Cerebral Folate Deficiency, Folate Receptor Alpha Autoantibodies and Leucovorin (Folinic Acid) Treatment in Autism Spectrum Disorders: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Process
2.2. Study Selection and Assessment
2.3. Meta-Analysis
3. Results
3.1. Central Folate Pathway Abnormalities and the Folate Receptor Alpha Autoantibody
3.1.1. ASD Prevalence in CFD
3.1.2. Cerebral Folate Deficiency in Autism Spectrum Disorder
3.1.3. Prevalence of Autoantibodies to the Folate Receptor Alpha in ASD
3.1.4. Comparison of Prevalence of Autoantibodies to the Folate Receptor Alpha in ASD to Other Groups
3.2. Treatment of ASD with d,l-Leucovorin
3.2.1. Treatment with d,l-Leucovorin in ASD and Comorbid CFD
3.2.2. Treatment with d,l-Leucovorin in General ASD: Leucovorin Only
3.2.3. Treatment with d,l-Leucovorin in General ASD: Combined with Other Supplements
3.3. Adverse Effects Reported with d,l-Leucovorin Treatment in ASD
4. Discussion
4.1. Dosing of d,l-Leucovorin in ASD
4.2. Time Period Needed for Maximal d,l-Leucovorin Treatment Effects
4.3. The Effect of d,l-Leucovorin on the Core Symptoms of ASD
4.4. Seizures and Treatment with d,l-Leucovorin
4.5. Treatment of d,l-Leucovorin in Patients with Mitochondrial Dysfunction and ASD
4.6. Safety of d,l-Leucovorin in ASD
4.7. Screening for FRα Autoantibodies in ASD
4.8. Adjunctive Treatments Studied for FRAA Positive Patients
4.9. Treatments That Support Folate Transport into the Brain
4.10. Adjunctive Treatments to Support Folate Metabolism
4.11. Therapeutic Effect of d,l-Leucovorin on Neurotransmitters
4.12. Implications of FRAAs during Pregnancy
4.13. Limitation of Published Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maenner, M.J.; Shaw, K.A.; Baio, J.; Washington, A.; Patrick, M.; DiRienzo, M.; Christensen, D.L.; Wiggins, L.D.; Pettygrove, S.; Andrews, J.G.; et al. Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2016. MMWR Surveill. Summ. 2020, 69, 1–12. [Google Scholar] [CrossRef]
- Soke, G.N.; Maenner, M.J.; Christensen, D.; Kurzius-Spencer, M.; Schieve, L.A. Prevalence of Co-occurring Medical and Behavioral Conditions/Symptoms Among 4- and 8-Year-Old Children with Autism Spectrum Disorder in Selected Areas of the United States in 2010. J. Autism Dev. Disord. 2018, 48, 2663–2676. [Google Scholar] [CrossRef] [PubMed]
- Brondino, N.; Fusar-Poli, L.; Miceli, E.; di Stefano, M.; Damiani, S.; Rocchetti, M.; Politi, P. Prevalence of Medical Comorbidities in Adults with Autism Spectrum Disorder. J. Gen. Intern. Med. 2019, 34, 1992–1994. [Google Scholar] [CrossRef]
- Dizitzer, Y.; Meiri, G.; Flusser, H.; Michaelovski, A.; Dinstein, I.; Menashe, I. Comorbidity and health services’ usage in children with autism spectrum disorder: A nested case-control study. Epidemiology Psychiatr. Sci. 2020, 29, e95. [Google Scholar] [CrossRef]
- Vargason, T.; Frye, R.E.; McGuinness, D.L.; Hahn, J. Clustering of co-occurring conditions in autism spectrum disorder during early childhood: A retrospective analysis of medical claims data. Autism Res. 2019, 12, 1272–1285. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, D.; Frye, R. Mitochondrial dysfunction in autism spectrum disorders: A systematic review and meta-analysis. Mol. Psychiatry 2011, 17, 290–314. [Google Scholar] [CrossRef]
- Holingue, C.; Newill, C.; Lee, L.-C.; Pasricha, P.J.; Fallin, M.D. Gastrointestinal symptoms in autism spectrum disorder: A review of the literature on ascertainment and prevalence. Autism Res. 2018, 11, 24–36. [Google Scholar] [CrossRef]
- Anukirthiga, B.; Mishra, D.; Pandey, S.; Juneja, M.; Sharma, N. Prevalence of Epilepsy and Inter-Ictal Epileptiform Discharges in Children with Autism and Attention-Deficit Hyperactivity Disorder. Indian J. Pediatr. 2019, 86, 897–902. [Google Scholar] [CrossRef]
- Frye, R.E.; Rossignol, D.A.; Scahill, L.; McDougle, C.J.; Huberman, H.; Quadros, E.V. Treatment of Folate Metabolism Abnormalities in Autism Spectrum Disorder. Semin. Pediatr. Neurol. 2020, 35, 100835. [Google Scholar] [CrossRef]
- Overholser, M.D.; Whitley, J.R.; O’Dell, B.L.; Hogan, A.G. The ventricular system in hydrocephalic rat brains produced by a deficiency of vitamin B12 or of folic acid in the maternal diet. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 1954, 120, 917–933. [Google Scholar] [CrossRef] [PubMed]
- Chida, N.; Hirono, H.; Arakawa, T. Effects of Dietary Folate Deficiency on Fatty Acid Composition of Myelin Cerebroside in Growth Rats. Tohoku J. Exp. Med. 1972, 108, 219–224. [Google Scholar] [CrossRef]
