Neoadjuvant/Perioperative Treatment Affects Spatial Distribution and Densities of Tumor Associated Neutrophils and CD8+ Lymphocytes in Gastric Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Study Population
2.3. Histology
2.4. Myeloperoxidase and CD8+ Immunohistochemistry
2.5. Image Analysis and Virtual Microscopy
2.6. Marking Compartments
2.7. Study Design
2.8. Statistical Analysis
3. Results
3.1. Density of TAN and CTL as a Function of the Tissue Compartment
3.2. Correlation between TAN and CTL Densities
3.3. TIME-Classes in Neoadjuvantly Treated GC
3.4. Correlation of the Expression of TANs or CTLs with Clinicopathological Patient Characteristics
3.5. Prognostic Significance of TANs and CTLs
3.6. Comparison of TAN Densities in Neoadjuvantly Treated with Treatment Naïve Gastric Carcinomas
3.7. Impact of Gender on TAN and CTL Densities
4. Discussion
4.1. Neoadjuvant Therapy Significantly Reduces TAN Density in Tumor Tissue
4.2. Therapeutic Response Is Linked to Changes in the Tumor Immune Microenvironment
4.3. Sex and Its Impact on the Immune Response after Chemotherapy
4.4. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Agency for Research on Cancer. WHO: 7-Stomach-Fact-Sheet. 2020. Available online: https://gco.iarc.fr/today/data/factsheets/cancers/7-Stomach-fact-sheet.pdf (accessed on 26 June 2021).
- Hansen, S.; Melby, K.K.; Aase, S.; Jellum, E.; Vollset, S.E. Helicobacter pylori infection and risk of cardia cancer and non-cardia gastric cancer. A nested case-control study. Scand. J. Gastroenterol. 1999, 34, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Crew, K.D.; Neugut, A.I. Epidemiology of gastric cancer. World J. Gastroenterol. 2006, 12, 354–362. [Google Scholar] [CrossRef]
- Irelli, A.; Sirufo, M.M.; D’Ugo, C.; Ginaldi, L.; De Martinis, M. Sex and Gender Influences on Cancer Immunotherapy Response. Biomedicines 2020, 8, 232. [Google Scholar] [CrossRef]
- Straface, E.; Gambardella, L.; Brandani, M.; Malorni, W. Sex differences at cellular level: “cells have a sex”. Handb. Exp. Pharmacol. 2012, 49–65. [Google Scholar] [CrossRef]
- Ober, C.; Loisel, D.A.; Gilad, Y. Sex-specific genetic architecture of human disease. Nat. Rev. Genet. 2008, 9, 911–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, M.B.; Dawsey, S.M.; Freedman, N.D.; Inskip, P.D.; Wichner, S.M.; Quraishi, S.M.; Devesa, S.S.; McGlynn, K.A. Sex disparities in cancer incidence by period and age. Cancer Epidemiol. Biomarkers Prev. 2009, 18, 1174–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moehler, M.; Al-Batran, S.E.; Andus, T.; Arends, J.; Arnold, D.; Baretton, G.; Bornschein, J.; Budach, W.; Daum, S.; Dietrich, C.; et al. S3-Leitlinie Magenkarzinom–Diagnostik und Therapie der Adenokarzinome des Magens und des ösophagogastralen Übergangs–Langversion 2.0–August 2019. AWMF-Registernummer: 032/009OL. Z. Gastroenterol. 2019, 57, 1517–1632. [Google Scholar] [CrossRef]
- Bang, Y.J.; Van, C.E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef]
