trauma and the Use of Extracellular Vesicles Derived from Mesenchymal Multipotent Stromal Cells" Journal of Personalized Medicine 11, no. 11: 1206. https://doi.org/10.3390/jpm11111206
APA StyleMaiborodin, I., Klinnikova, M., Kuzkin, S., Maiborodina, V., Krasil’nikov, S., Pichigina, A., & Lushnikova, E. (2021). Morphology of the Myocardium after Experimental Bone Tissue Trauma and the Use of Extracellular Vesicles Derived from Mesenchymal Multipotent Stromal Cells. Journal of Personalized Medicine, 11(11), 1206. https://doi.org/10.3390/jpm11111206