- Haltia, M. The effect of folate deficiency on neuronal RNA content. A quantitative cytochemical study. Br. J. Exp. Pathol. 1970, 51, 191–196. [Google Scholar] [PubMed]
- Dow, W. Electroencephalogram in anticonvulsant-induced folate deficiency. BMJ 1971, 2, 207. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, E.H.; Rothfeld, P.; Pincus, J.H. Neurological Disease associated with Folate Deficiency. BMJ 1973, 2, 398–400. [Google Scholar] [CrossRef]
- Cerebrospinal Folate Levels in Epileptics and Their Response to Folate Therapy. Nutr. Rev. 1974, 32, 70–72. [CrossRef]
- Garwicz, S.; Mortensson, W. Intracranial calcification mimicking the Sturge-Weber syndrome A consequence of cerebral folic acid deficiency? Pediatr. Radiol. 1976, 5, 5–9. [Google Scholar] [CrossRef]
- Botez, M.; Peyronnard, J.-M.; Bérubé, L.; Labrecque, R. Relapsing Neuropathy, Cerebral Atrophy and Folate Deficiency. A Close Association. Ster. Funct. Neurosurg. 1979, 42, 171–183. [Google Scholar] [CrossRef]
- Allen, R.J.; DiMauro, S.; Coulter, D.L.; Papadimitriou, A.; Rothenberg, S.P. Kearns-sayre syndrome with reduced plasma and cerebrospinal fluid folate. Ann. Neurol. 1983, 13, 679–682. [Google Scholar] [CrossRef]
- Ramaekers, V.T.; Häusler, M.; Opladen, T.; Heimann, G.; Blau, N. Psychomotor Retardation, Spastic Paraplegia, Cerebellar Ataxia and Dyskinesia Associated with Low 5-Methyltetrahydrofolate in Cerebrospinal Fluid: A Novel Neurometabolic Condition Responding to Folinic Acid Substitution. Neuropediatrics 2002, 33, 301–308. [Google Scholar] [CrossRef]
- Ramaekers, V.T.; Blau, N. Cerebral folate deficiency. Dev. Med. Child Neurol. 2004, 46, 843–851. [Google Scholar] [CrossRef]
- Ramaekers, V.T.; Rothenberg, S.P.; Sequeira, J.M.; Opladen, T.; Blau, N.; Quadros, E.V.; Selhub, J. Autoantibodies to Folate Receptors in the Cerebral Folate Deficiency Syndrome. N. Engl. J. Med. 2005, 352, 1985–1991. [Google Scholar] [CrossRef] [PubMed]
- Grapp, M.; Just, I.A.; Linnankivi, T.; Wolf, P.; Lücke, T.; Häusler, M.; Gärtner, J.; Steinfeld, R. Molecular characterization of folate receptor 1 mutations delineates cerebral folate transport deficiency. Brain 2012, 135, 2022–2031. [Google Scholar] [CrossRef]
- Zhang, C.; Deng, X.; Wen, Y.; He, F.; Yin, F.; Peng, J. First case report of cerebral folate deficiency caused by a novel mutation of FOLR1 gene in a Chinese patient. BMC Med. Genet. 2020, 21, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Pineda, M.; Ormazabal, A.; López-Gallardo, E.; Nascimento, A.; Solano, A.; Herrero, M.D.; Vilaseca, M.A.; Briones, P.; Ibáñez, L.; Montoya, J.; et al. Cerebral folate deficiency and leukoencephalopathy caused by a mitochondrial DNA deletion. Ann. Neurol. 2006, 59, 394–398. [Google Scholar] [CrossRef]
- Garcia-Cazorla, A.; Quadros, E.V.; Nascimento, A.; Garcia-Silva, M.T.; Briones, P.; Montoya, J.; Ormazabal, A.; Artuch, R.; Sequeira, J.M.; Blau, N.; et al. Mitochondrial Diseases Associated with Cerebral Folate Deficiency. Neurology 2008, 70, 1360–1362. [Google Scholar] [CrossRef] [PubMed]
- Ramaekers, V.T.; Weis, J.; Sequeira, J.M.; Quadros, E.V.; Blau, N. Mitochondrial Complex I Encephalomyopathy and Cerebral 5-Methyltetrahydrofolate Deficiency. Neuropediatrics 2007, 38, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Hasselmann, O.; Blau, N.; Ramaekers, V.T.; Quadros, E.V.; Sequeira, J.; Weissert, M. Cerebral folate deficiency and CNS inflammatory markers in Alpers disease. Mol. Genet. Metab. 2010, 99, 58–61. [Google Scholar] [CrossRef]
- Hansen, F.J.; Blau, N. Cerebral folate deficiency: Life-changing supplementation with folinic acid. Mol. Genet. Metab. 2005, 84, 371–373. [Google Scholar] [CrossRef] [PubMed]
- Karin, I.; Borggraefe, I.; Catarino, C.B.; Kuhm, C.; Hoertnagel, K.; Biskup, S.; Opladen, T.; Blau, N.; Heinen, F.; Klopstock, T. Folinic acid therapy in cerebral folate deficiency: Marked improvement in an adult patient. J. Neurol. 2017, 264, 578–582. [Google Scholar] [CrossRef]
- Antony, A.C. The biological chemistry of folate receptors. Blood 1992, 79, 2807–2820. [Google Scholar] [CrossRef]
- Adams, M.; Lucock, M.; Stuart, J.; Fardell, S.; Baker, K.; Ng, X. Preliminary evidence for involvement of the folate gene polymorphism 19bp deletion-DHFR in occurrence of autism. Neurosci. Lett. 2007, 422, 24–29. [Google Scholar] [CrossRef]
- Knowles, L.; Morris, A.A.; Walter, J.H. Treatment with Mefolinate (5-Methyltetrahydrofolate), but Not Folic Acid or Folinic Acid, Leads to Measurable 5-Methyltetrahydrofolate in Cerebrospinal Fluid in Methylenetetrahydrofolate Reductase Deficiency. JIMD Rep. 2016, 29, 103–107. [Google Scholar] [PubMed]