- Fuchs, C.S.; Tomasek, J.; Yong, C.J.; Dumitru, F.; Passalacqua, R.; Goswami, C.; Safran, H.; Dos Santos, L.V.; Aprile, G.; Ferry, D.R.; et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): An international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 2014, 383, 31–39. [Google Scholar] [CrossRef]
- Kelly, R.J.; Ajani, J.A.; Kuzdzal, J.; Zander, T.; Van Cutsem, E.; Piessen, G.; Mendez, G.; Feliciano, J.; Motoyama, S.; Lievre, A.; et al. Adjuvant Nivolumab in Resected Esophageal or Gastroesophageal Junction Cancer. N. Engl. J. Med. 2021, 384, 1191–1203. [Google Scholar] [CrossRef]
- Formica, V.; Morelli, C.; Patrikidou, A.; Shiu, K.K.; Nardecchia, A.; Lucchetti, J.; Roselli, M.; Arkenau, H.T. A systematic review and meta-analysis of PD-1/PD-L1 inhibitors in specific patient subgroups with advanced gastro-oesophageal junction and gastric adenocarcinoma. Crit. Rev. Oncol. Hematol. 2021, 157, 103173. [Google Scholar] [CrossRef] [PubMed]
- Muro, K.; Chung, H.C.; Shankaran, V.; Geva, R.; Catenacci, D.; Gupta, S.; Eder, J.P.; Golan, T.; Le, D.T.; Burtness, B.; et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): A multicentre, open-label, phase 1b trial. Lancet Oncol. 2016, 17, 717–726. [Google Scholar] [CrossRef]
- Binnewies, M.; Roberts, E.W.; Kersten, K.; Chan, V.; Fearon, D.F.; Merad, M.; Coussens, L.M.; Gabrilovich, D.I.; Ostrand-Rosenberg, S.; Hedrick, C.C.; et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018, 24, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Smyth, M.J.; Ngiow, S.F.; Ribas, A.; Teng, M.W. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat. Rev. Clin. Oncol. 2016, 13, 143–158. [Google Scholar] [CrossRef] [PubMed]
- Topalian, S.L.; Drake, C.G.; Pardoll, D.M. Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell 2015, 27, 450–461. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Uribe-Querol, E.; Rosales, C. Neutrophils in Cancer: Two Sides of the Same Coin. J. Immunol. Res. 2015, 2015, 983698. [Google Scholar] [CrossRef] [Green Version]
- Guthrie, G.J.; Charles, K.A.; Roxburgh, C.S.; Horgan, P.G.; McMillan, D.C.; Clarke, S.J. The systemic inflammation-based neutrophil-lymphocyte ratio: Experience in patients with cancer. Crit. Rev. Oncol. Hematol. 2013, 88, 218–230. [Google Scholar] [CrossRef]
- Caruso, R.A.; Bellocco, R.; Pagano, M.; Bertoli, G.; Rigoli, L.; Inferrera, C. Prognostic value of intratumoral neutrophils in advanced gastric carcinoma in a high-risk area in northern Italy. Mod. Pathol. 2002, 15, 831–837. [Google Scholar] [CrossRef]
- Clausen, F.; Behrens, H.M.; Krüger, S.; Röcken, C. Sexual dimorphism in gastric cancer: Tumor-associated neutrophils predict patient outcome only for women. J. Cancer Res. Clin. Oncol. 2020, 146, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Quaas, A.; Pamuk, A.; Klein, S.; Quantius, J.; Rehkaemper, J.; Barutcu, A.G.; Rueschoff, J.; Zander, T.; Gebauer, F.; Hillmer, A.; et al. Sex-specific prognostic effect of CD66b-positive tumor-infiltrating neutrophils (TANs) in gastric and esophageal adenocarcinoma. Gastric Cancer 2021. [Google Scholar] [CrossRef]
- Li, R.; Zhang, H.; Cao, Y.; Liu, X.; Chen, Y.; Qi, Y.; Wang, J.; Yu, K.; Lin, C.; Liu, H.; et al. Lauren classification identifies distinct prognostic value and functional status of intratumoral CD8(+) T cells in gastric cancer. Cancer Immunol. Immunother. 2020, 69, 1327–1336. [Google Scholar] [CrossRef] [PubMed]
- Vinay, D.S.; Ryan, E.P.; Pawelec, G.; Talib, W.H.; Stagg, J.; Elkord, E.; Lichtor, T.; Decker, W.K.; Whelan, R.L.; Kumara, H.; et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin. Cancer Biol. 2015, 35, S185–S198. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.; Chai, P.S.; Chong, M.Y.; Tohit, E.R.; Ramasamy, R.; Pei, C.P.; Vidyadaran, S. Gender effect on in vitro lymphocyte subset levels of healthy individuals. Cell Immunol. 2012, 272, 214–219. [Google Scholar] [CrossRef]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef]
- Jacobs, J.F.; Nierkens, S.; Figdor, C.G.; de Vries, I.J.; Adema, G.J. Regulatory T cells in melanoma: The final hurdle towards effective immunotherapy? Lancet Oncol. 2012, 13, e32–e42. [Google Scholar] [CrossRef]
- Chang, W.J.; Du, Y.; Zhao, X.; Ma, L.Y.; Cao, G.W. Inflammation-related factors predicting prognosis of gastric cancer. World J. Gastroenterol. 2014, 20, 4586–4596. [Google Scholar] [CrossRef]
- Brierley, J.; Gospodarowicz, M.K.; Wittekind, C. TNM Classification of Malignant Tumours, 8th ed.; Wiley Blackwell: Hoboken, NJ, USA, 2016. [Google Scholar]
- Becker, K.; Langer, R.; Reim, D.; Novotny, A.; Buschenfelde, C.M.z.; Engel, J.; Friess, H.; Hofler, H. Significance of histopathological tumor regression after neoadjuvant chemotherapy in gastric adenocarcinomas: A summary of 480 cases. Ann. Surg. 2011, 253, 934–939. [Google Scholar] [CrossRef]
- Simes, R.J. An improved Bonferroni procedure for multiple tests if signficance. Biometrika 1986, 73, 751–754. [Google Scholar] [CrossRef]
- Cunningham, D.; Allum, W.H.; Stenning, S.P.; Thompson, J.N.; van de Velde, C.J.; Nicolson, M.; Scarffe, J.H.; Lofts, F.J.; Falk, S.J.; Iveson, T.J.; et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N. Engl. J. Med. 2006, 355, 11–20. [Google Scholar] [CrossRef] [Green Version]
- van Hagen, P.; Hulshof, M.C.; van Lanschot, J.J.; Steyerberg, E.W.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.; Richel, D.J.; Nieuwenhuijzen, G.A.; Hospers, G.A.; Bonenkamp, J.J.; et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N. Engl. J. Med. 2012, 366, 2074–2084. [Google Scholar] [CrossRef] [Green Version]
- Tian, C.; Jing, H.; Wang, C.; Wang, W.; Cui, Y.; Chen, J.; Sha, D. Prognostic role of tumour-infiltrating lymphocytes assessed by H&E-stained section in gastric cancer: A systematic review and meta-analysis. BMJ Open 2021, 11, e044163. [Google Scholar] [CrossRef]