- Moretti, P.; Peters, S.U.; Del Gaudio, D.; Sahoo, T.; Hyland, K.; Bottiglieri, T.; Hopkin, R.; Peach, E.; Min, S.H.; Goldman, D.; et al. Brief Report: Autistic Symptoms, Developmental Regression, Mental Retardation, Epilepsy, and Dyskinesias in CNS Folate Deficiency. J. Autism Dev. Disord. 2008, 38, 1170–1177. [Google Scholar] [CrossRef]
- Ramaekers, V.T.; Blau, N.; Sequeira, J.M.; Nassogne, M.-C.; Quadros, E.V. Folate Receptor Autoimmunity and Cerebral Folate Deficiency in Low-Functioning Autism with Neurological Deficits. Neuropediatrics 2007, 38, 276–281. [Google Scholar] [CrossRef]
- Ramaekers, V.T.; Sequeira, J.M.; Blau, N.; Quadros, E.V. A Milk-Free Diet Downregulates Folate Receptor Autoimmunity in Cerebral Folate Deficiency Syndrome. Dev. Med. Child. Neurol. 2008, 50, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Moretti, P.; Sahoo, T.; Hyland, K.; Bottiglieri, T.; Peters, S.; Del Gaudio, D.; Roa, B.; Curry, S.; Zhu, H.; Finnell, R.; et al. Cerebral folate deficiency with developmental delay, autism, and response to folinic acid. Neurology 2005, 64, 1088–1090. [Google Scholar] [CrossRef]
- Frye, R.; Sequeira, J.M.; Quadros, E.V.; James, S.J.; Rossignol, D. Cerebral folate receptor autoantibodies in autism spectrum disorder. Mol. Psychiatry 2012, 18, 369–381. [Google Scholar] [CrossRef]
- Ramaekers, V.T.; Quadros, E.V.; Sequeira, J.M. Role of folate receptor autoantibodies in infantile autism. Mol. Psychiatry 2012, 18, 270–271. [Google Scholar] [CrossRef]
- Frye, R.; Sequeira, J.; Quadros, E.; Rossignol, D. Folate Receptor Alpha Autoantibodies Modulate Thyroid Function in Autism Spectrum Disorder. North Am. J. Med. Sci. 2014, 7, 53–56. [Google Scholar] [CrossRef]
- Frye, R.E.; Delhey, L.; Slattery, J.; Tippett, M.; Wynne, R.; Rose, S.; Kahler, S.G.; Bennuri, S.C.; Melnyk, S.; Sequeira, J.M.; et al. Blocking and Binding Folate Receptor Alpha Autoantibodies Identify Novel Autism Spectrum Disorder Subgroups. Front. Neurosci. 2016, 10, 80. [Google Scholar] [CrossRef] [PubMed]
- Frye, R.E.; Wynne, R.; Rose, S.; Slattery, J.; Delhey, L.; Tippett, M.; Kahler, S.G.; Bennuri, S.C.; Melnyk, S.; Sequeira, J.M.; et al. Thyroid Dysfunction in Children with Autism Spectrum Disorder Is Associated with Folate Receptor Alpha Autoimmune Disorder. J. Neuroendocrinol. 2017, 29, 3. [Google Scholar] [CrossRef]
- Quadros, E.V.; Sequeira, J.M.; Brown, W.T.; Mevs, C.; Marchi, E.; Flory, M.; Jenkins, E.C.; Velinov, M.T.; Cohen, I.L. Folate receptor autoantibodies are prevalent in children diagnosed with autism spectrum disorder, their normal siblings and parents. Autism Res. 2018, 11, 707–712. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, A.; He, F.; Jin, Y.; Zhou, S.; Xu, R.; Guo, H.; Zhou, W.; Wei, Q.; Wang, M. High prevalence of serum folate receptor autoantibodies in children with autism spectrum disorders. Biomarkers 2018, 23, 622–624. [Google Scholar] [CrossRef] [PubMed]
- Ramaekers, V.T.; Sequeira, J.M.; Di Duca, M.; Vrancken, G.; Thomas, A.; Philippe, C.; Peters, M.; Jadot, A.; Quadros, E.V. Improving Outcome in Infantile Autism with Folate Receptor Autoimmunity and Nutritional Derangements: A Self-Controlled Trial. Autism Res. Treat. 2019, 2019, 1–12. [Google Scholar] [CrossRef]
- Ramaekers, V.T.; Sequeira, J.M.; Thöny, B.; Quadros, E.V. Oxidative Stress, Folate Receptor Autoimmunity, and CSF Findings in Severe Infantile Autism. Autism Res. Treat. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Frye, R.E. Biomarkers of Abnormal Energy Metabolism in Children with Autism Spectrum Disorder. Am. Chin. J. Med. Sci. 2012, 5, 141. [Google Scholar] [CrossRef]
- Giulivi, C.; Zhang, Y.-F.; Omanska-Klusek, A.; Ross-Inta, C.; Wong, S.; Hertz-Picciotto, I.; Tassone, F.; Pessah, I.N. Mitochondrial Dysfunction in Autism. JAMA 2010, 304, 2389–2396. [Google Scholar] [CrossRef] [PubMed]
- Napoli, E.; Wong, S.; Hertz-Picciotto, I.; Giulivi, C. Deficits in Bioenergetics and Impaired Immune Response in Granulocytes from Children with Autism. Pediatrics 2014, 133, e1405–e1410. [Google Scholar] [CrossRef]
- Blehaut, H.; Mircher, C.; Ravel, A.; Conte, M.; de Portzamparc, V.; Poret, G.; de Kermadec, F.H.; Rethore, M.O.; Sturtz, F.G. Effect of Leucovorin (Folinic Acid) on the Developmental Quotient of Children with Down’s Syndrome (Trisomy 21) and Influence of Thyroid Status. PLoS ONE 2010, 5, e8394. [Google Scholar] [CrossRef]
- Hagebeuk, E.E.O.; Koelman, J.H.T.M.; Duran, M.; Abeling, N.G.; Vyth, A.; Poll-The, B.-T. Clinical and Electroencephalographic Effects of Folinic Acid Treatment in Rett Syndrome Patients. J. Child Neurol. 2011, 26, 718–723. [Google Scholar] [CrossRef] [PubMed]