- Schoop, H.; Bregenzer, A.; Halske, C.; Behrens, H.M.; Krüger, S.; Egberts, J.H.; Röcken, C. Therapy Resistance in Neoadjuvantly Treated Gastric Cancer and Cancer of the Gastroesophageal Junction is Associated with an Increased Expression of Immune Checkpoint Inhibitors-Comparison Against a Therapy Naive Cohort. Transl. Oncol. 2020, 13, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.D.; Oertelt-Prigione, S.; Adjei, A.; Buclin, T.; Cristina, V.; Csajka, C.; Coukos, G.; Dafni, U.; Dotto, G.P.; Ducreux, M.; et al. Gender medicine and oncology: Report and consensus of an ESMO workshop. Ann. Ooncol. 2019, 30, 1914–1924. [Google Scholar] [CrossRef] [Green Version]
- Gemmati, D.; Varani, K.; Bramanti, B.; Piva, R.; Bonaccorsi, G.; Trentini, A.; Manfrinato, M.C.; Tisato, V.; Care, A.; Bellini, T. “Bridging the Gap” Everything that Could Have Been Avoided If We Had Applied Gender Medicine, Pharmacogenetics and Personalized Medicine in the Gender-Omics and Sex-Omics Era. Int. J. Mol. Sci. 2019, 21, 296. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Qi, W.; Guo, J.; Sun, L.; Ding, A.; Zhao, G.; Li, H.; Qiu, W.; Lv, J. Immune checkpoint inhibitor combination therapy for gastric cancer: Research progress. Oncol. Lett. 2020, 20, 46. [Google Scholar] [CrossRef] [PubMed]
- Mauvais-Jarvis, F.; Bairey Merz, N.; Barnes, P.J.; Brinton, R.D.; Carrero, J.J.; DeMeo, D.L.; De Vries, G.J.; Epperson, C.N.; Govindan, R.; Klein, S.L.; et al. Sex and gender: Modifiers of health, disease, and medicine. Lancet 2020, 396, 565–582. [Google Scholar] [CrossRef]
- De Martinis, M.; Sirufo, M.M.; Suppa, M.; Di Silvestre, D.; Ginaldi, L. Sex and Gender Aspects for Patient Stratification in Allergy Prevention and Treatment. Int. J. Mol. Sci. 2020, 21, 1535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirandola, L.; Wade, R.; Verma, R.; Pena, C.; Hosiriluck, N.; Figueroa, J.A.; Cobos, E.; Jenkins, M.R.; Chiriva-Internati, M. Sex-driven differences in immunological responses: Challenges and opportunities for the immunotherapies of the third millennium. Int. Rev. Immunol. 2015, 34, 134–142. [Google Scholar] [CrossRef]
- Conforti, F.; Pala, L.; Bagnardi, V.; De Pas, T.; Martinetti, M.; Viale, G.; Gelber, R.D.; Goldhirsch, A. Cancer immunotherapy efficacy and patients’ sex: A systematic review and meta-analysis. Lancet Oncol. 2018, 19, 737–746. [Google Scholar] [CrossRef]
- Abdel-Rahman, O. Does a patient’s sex predict the efficacy of cancer immunotherapy? Lancet Oncol. 2018, 19, 716–717. [Google Scholar] [CrossRef]
Clinicopathological Patient Characteristics | Neoadjuvantly Treated Gastric Cancer Cohort | Treatment Naive Gastric Cancer Cohort | |||
---|---|---|---|---|---|
n | (%) | n | (%) | ||
Study patients | 173 | 449 | |||
Age | valid/missing | 173 | 0 | 449 | 0 |
<64/<68 years | 87 | (50.3) | 221 | (49.2) | |
≥64/≥68 years | 86 | (49.7) | 228 | (50.8) | |
Sex | valid/missing | 173 | 0 | 449 | 0 |
Men | 134 | (77.5) | 285 | (63.5) | |
Women | 39 | (22.5) | 164 | (36.5) | |
Localization | valid/missing | 173 | 0 | 440 | 9 |
Proximal | 120 | (69.4) | 143 | (31.8) | |
Distal | 53 | (30.6) | 297 | (66.1) | |
Laurén type | valid/missing | 173 | 0 | 449 | 0 |
Intestinal | 79 | (45.7) | 239 | (53.2) | |
Diffuse | 30 | (17.3) | 136 | (30.3) | |
Mixed | 33 | (19.1) | 29 | (6.5) | |
Unclassified | 18 | (10.4) | 45 | (10) | |
Complete remission | 13 | (7.5) | 0 | (0) | |
T-category | valid/missing | 173 | 0 | 449 | 0 |
ypT0/pT0 | 17 | (9.8) | 0 | (0) | |
ypT1/pT1 | 24 | (13.9) | 52 | (11.6) | |
ypT2/pT2 | 23 | (13.3) | 53 | (11.8) | |
ypT3/pT3 | 98 | (56.6) | 185 | (41.2) | |
y/pT4/pT4 | 11 | (6.4) | 159 | (35.4) | |
N-category | valid/missing | 173 | 0 | 449 | 0 |
ypN0/pN0 | 62 | (35.8) | 126 | (28.1) | |
ypN1/pN1 | 43 | (24.9) | 67 | (14.9) | |
ypN2/pN2 | 42 | (24.3) | 78 | (17.4) | |
ypN3/pN3 | 26 | (15.0) | 178 | (39.6) | |
M-category | valid/missing | 173 | 0 | 449 | 0 |
yM0/yM0 | 165 | (95.4) | 364 | (81.1) | |
yM1/M1 | 8 | (4.6) | 85 | (18.9) | |
UICC stage (8th Edition) | valid/missing | 173 | 0 | 449 | 0 |
0/0/N+ | 13 | (7.5) | 0 | (0) | |
IA/B | 26 | (15) | 74 | (16.5) | |
IIA/B | 29 | (16.8) | 101 | (22.5) | |
IIIA/B/C | 88 | (50.9) | 189 | (42.1) | |
IV | 17 | (9.8) | 85 | (18.9) | |
L-category | valid/missing | 173 | 0 | 423 | 26 |
ypL0/pL0 | 123 | (71.1) | 202 | (45) | |
ypL1/pL1 | 50 | (28.9) | 221 | (49.2) | |
V-category | valid/missing | 173 | 0 | 422 | 27 |
ypV0/pV0 | 162 | (93.6) | 374 | (83.3) | |
ypV1/pV1 | 11 | (6.4) | 48 | (10.7) | |
R-category | valid/missing | 173 | 0 | 436 | 13 |
pR0 | 154 | (89) | 382 | (85.1) | |
pR1/2 | 17 | (9.8) | 54 | (12) | |
pRX | 2 | (1.2) | 0 | (0) | |
Tumor regression grade (TRG) | valid/missing | 173 | 0 | ||
TRG1a/b | 56 | (32.4) | |||
TRG2 | 28 | (16.2) | |||
TRG3 | 89 | (51.4) |
Histoanatomical Site | Density (n/mm²) | Treatment Naive Cohort TAN | Neoadjuvant Cohort TAN | Neoadjuvant Cohort CTL | p-Value |
---|---|---|---|---|---|
Mucosa | N | 263 * | 108 * | 94 | * p < 0.001 |
25%-Percentile | 25.1 | 54.9 | 144.4 | ||
Median | 57.6 | 132.7 | 298.1 | ||
75%-Percentile | 121.1 | 252.4 | 531.1 | ||
Range | 2.0–2022.4 | 1.8–1495.9 | 9.6–1739.8 | ||
Tumor surface | N | 365 ° | 41 ° | 42 | ° p = 0.006 |
25%-Percentile. | 481.2 | 261.7 | 100.4 | ||
Median | 872.6 | 486.6 | 221.4 | ||
75%-Percentile | 1430.1 | 1159.4 | 636.7 | ||
Range | 5.8–4127.0 | 63.5–3186.9 | 29.0–1855.5 | ||
Tumor center | N | 470 § | 157 § | 157 | §p = 0.426 |
25%-Percentile | 47.4 | 63.2 | 119.7 | ||
Median | 130.1 | 109.5 | 296.2 | ||
75%-Percentile | 404.1 | 240.6 | 558.3 | ||
Range | 3–5113.4 | 6.1–3336.7 | 6.0–1850.9 | ||
Invasion front | N | 390 # | 102 # | 93 | #p = 0.003 |
25%-Percentile | 74.2 | 48.0 | 163.4 | ||
Median | 226.8 | 134.8 | 420.7 | ||
75%-Percentile | 723.6 | 414.5 | 826.9 | ||
Range | 0–6711.0 | 2.5–2729.8 | 12.7–2644.7 | ||
Tumor scar | N | 54 | 53 | ||
25%-Percentile | 18.7 | 34.9 | |||
Median | 36.8 | 79.5 | |||
75%-Percentile | 65.9 | 215.5 | |||
Range | 4.7–314.4 | 4.6–561.8 |