- Ramaekers, V.; Hansen, S.; Holm, J.; Opladen, T.; Senderek, J.; Hausler, M.; Heimann, G.; Fowler, B.; Maiwald, R.; Blau, N. Reduced folate transport to the CNS in female Rett patients. Neurology 2003, 61, 506–515. [Google Scholar] [CrossRef] [PubMed]
- Ormazábal, A.; Artuch, R.; Vilaseca, M.A.; Aracil, A.; Pineda, M. Cerebrospinal Fluid Concentrations of Folate, Biogenic Amines and Pterins in Rett Syndrome: Treatment with Folinic Acid. Neuropediatrics 2005, 36, 380–385. [Google Scholar] [CrossRef]
- Ramaekers, V.; Thöny, B.; Sequeira, J.; Ansseau, M.; Philippe, P.; Boemer, F.; Bours, V.; Quadros, E. Folinic acid treatment for schizophrenia associated with folate receptor autoantibodies. Mol. Genet. Metab. 2014, 113, 307–314. [Google Scholar] [CrossRef]
- Higgins, J.P.; Altman, D.G. Assessing Risk of Bias in Included Studies. In Cochrane Handbook for Systematic Reviews of Interventions; Higgins, J.P.T., Green, S., Eds.; The Cochrane Collaboration: London, UK, 2011. [Google Scholar]
- Kakkassery, V.; Koschmieder, A.; Walther, F.; Lehbrink, R.; Bertsche, A.; Wortmann, S.B.; Buchmann, J.; Jager, M.; Friedburg, C.; Lorenz, B.; et al. Chorioretinal Atrophy in Pediatric Cerebral Folate Deficiency—A Preventable Disease? Ophthalmologe 2021, 118, 383–390. [Google Scholar] [CrossRef]
- Gillberg, C.; Wahlström, J.; Johansson, R.; Törnblom, M.; Albertsson-Wikland, K. Folic acid as an adjunct in the treatment of children with the autism fragile-x syndrome (afrax). Dev. Med. Child Neurol. 1986, 28, 624–627. [Google Scholar] [CrossRef]
- Sun, C.; Zou, M.; Zhao, D.; Xia, W.; Wu, L. Efficacy of Folic Acid Supplementation in Autistic Children Participating in Structured Teaching: An Open-Label Trial. Nutrients 2016, 8, 337. [Google Scholar] [CrossRef] [PubMed]
- Lipsey, M.W.; Wilson, D.B. The Way in Which Intervention Studies Have “Personality” and why it is Important to Meta-Analysis. Eval. Health Prof. 2001, 24, 236–254. [Google Scholar] [CrossRef] [PubMed]
- Senn, S. Trying to be precise about vagueness. Stat. Med. 2007, 26, 1417–1430. [Google Scholar] [CrossRef]
- Barendregt, J.J.; Doi, S.A.; Lee, Y.Y.; Norman, R.E.; Vos, T. Meta-Analysis of Prevalence. J. Epidemiol. Community Health 2013, 67, 974–978. [Google Scholar] [CrossRef]
- Furuya-Kanamori, L.; Barendregt, J.J.; Doi, S.A. A new improved graphical and quantitative method for detecting bias in meta-analysis. Int. J. Evid.-Based Health 2018, 16, 195–203. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Altman, D.G.; Machin, D.; Bryant, T.N.; Gardner, M.J. Statistics with Confidence, 2nd ed.; BMJ Books: Hoboken, NJ, USA, 2000. [Google Scholar]
- Doi, S.A.; Barendregt, J.J.; Khan, S.; Thalib, L.; Williams, G. Advances in the meta-analysis of heterogeneous clinical trials I: The inverse variance heterogeneity model. Contemp. Clin. Trials 2015, 45, 130–138. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: New York, NY, USA, 2013. [Google Scholar]
- Al-Baradie, R.S.; Chaudhary, M.W. Diagnosis and Management of Cerebral Folate Deficiency. A Form of Folinic Acid-Responsive Seizures. Neurosciences 2014, 19, 312–316. [Google Scholar]
- Frye, R.E.; Naviaux, R.K. Autistic disorder with complex IV overactivity: A new mitochondrial syndrome. J. Pediatr. Neurol. 2011, 9, 427–434. [Google Scholar]
- Kanmaz, S.; Simsek, E.; Yilmaz, S.; Durmaz, A.; Serin, H.M.; Gokben, S. Cerebral folate transporter deficiency: A potentially treatable neurometabolic disorder. Acta Neurol. 2021, 1–7. [Google Scholar] [CrossRef]
- Shoffner, J.B.; Trommer, A.; Thurm, C.; Farmer, W.A.; Langley, L., III; Soskey, A.N.; Rodriguez, P.; D’Souza, S.J.; Spence, K.; Hyland, S.; et al. Csf Concentrations of 5-Methyltetrahydrofolate in a Cohort of Young Children with Autism. Neurology 2016, 86, 2258–2263. [Google Scholar] [CrossRef] [PubMed]
- Shoffner, J.; Hyams, L.; Langley, G.N.; Cossette, S.; Mylacraine, L.; Dale, J.; Ollis, L.; Kuoch, S.; Bennett, K.; Aliberti, A.; et al. Fever Plus Mitochondrial Disease Could Be Risk Factors for Autistic Regression. J. Child Neurol. 2009, 25, 429–434. [Google Scholar] [CrossRef]
- Frye, R.; Slattery, J.; Delhey, L.; Furgerson, B.; Strickland, T.; Tippett, M.; Sailey, A.; Wynne, R.; Rose, S.; Melnyk, S.; et al. Folinic acid improves verbal communication in children with autism and language impairment: A randomized double-blind placebo-controlled trial. Mol. Psychiatry 2018, 23, 247–256. [Google Scholar] [CrossRef]