Total | Infiltrated-Excluded | Infiltrated-Inflamed | TLS-TIME | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
n | (%) | n | (%) | n | (%) | n | (%) | |||
Gender | n | 133 | 30 | (22.6) | 75 | (56.4) | 28 | (21.1) | 0.596 (1) | |
Female | 28 | (21.1) | 6 | (21.4) | 18 | (64.3) | 4 | (14.3) | ||
Male | 105 | (78.9) | 24 | (22.9) | 57 | (54.3) | 24 | (22.9) | ||
Age | n | 133 | 30 | (22.6) | 75 | (56.4) | 28 | (21.1) | 0.197 (1) | |
≥64 | 68 | (51.1) | 17 | (25.0) | 41 | (60.3) | 10 | (14.7) | ||
<64 | 65 | (48.9) | 13 | (20.0) | 34 | (52.3) | 18 | (27.7) | ||
Laurén Type | n | 133 | 30 | (22.6) | 75 | (56.4) | 28 | (21.1) | 0.127 (1) | |
Intestinal | 70 | (52.6) | 15 | (21.4) | 42 | (60.0) | 13 | (18.6) | ||
Diffuse | 22 | (16.5) | 3 | (13.6) | 10 | (45.5) | 9 | (40.9) | ||
Mixed | 28 | (21.1) | 8 | (26.6) | 14 | (50.0) | 6 | (21.4) | ||
Unclassified | 13 | (9.7) | 4 | (30.8) | 9 | (69.2) | 0 | (0.0) | ||
ypT-category | n | 133 | 30 | (22.6) | 75 | (56.4) | 28 | (21.1) | 0.840 (1) | |
ypT0 | 2 | (1.5) | 0 | (0.0) | 2 | (100.0) | 0 | (0.0) | ||
ypT1a/b | 21 | (15.8) | 2 | (9.5) | 14 | (66.7) | 5 | (23.8) | ||
ypT2 | 20 | (15.0) | 6 | (30.0) | 11 | (55.0) | 3 | (15.0) | ||
ypT3 | 81 | (60.9) | 20 | (24.7) | 43 | (53.1) | 18 | (22.2) | ||
ypT4a/b | 9 | (6.7) | 2 | (22.2) | 5 | (55.6) | 2 | (22.2) | ||
ypN-category | n | 133 | 30 | (22.6) | 75 | (56.4) | 28 | (21.1) | 0.452 (1) | |
ypN0 | 41 | (30.8) | 7 | (17.1) | 22 | (53.7) | 12 | (29.3) | ||
ypN1 | 37 | (27.8) | 11 | (29.7) | 18 | (48.6) | 8 | (21.6) | ||
ypN2 | 35 | (26.3) | 7 | (20.0) | 24 | (68.6) | 4 | (11.4) | ||
ypN3a/b | 20 | (15.0) | 5 | (25.0) | 11 | (55.0) | 4 | (20.0) | ||
Localisation | n | 133 | 30 | (22.6) | 75 | (56.4) | 28 | (21.1) | 0.134 (1) | |
Proximal stomach | 92 | (69.1) | 23 | (25.0) | 54 | (58.7) | 15 | (16.3) | ||
Distal stomach | 41 | (30.8) | 7 | (17.1) | 21 | (51.2) | 13 | (31.7) | ||
M-Stage | n | 133 | 30 | (22.6) | 75 | (56.4) | 28 | (21.1) | 1.000 (1) | |
M0 | 127 | (95.4) | 29 | (22.8) | 71 | (55.9) | 27 | (21.3) | ||
M1 | 6 | (4.6) | 1 | (16.7) | 4 | (66.7) | 1 | (16.7) | ||
UICC Stage (8th Edition) | n | 133 | 30 | (22.6) | 75 | (56.4) | 28 | (21.1) | 0.516 (1) | |
IA/B | 23 | (17.3) | 2 | (8.7) | 14 | (60.9) | 7 | (30.4) | ||
IIA/B | 26 | (19.5) | 6 | (23.1) | 13 | (50.0) | 7 | (26.9) | ||
IIIA/B/C | 70 | (52.6) | 18 | (25.7) | 40 | (57.1) | 12 | (17.1) | ||
IV | 14 | (10.5) | 4 | (28.6) | 8 | (57.1) | 2 | (14.3) | ||
ypL category | n | 133 | 30 | (22.6) | 75 | (56.4) | 28 | (21.1) | 0.022 (1) | |
ypL0 | 93 | (69.9) | 15 | (16.1) | 55 | (59.1) | 23 | (24.7) | ||
ypL1 | 40 | (30.1) | 15 | (37.5) | 20 | (50.0) | 5 | (12.5) | ||
ypV category | n | 133 | 30 | (22.6) | 75 | (56.4) | 28 | (21.1) | 0.650 (1) | |
ypV0 | 124 | (93.2) | 27 | (21.8) | 71 | (57.3) | 26 | (21.0) | ||
ypV1 | 9 | (6.8) | 3 | (33.3) | 4 | (44.4) | 2 | (22.2) | ||
Pn-Category | n | 133 | 30 | (22.6) | 75 | (56.4) | 28 | (21.1) | 1.000 (1) | |
Pn0 | 92 | (69.1) | 22 | (22.4) | 55 | (56.1) | 21 | (21.4) | ||
Pn1 | 41 | (30.8) | 8 | (22.9) | 20 | (57.1) | 7 | (20.0) | ||
Resection | n | 133 | 30 | (22.6) | 75 | (56.4) | 28 | (21.1) | 0.730 (1) | |
R0 | 116 | (87.2) | 27 | (23.3) | 64 | (55.2) | 25 | (21.6) | ||
R1 | 15 | (11.2) | 2 | (13.3) | 10 | (66.7) | 3 | (20.0) | ||
RX | 2 | (1.5) | 1 | (50.0) | 1 | (50.0) | 0 | (0.0) | ||
Tumor regression grade | n | 133 | 30 | (22.6) | 75 | (56.4) | 28 | (21.1) | 0.003 (1) | |
TRG1a/b | 35 | (26.3) | 2 | (5.7) | 23 | (65.7) | 10 | (28.6) | ||
TRG2 | 21 | (15.8) | 3 | (14.3) | 10 | (47.6) | 8 | (38.1) | ||
TRG3 | 77 | (57.9) | 25 | (32.5) | 42 | (54.5) | 10 | (13.0) | ||
Mucosa CTL Density | n | 66 | 16 | (24.6) | 35 | (53.0) | 15 | (22.7) | 0.895 (1) | |
low | 31 | (47.0) | 7 | (22.6) | 16 | (51.6) | 8 | (25.8) | ||
high | 35 | (53.0) | 9 | (25.7) | 19 | (54.3) | 7 | (20.0) | ||
Tumor Surface CTL Density | n | 36 | 8 | (22.2) | 21 | (58.3) | 7 | (19.4) | 0.097 (1) | |
low | 16 | (44.4) | 1 | (6.3) | 12 | (75.0) | 3 | (18.8) | ||
high | 20 | (55.6) | 7 | (35.0) | 9 | (45.0) | 4 | (20.0) | ||
Tumor CTL Density | n | 132 | 30 | (22.7) | 74 | (56.1) | 28 | (21.2) | 0.004 (1) | |
low | 55 | (41.7) | 9 | (16.4) | 40 | (72.7) | 6 | (10.9) | ||
high | 77 | (58.3) | 21 | (27.3) | 34 | (44.2) | 22 | (28.6) | ||
Invasion front CTL Density | n | 80 | 29 | (36.2) | 38 | (47.5) | 13 | (16.3) | <0.001 (1) * | |
low | 38 | (47.5) | 6 | (15.8) | 26 | (68.4) | 6 | (15.8) | ||
high | 42 | (52.5) | 23 | (54.8) | 12 | (28.6) | 7 | (16.7) | ||
Tumor scar CTL Density | n | 34 | 5 | (14.7) | 18 | (52.9) | 11 | (32.4) | 0.805 (1) | |
low | 19 | (55.9) | 3 | (15.8) | 11 | (57.9) | 5 | (26.3) | ||
high | 15 | (44.1) | 2 | (13.3) | 7 | (46.7) | 6 | (40.0) |
Tumor-Associated Neutrophils | Total | Mucosa | Tumor Surface | Tumor Center | Invasion Front | Tumor Scar | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Q1 | Q234 | Q1 | Q234 | Q1 | Q234 | Q1 | Q234 | Q1 | Q234 | ||||||||||||||
n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | ||
Male | n p-Value (2) | 134 | 83 | 0.069 | 31 | 0.637 | 123 | 0.008 | 84 | 0.154 | 41 | 0.641 | |||||||||||
TRG1a/1b | 43 | (32.1) | 4 | (13.3) | 26 | (86.7) | 1 | (16.7) | 5 | (83.3) | 13 | (40.6) | 19 | (59.4) | 7 | (43.8) | 9 | (56.3) | 5 | (22.7) | 17 | (77.3) | |
TRG2 | 19 | (14.2) | 4 | (28.6) | 10 | (71.4) | 2 | (66.7) | 1 | (33.3) | 6 | (31.6) | 13 | (68.4) | 2 | (15.4) | 11 | (84.6) | 3 | (37.5) | 5 | (62.5) | |
TRG3 | 72 | (53.7) | 13 | (33.3) | 26 | (66.7) | 4 | (18.2) | 18 | (81.8) | 12 | (16.7) | 60 | (83.3) | 11 | (20.0) | 44 | (80.0) | 1 | (9.1) | 10 | (90.9) | |
Female | n p-Value (2) | 39 | 25 | 1.000 | 10 | 1.000 | 34 | 0.346 | 18 | 0.015 | 13 | 0.790 | |||||||||||
TRG1a/1b | 13 | (33.3) | 3 | (30.0) | 7 | (70.0) | 0 | (0.0) | 0 | (0.0) | 3 | (37.5) | 5 | (62.5) | 2 | (100.0) | 0 | (0.0) | 1 | (16.7) | 5 | (83.3) | |
TRG2 | 9 | (23.1) | 0 | (0.0) | 5 | (100.0) | 1 | (33.3) | 2 | (66.7) | 2 | (22.2) | 7 | (77.8) | 2 | (40.0) | 3 | (60.0) | 3 | (60.0) | 2 | (40.0) | |