- Adams, J.B.; Audhya, T.; McDonough-Means, S.; Rubin, R.; Quig, D.; Geis, E.; Gehn, E.; Loresto, M.; Mitchell, J.; Atwood, S.; et al. Effect of a vitamin/mineral supplement on children and adults with autism. BMC Pediatr. 2011, 11, 111. [Google Scholar] [CrossRef]
- Renard, E.; Leheup, B.; Guéant-Rodriguez, R.-M.; Oussalah, A.; Quadros, E.V.; Guéant, J.-L. Folinic acid improves the score of Autism in the EFFET placebo-controlled randomized trial. Biochimie 2020, 173, 57–61. [Google Scholar] [CrossRef]
- Batebi, N.; Moghaddam, H.S.; Hasanzadeh, A.; Fakour, Y.; Mohammadi, M.R.; Akhondzadeh, S. Folinic Acid as Adjunctive Therapy in Treatment of Inappropriate Speech in Children with Autism: A Double-Blind and Placebo-Controlled Randomized Trial. Child Psychiatry Hum. Dev. 2021, 52, 928–938. [Google Scholar] [CrossRef]
- Adams, J.B.; Audhya, T.; Geis, E.; Gehn, E.; Fimbres, V.; Pollard, E.L.; Mitchell, J.; Ingram, J.; Hellmers, R.; Laake, D.; et al. Comprehensive Nutritional and Dietary Intervention for Autism Spectrum Disorder—A Randomized, Controlled 12-Month Trial. Nutrients 2018, 10, 369. [Google Scholar] [CrossRef] [PubMed]
- James, S.J.; Cutler, P.; Melnyk, S.; Jernigan, S.; Janak, L.; Gaylor, D.W.; Neubrander, J. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am. J. Clin. Nutr. 2004, 80, 1611–1617. [Google Scholar] [CrossRef] [PubMed]
- James, S.J.; Melnyk, S.; Fuchs, G.; Reid, T.; Jernigan, S.; Pavliv, O.; Hubanks, A.; Gaylor, D.W. Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism. Am. J. Clin. Nutr. 2008, 89, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Frye, R.E.; Melnyk, S.; Fuchs, G.; Reid, T.; Jernigan, S.; Pavliv, O.; Hubanks, A.; Gaylor, D.W.; Walters, L.; James, S.J. Effectiveness of Methylcobalamin and Folinic Acid Treatment on Adaptive Behavior in Children with Autistic Disorder Is Related to Glutathione Redox Status. Autism Res. Treat. 2013, 2013, 1–9. [Google Scholar] [CrossRef]
- Bent, S.; Chen, Y.; McDonald, M.G.; Widjaja, F.; Wahlberg, J.; Hendren, R.L. An Examination of Changes in Urinary Metabolites and Behaviors with the Use of Leucovorin Calcium in Children with Autism Spectrum Disorder (ASD). Adv. Neurodev. Disord. 2020, 4, 241–246. [Google Scholar] [CrossRef]
- Adams, J.B.; Bhargava, A.; Coleman, D.M.; Frye, R.E.; Rossignol, D.A. Ratings of the Effectiveness of Nutraceuticals for Autism Spectrum Disorders: Results of a National Survey. J. Pers. Med. 2021, 11, 878. [Google Scholar] [CrossRef]
- Alfageh, B.H.; Wang, Z.; Mongkhon, P.; Besag, F.M.C.; Alhawassi, T.M.; Brauer, R.; Wong, I.C.K. Safety and Tolerability of Antipsychotic Medication in Individuals with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Pediatr. Drugs 2019, 21, 153–167. [Google Scholar] [CrossRef]
- Frye, R.E.; Casanova, M.F.; Fatemi, S.H.; Folsom, T.D.; Reutiman, T.J.; Brown, G.L.; Edelson, S.M.; Slattery, J.C.; Adams, J.B. Neuropathological Mechanisms of Seizures in Autism Spectrum Disorder. Front. Neurosci. 2016, 10, 192. [Google Scholar] [CrossRef] [PubMed]
- Opladen, T.; Blau, N.; Ramaekers, V.T. Effect of antiepileptic drugs and reactive oxygen species on folate receptor 1 (FOLR1)-dependent 5-methyltetrahydrofolate transport. Mol. Genet. Metab. 2010, 101, 48–54. [Google Scholar] [CrossRef]
- Fahmy, S.F.; El-Hamamsy, M.H.; Zaki, O.K.; Badary, O.A. l-Carnitine supplementation improves the behavioral symptoms in autistic children. Res. Autism Spectr. Disord. 2013, 7, 159–166. [Google Scholar] [CrossRef]
- Geier, D.A.; Kern, J.K.; Davis, G.; King, P.G.; Adams, J.B.; Young, J.L.; Geier, M.R. A prospective double-blind, randomized clinical trial of levocarnitine to treat autism spectrum disorders. Med. Sci. Monit. 2011, 17, PI15–PI23. [Google Scholar] [CrossRef] [PubMed]
- Gvozdjáková, A.; Kucharská, J.; Ostatníková, D.; Babinská, K.; Nakladal, D.; Crane, F.L. Ubiquinol Improves Symptoms in Children with Autism. Oxidative Med. Cell. Longev. 2014, 2014, 1–6. [Google Scholar] [CrossRef]
- Legido, A.; Goldenthal, M.; Garvin, B.; Damle, S.; Corrigan, K.; Connell, J.; Thao, D.; Valencia, I.; Melvin, J.; Khurana, D.; et al. Effect of a Combination of Carnitine, Coenzyme Q10 and Alpha-Lipoic Acid (Mitococktail) on Mitochondrial Function and Neurobehavioral Performance in Children with Autism Spectrum Disorder (P3.313). Neurology 2018, 90, 15. [Google Scholar]
- Delhey, L.M.; Kilinc, E.N.; Yin, L.; Slattery, J.C.; Tippett, M.L.; Rose, S.; Bennuri, S.C.; Kahler, S.G.; Damle, S.; Legido, A.; et al. The Effect of Mitochondrial Supplements on Mitochondrial Activity in Children with Autism Spectrum Disorder. J. Clin. Med. 2017, 6, 18. [Google Scholar] [CrossRef] [PubMed]