TRG3 | 17 | (43.6) | 3 | (30.0) | 7 | (70.0) | 2 | (28.6) | 5 | (71.4) | 3 | (17.6) | 14 | (82.4) | 1 | (9.1) | 10 | (90.9) | 0 | (0.0) | 2 | (100.0) | |
Cytotoxic T cells | Total | Mucosa | Tumor surface | Tumor center | Invasion front | Tumor scar | |||||||||||||||||
Q12 | Q34 | Q12 | Q34 | Q12 | Q34 | Q12 | Q34 | Q12 | Q34 | ||||||||||||||
n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | ||
Male | n p-Value (2) | 134 | 71 | 0.576 | 32 | 0.895 | 123 | 0.871 | 77 | 0.005 | 39 | 0.151 | |||||||||||
TRG1a/b | 43 | (32.1) | 16 | (57.1) | 12 | (42.9) | 4 | (50.0) | 4 | (50.0) | 18 | (56.3) | 14 | (43.8) | 12 | (75.0) | 4 | (25.0) | 9 | (42.9) | 12 | (57.1) | |
TRG2 | 19 | (14.2) | 5 | (41.7) | 7 | (58.3) | 1 | (33.3) | 2 | (66.7) | 9 | (47.4) | 10 | (52.6) | 9 | (75.0) | 3 | (25.0) | 5 | (62.5) | 3 | (37.5) | |
TRG3 | 72 | (53.7) | 15 | (48.4) | 16 | (51.6) | 9 | (42.9) | 12 | (57.1) | 38 | (52.8) | 34 | (47.2) | 20 | (40.8) | 29 | (59.2) | 7 | (70.0) | 3 | (30.0) | |
Female | n p-Value (2) | 39 | 23 | 0.674 | 10 | 1.000 | 34 | 0.596 | 16 | 0.005 | 14 | 1.000 | |||||||||||
TRG1a/b | 13 | (33.3) | 6 | (60.0) | 4 | (40.0) | 0 | (0.0) | 1 | (100.0) | 3 | (37.5) | 5 | (62.5) | 2 | (100.0) | 0 | (0.0) | 3 | (42.9) | 4 | (57.1) | |
TRG2 | 9 | (23.1) | 0 | (0.0) | 4 | (100.0) | 3 | (100.0) | 0 | (0.0) | 3 | (33.3) | 6 | (66.7) | 3 | (75.0) | 1 | (25.0) | 2 | (40.0) | 3 | (60.0) | |
TRG3 | 17 | (43.6) | 5 | (55.6) | 4 | (44.4) | 4 | (66.7) | 2 | (33.3) | 8 | (47.1) | 9 | (52.9) | 1 | (10.0) | 9 | (90.0) | 1 | (50.0) | 1 | (50.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoffmann, A.; Behrens, H.-M.; Heckl, S.; Krüger, S.; Becker, T.; Röcken, C. Neoadjuvant/Perioperative Treatment Affects Spatial Distribution and Densities of Tumor Associated Neutrophils and CD8+ Lymphocytes in Gastric Cancer. J. Pers. Med. 2021, 11, 1184. https://doi.org/10.3390/jpm11111184
Hoffmann A, Behrens H-M, Heckl S, Krüger S, Becker T, Röcken C. Neoadjuvant/Perioperative Treatment Affects Spatial Distribution and Densities of Tumor Associated Neutrophils and CD8+ Lymphocytes in Gastric Cancer. Journal of Personalized Medicine. 2021; 11(11):1184. https://doi.org/10.3390/jpm11111184
Chicago/Turabian StyleHoffmann, Anne, Hans-Michael Behrens, Steffen Heckl, Sandra Krüger, Thomas Becker, and Christoph Röcken. 2021. "Neoadjuvant/Perioperative Treatment Affects Spatial Distribution and Densities of Tumor Associated Neutrophils and CD8+ Lymphocytes in Gastric Cancer" Journal of Personalized Medicine 11, no. 11: 1184. https://doi.org/10.3390/jpm11111184
APA StyleHoffmann, A., Behrens, H.-M., Heckl, S., Krüger, S., Becker, T., & Röcken, C. (2021). Neoadjuvant/Perioperative Treatment Affects Spatial Distribution and Densities of Tumor Associated Neutrophils and CD8+ Lymphocytes in Gastric Cancer. Journal of Personalized Medicine, 11(11), 1184. https://doi.org/10.3390/jpm11111184