- Horne, D.W.; Holloway, R.S.; Said, H.M. Uptake of 5-Formyltetrahydrofolate in Isolated Rat Liver Mitochondria Is Carrier-Mediated. J. Nutr. 1992, 122, 2204–2209. [Google Scholar] [CrossRef] [PubMed]
- Ormazabal, A.; Casado, M.; Molero-Luis, M.; Montoya, J.; Rahman, S.; Aylett, S.-B.; Hargreaves, I.; Heales, S.; Artuch, R. Can folic acid have a role in mitochondrial disorders? Drug Discov. Today 2015, 20, 1349–1354. [Google Scholar] [CrossRef]
- Quijada-Fraile, P.; O’Callaghan, M.; Martin-Hernandez, E.; Montero, R.; García-Cazorla, A.; de Aragón, A.M.; Muchart, J.; Malaga, I.; Pardo, R.; García-Gonzalez, P.; et al. Follow-up of folinic acid supplementation for patients with cerebral folate deficiency and Kearns-Sayre syndrome. Orphanet J. Rare Dis. 2014, 9, 217. [Google Scholar] [CrossRef]
- Palmieri, L.; Papaleo, V.; Porcelli, V.; Scarcia, P.; Gaita, L.; Sacco, R.; Hager, J.; Rousseau, F.; Curatolo, P.; Manzi, B.; et al. Altered calcium homeostasis in autism-spectrum disorders: Evidence from biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier AGC1. Mol. Psychiatry 2010, 15, 38–52. [Google Scholar] [CrossRef]
- Geller, B. Does Folinic Acid Improve Language in Children with Autism? NEJM J. Watch Psychiatry 2016. [Google Scholar] [CrossRef]
- Sequeira, J.M.; Desai, A.; Berrocal-Zaragoza, M.I.; Murphy, M.M.; Fernández-Ballart, J.D.; Quadros, E.V. Exposure to Folate Receptor Alpha Antibodies during Gestation and Weaning Leads to Severe Behavioral Deficits in Rats: A Pilot Study. PLoS ONE 2016, 11, e0152249. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.; Sequeira, J.M.; Quadros, E.V. Prevention of behavioral deficits in rats exposed to folate receptor antibodies: Implication in autism. Mol. Psychiatry 2016, 22, 1291–1297. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.A.; Martin, P.; Zimmer, T.; Segreti, A.M.; Kassiff, S.; McKain, B.W.; Baca, C.A.; Rengasamy, M.; Hyland, K.; Walano, N.; et al. Neurometabolic Disorders: Potentially Treatable Abnormalities in Patients with Treatment-Refractory Depression and Suicidal Behavior. Am. J. Psychiatry 2017, 174, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Whiteley, P.; Haracopos, D.; Knivsberg, A.-M.; Reichelt, K.L.; Parlar, S.; Jacobsen, J.; Seim, A.; Pedersen, L.; Schondel, M.; Shattock, P. The ScanBrit randomised, controlled, single-blind study of a gluten- and casein-free dietary intervention for children with autism spectrum disorders. Nutr. Neurosci. 2010, 13, 87–100. [Google Scholar] [CrossRef]
- Pennesi, C.M.; Klein, L.C. Effectiveness of the gluten-free, casein-free diet for children diagnosed with autism spectrum disorder: Based on parental report. Nutr. Neurosci. 2012, 15, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Keller, A.; Rimestad, M.L.; Rohde, J.F.; Petersen, B.H.; Korfitsen, C.B.; Tarp, S.; Lauritsen, M.B.; Händel, M.N. The Effect of a Combined Gluten- and Casein-Free Diet on Children and Adolescents with Autism Spectrum Disorders: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 470. [Google Scholar] [CrossRef]
- Alam, C.; Hoque, T.; Finnell, R.; Goldman, I.D.; Bendayan, R. Regulation of Reduced Folate Carrier (RFC) by Vitamin D Receptor at the Blood-Brain Barrier. Mol. Pharm. 2017, 14, 3848–3858. [Google Scholar] [CrossRef]
- Alam, C.; Hoque, T.; Sangha, V.; Bendayan, R. Nuclear respiratory factor 1 (NRF-1) upregulates the expression and function of reduced folate carrier (RFC) at the blood-brain barrier. FASEB J. 2020, 34, 10516–10530. [Google Scholar] [CrossRef] [PubMed]
- Alam, C.; Aufreiter, S.; Georgiou, C.J.; Hoque, T.; Finnell, R.H.; O’Connor, D.; Goldman, I.D.; Bendayan, R. Upregulation of reduced folate carrier by vitamin D enhances brain folate uptake in mice lacking folate receptor alpha. Proc. Natl. Acad. Sci. USA 2019, 116, 17531–17540. [Google Scholar] [CrossRef]
- Song, L.; Luo, X.; Jiang, Q.; Chen, Z.; Zhou, L.; Wang, D.; Chen, A. Vitamin D Supplementation is Beneficial for Children with Autism Spectrum Disorder: A Meta-analysis. Clin. Psychopharmacol. Neurosci. 2020, 18, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Soumiya, H.; Araiso, H.; Furukawa, S.; Fukumitsu, H. Pyrroloquinoline quinone improves abnormal functional development of whisker-mediated tactile perception and social behaviors caused by neonatal whisker trimming. Neurosci. Lett. 2019, 705, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hodgson, N.W.; Trivedi, M.S.; Abdolmaleky, H.M.; Fournier, M.; Cuenod, M.; Do, K.Q.; Deth, R.C. Decreased Brain Levels of Vitamin B12 in Aging, Autism and Schizophrenia. PLoS ONE 2016, 11, e0146797. [Google Scholar] [CrossRef] [PubMed]
- Frye, R.E.; Huffman, L.C.; Elliott, G.R. Tetrahydrobiopterin as a novel therapeutic intervention for autism. Neurotherapeutics 2010, 7, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Frye, R.E. Central tetrahydrobiopterin concentration in neurodevelopmental disorders. Front. Neurosci. 2010, 4, 52. [Google Scholar] [CrossRef]
- Frye, R.; De La Torre, R.; Taylor, H.B.; Slattery, J.; Melnyk, S.; Chowdhury, N.; James, S.J. Metabolic effects of sapropterin treatment in autism spectrum disorder: A preliminary study. Transl. Psychiatry 2013, 3, e237. [Google Scholar] [CrossRef] [PubMed]
- Frye, R.E. Tetrahydrobiopterin May Be Transported into the Central Nervous System by the Folate Receptor α. North Am. J. Med. Sci. 2013, 3, 117. [Google Scholar]
- Berrocal-Zaragoza, M.I.; Fernandez-Ballart, J.D.; Murphy, M.M.; Cavallé-Busquets, P.; Sequeira, J.M.; Quadros, E.V. Association between blocking folate receptor autoantibodies and subfertility. Fertil. Steril. 2009, 91, 1518–1521. [Google Scholar] [CrossRef]
- Rothenberg, S.P.; Da Costa, M.P.; Sequeira, J.M.; Cracco, J.; Roberts, J.L.; Weedon, J.; Quadros, E.V. Autoantibodies against Folate Receptors in Women with a Pregnancy Complicated by a Neural-Tube Defect. N. Engl. J. Med. 2004, 350, 134–142. [Google Scholar] [CrossRef]
- Vo, H.D.; Sequeira, J.M.; Quadros, E.V.; Schwarz, S.M.; Perenyi, A.R. The role of folate receptor autoantibodies in preterm birth. Nutrition 2015, 31, 1224–1227. [Google Scholar] [CrossRef]
- Shapira, I.; Sequeira, J.M.; Quadros, E.V. Folate receptor autoantibodies in pregnancy related complications. Birth Defects Res. Part A Clin. Mol. Teratol. 2015, 103, 1028–1030. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.M.; Carberry, C.; Hamo, A.; Lord, C. Placebo-like response in absence of treatment in children with Autism. Autism Res. 2017, 10, 1567–1572. [Google Scholar] [CrossRef] [PubMed]
- King, B.H.K.; Dukes, C.L.; Donnelly, L.; Sikich, J.T.; McCracken, L.; Scahill, E.; Hollander, J.D.; Bregman, E.; Anagnostou, F.; Robinson, L.S.; et al. Baseline Factors Predicting Placebo Response to Treatment in Children and Adolescents with Autism Spectrum Disorders: A Multisite Randomized Clinical Trial. JAMA Pediatr. 2013, 167, 1045–1052. [Google Scholar] [CrossRef] [PubMed]
Prevalence (95% CI) | Q | I2 | LFK | N | |
---|---|---|---|---|---|
Cerebral Folate Deficiency | |||||
Prevalence of ASD in CFD | 44% (21%, 70%) | 16.14 ** | 75% | 2.57 T | 5 |
Prevalence of CFD in ASD | 38% (11%, 71%) | 85.50 ** | 92% | 4.20 T | 8 |
Etiology of CFD in ASD: | |||||
| 83% (69%, 94%) | 5.19 | 5 | ||
| 43% (0%, 100%) | 9.15 ** | 89% | 2 | |
| 14% (0%, 39%) | 12.4 * | 60% | 4.63 T | 6 |
Prevalence of FRα Autoantibody | |||||
Autism Spectrum Disorder (ASD) | |||||
| 46% (27%, 64%) | 52.34 ** | 92% | 0.42 | 5 |
| 49% (43%, 55%) | 2.34 | 4 | ||
| 71% (64%, 77%) | 10.07 | 5 | ||
Parents of ASD children | |||||
| 30% (19%, 44%) | 9.39 * | 79% | −0.78 | 3 |
| 23% (0%, 61%) | 13.45 ** | 93% | 2 | |
| 45% (27%, 60%) | 89.90 ** | 89% | 0.05 | 4 |
Typically Developing Siblings of ASD | |||||
| 38% (19%, 58%) | 1.39 | 2 | ||
| 40% (9%, 77%) | 2.93 | 2 | ||
| 61% (28%, 97%) | 3.86 | 2 | ||
Typically Developing Non-sibling | |||||
| 4% (1%, 10%) | 0.00 | 2 | ||
| 10% (10%, 48%) | 16.33 ** | 94% | 2 | |
| 15% (0%, 46%) | 9.60 ** | 90% | 2 | |
Developmentally Delayed without ASD | |||||
| 5% (0%, 14%) | 1 |
Comparison Group | Odds Ratio (95% CI) | Q | I2 | LFK | N |
---|---|---|---|---|---|
Parents of ASD children | |||||
| 2.10 (1.05, 4.21) Γ | 6.37 | 3 | ||
| 3.62 (0.70, 18.84) | 4.40 | 2 | ||
| 3.56 (1.62, 7.79) ** | 8.60 Γ | 65% | −0.77 | 4 |
Typically Developing Siblings of ASD | |||||
| 2.00 (0.26, 15.21) | 3.31 | 2 | ||
| 1.32 (0.44, 3.99) | 1.41 | 2 | ||
| 2.12 (0.40, 11.30) | 3.12 | 2 | ||
Typically Developing Non-sibling | |||||
| 26.84 (7.84, 91.86) ** | 1.02 | 2 | ||
| 7.90 (0.70, 89.13) ** | 2.81 | 2 | ||
| 19.03 (2.36, 153.58) ** | 3.58 | 2 | ||
Developmentally Delayed without ASD | |||||
| 25.38 (3.29, 196.02) ** | 1 |
Prevalence (95% CI) | Q | I2 | LFK | N | |
---|---|---|---|---|---|
Children with ASD | |||||
| 67% (43%, 87%) | 9.23 | 6 | ||
| 58% (40%, 76%) | 2.24 | 3 | ||
| 88% (75%, 97%) | 3.16 | 5 | ||
| 76% (19%, 100%) | 13.83 * | 75% | −2.27 T | 4 |
| 47% (20%, 75%) | 3.85 | 4 | ||
| 75% (54%, 91%) | 4.48 | 5 | ||
Children without ASD | |||||
| 47% (0%, 100%) | 12.11 * | 84% | −5.54 T | 2 |
| 72% (24%, 100%) | 5.82 | 2 | ||
| 33% (0%, 100%) | 13.41 | 92% | 2 | |
| 18% (1%, 46%) | 2.07 | 3 | ||
| 54% (0%, 100%) | 12.90 * | 77% | −2.31 T | 4 |
Core ASD Symptoms | Communication | Behaviors | Other Symptoms |
---|---|---|---|
d,l-leucovorin Only Studies | |||
Frye et al., 2013 [37] (Non-Treated Wait List Controlled) | |||
Stereotypy d’ = 1.02 | Verbal Comm d’ = 0.91 Expressive Lang d’ = 0.81 Receptive Lang d’ = 0.76 | Attention d’ = 1.01 Hyperactivity d’ = 0.25 | |
Frye et al., 2018 [72] (Double Blind Placebo Controlled) | |||
ABC Social Withdrawal d’ = 0.27 ABC Stereotypy d’ = 0.60 | Verbal Comm (All) d’ = 0.70 Verbal Comm (FRAA+) d’ = 0.91 | Hyperactivity d’ = 0.05 | |
Renard et al., 2020 [74] (Single Blind Placebo Controlled) | |||
ADOS total score d’ = 1.16 Social interaction d’ = 1.11 SRS Total d’ = 0.03 | Communication d’ = 0.66 | ||
d,l-leucovorin Combined with Other Supplements | |||
Adams et al., 2011 [73] (Double Blind Placebo Controlled; PGI-R Outcome) | |||
Play d’ = 0.23 Sociability d’ = 0.15 | Expressive Language d’ = 0.37 Receptive Language d’ = 0.44 | Hyperactivity d’ = 0.60 Tantrums d’ = 0.53 | Cognition d’ = 0.34 Gastrointestinal d’ = 0.30 Sleep d’ = 0.18 |
Adams et al., 2018 [76] (Prospective Non-Treatment Controlled; PGI-2 Outcome) | |||
Play d’ = 1.50 Sociability d’ = 1.44 Eye Contact d’ = 1.41 Perseveration d’ = 1.33 Sound Sensitivity d’ = 1.14 | Expressive Language d’ = 1.60 Receptive Language d’ = 1.99 | Attention d’ = 1.19 Hyperactivity d’ = 1.46 Tantrums d’ = 1.00 Aggression d’ = 0.96 Self-Injury d’ = 0.69 | Cognition d’ = 1.49 Gastrointestinal d’ = 2.09 Sleep d’ = 0.92 Mood d’ = 1.58 Anxiety d’ = 0.95 |
Ramaekers et al., 2019 [44] (Baseline Controlled) | |||
CARS d’ = 1.01–1.32 | |||
Frye et al., 2013 [79] (Baseline Controlled) | |||
Interpersonal d’ = 0.43 Play d’ = 0.59 Coping d’ = 0.66 | Expressive Language d’ = 0.59 Receptive Language d’ = 0.97 Written Language d’ = 0.56 | Personal d’ = 0.65 Domestic d’ = 0.37 Community d’ = 0.52 |
Leucovorin Alone | Leucovorin Combination | ||
---|---|---|---|
Adverse Effect | Incidence (95% CI) | Adverse Effect | Incidence (95% CI) |
Abdominal Pain | 1.7% (0.0%, 4.8%) | Abdominal Pain | 2.1% (0.0%, 7.2%) |
Aggression | 9.5% (4.2%, 16.3%) | Aggression | 1.3% (0.1%, 3.6%) |
Blood in Stool | 1.7% (0.0%, 4.8%) | Attention Problems | 0.9% (0.0%, 2.9%) |
Confusion | 1.8% (0.0%, 5.0%) | Constipation/Diarrhea | 7.4% (0.0%, 21.5%) |
Constipation | 2.6% (0.0%, 7.4%) | Dizziness | 2.1% (0.0%, 7.2%) |
Decreased Appetite | 2.6% (0.0%, 7.4%) | Headaches | 0.9% (0.0%, 2.5%) |
Depression | 230% (0.0%, 6.9%) | Hyperactivity | 2.5% (0.0%, 8.8%) |
Diarrhea | 2.3% (0.0%, 7.0%) | Impulsivity | 1.0% (0.0%, 2.7%) |
Dry Mouth, Excessive Thirst | 5.0% (0.0%, 13.6%) | Increased Appetite | 3.2% (0.0%, 12.1%) |
Emotional Lability | 2.0% (0.0%, 7.4%) | Irritability | 1.0% (0.0%, 2.7%) |
Excitement or Agitation | 11.7% (1.1%, 28.8%) | Nausea/Vomiting | 0.9% (0.0%, 2.9%) |
Gastroesophageal Reflux | 2.8% (0.2%, 7.5%) | Rash | 0.9% (0.0%, 2.5%) |
Headache | 4.9% (1.3%, 10.5%) | Reduced Sleep | 1.9% (0.0%, 6.3%) |
Insomnia | 8.5% (0.2%, 23.8%) | Sedation | 1.7% (0.0%, 5.6%) |
Increased Motor Activity | 7.4% (0.0%, 21.8%) | Worsening Behavior | 8.5% (3.9%, 14.6%) |
Increased Tantrums | 6.2% (1.5%, 13.3%) | ||
Involuntary Movements | 2.6% (0.0%, 7.4%) | ||
Restlessness | 3.4% (0.0%, 10.6%) | ||
Stiffness | 1.7% (0.0%, 5.0%) | ||
Viral Infection | 10.3% (0.0%, 33.8%) | ||
Weight Gain | 2.6% (0.0%, 7.4%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossignol, D.A.; Frye, R.E. Cerebral Folate Deficiency, Folate Receptor Alpha Autoantibodies and Leucovorin (Folinic Acid) Treatment in Autism Spectrum Disorders: A Systematic Review and Meta-Analysis. J. Pers. Med. 2021, 11, 1141. https://doi.org/10.3390/jpm11111141
Rossignol DA, Frye RE. Cerebral Folate Deficiency, Folate Receptor Alpha Autoantibodies and Leucovorin (Folinic Acid) Treatment in Autism Spectrum Disorders: A Systematic Review and Meta-Analysis. Journal of Personalized Medicine. 2021; 11(11):1141. https://doi.org/10.3390/jpm11111141
Chicago/Turabian StyleRossignol, Daniel A., and Richard E. Frye. 2021. "Cerebral Folate Deficiency, Folate Receptor Alpha Autoantibodies and Leucovorin (Folinic Acid) Treatment in Autism Spectrum Disorders: A Systematic Review and Meta-Analysis" Journal of Personalized Medicine 11, no. 11: 1141. https://doi.org/10.3390/jpm11111141
APA StyleRossignol, D. A., & Frye, R. E. (2021). Cerebral Folate Deficiency, Folate Receptor Alpha Autoantibodies and Leucovorin (Folinic Acid) Treatment in Autism Spectrum Disorders: A Systematic Review and Meta-Analysis. Journal of Personalized Medicine, 11(11), 1141. https://doi.org/10.3390/jpm11111141