Effects of Algorithmic Music on the Cardiovascular Neural Control
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Algorithmic Music Approach
2.3. Experimental Protocol
2.4. Cardiovascular Neural Control Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raglio, A.; Oasi, O. Music and Health: What Interventions for what Results? Front. Psychol. 2015, 6, 230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orini, M.; Al-Amodi, F.; Koelsch, S.; Bailon, R. The Effect of Emotional Valence on Ventricular Repolarization Dynamics is Mediated by Heart Rate Variability: A Study of QT Variability and Music-Induced Emotions. Front. Physiol. 2019, 10, 1465. [Google Scholar] [CrossRef] [PubMed]
- Koelsch, S.; Jancke, L. Music and the Heart. Eur. Heart J. 2015, 36, 3043–3049. [Google Scholar] [CrossRef] [PubMed]
- Loomba, R.S.; Arora, R.; Shah, P.H.; Chandrasekar, S.; Molnar, J. Effects of Music on Systolic Blood Pressure, Diastolic Blood Pressure, and Heart Rate: A Meta-Analysis. Indian Heart J. 2012, 64, 309–313. [Google Scholar] [CrossRef] [Green Version]
- Raglio, A.; Attardo, L.; Gontero, G.; Rollino, S.; Groppo, E.; Granieri, E. Effects of Music and Music Therapy on Mood in Neurological Patients. World J. Psychiatry 2015, 5, 68–78. [Google Scholar] [CrossRef]
- Sihvonen, A.J.; Sarkamo, T.; Leo, V.; Tervaniemi, M.; Altenmuller, E.; Soinila, S. Music-Based Interventions in Neurologi-cal Rehabilitation. Lancet Neurol. 2017, 16, 648–660. [Google Scholar] [CrossRef] [Green Version]
- Devlin, K.; Alshaikh, J.T.; Pantelyat, A. Music Therapy and Music-Based Interventions for Movement Disorders. Curr. Neurol. Neurosci. Rep. 2019, 19, 83. [Google Scholar] [CrossRef]
- Raglio, A.; Oasi, O.; Gianotti, M.; Manzoni, V.; Bolis, S.; Ubezio, M.C.; Gentile, S.; Villani, D.; Stramba-Badiale, M. Effects of Music Therapy on Psychological Symptoms and Heart Rate Variability in Patients with Dementia. A Pilot Study. Curr. Aging Sci. 2010, 3, 242–246. [Google Scholar] [CrossRef]
- Snowdon, C.T.; Zimmermann, E.; Altenmuller, E. Music Evolution and Neuroscience. Prog. Brain Res. 2015, 217, 17–34. [Google Scholar] [PubMed]
- Koelsch, S.; Skouras, S. Functional Centrality of Amygdala, Striatum and Hypothalamus in a “Small-World” Network Underlying Joy: An fMRI Study with Music. Hum. Brain Map. 2014, 35, 3485–3498. [Google Scholar] [CrossRef]
- Okada, K.; Kurita, A.; Takase, B.; Otsuka, T.; Kodani, E.; Kusama, Y.; Atarashi, H.; Mizuno, K. Effects of Music Therapy on Autonomic Nervous System Activity, Incidence of Heart Failure Events, and Plasma Cytokine and Catecholamine Levels in Elderly Patients with Cerebrovascular Disease and Dementia. Int. Heart J. 2009, 50, 95–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raglio, A.; Vico, F. Music and Technology: The Curative Algorithm. Front. Psychol. 2017, 8, 2055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menon, V.; Levitin, D.J. The Rewards of Music Listening: Response and Physiological Connectivity of the Mesolimbic System. Neuroimage 2005, 28, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Malliani, A.; Pagani, M.; Lombardi, F.; Cerutti, S. Cardiovascular Neural Regulation Explored in the Frequency Domain. Circulation 1991, 84, 482–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva, S.A.; Guida, H.L.; Dos Santos Antonio, A.M.; de Abreu, L.C.; Monteiro, C.B.; Ferreira, C.; Ribeiro, V.F.; Barnabe, V.; Silva, S.B.; Fonseca, F.L.; et al. Acute Auditory Stimulation with Different Styles of Music Influences Cardiac Autonomic Regulation in Men. Int. Cardiovasc. Res. J. 2014, 8, 105–110. [Google Scholar] [PubMed]
- Goswami, N.; Roessler, A.; Lackner, H.K.; Schneditz, D.; Grasser, E.; Hinghofer-Szalkay, H.G. Heart Rate and Stroke Volume Response Patterns to Augmented Orthostatic Stress. Clin. Auton. Res. 2009, 19, 157–165. [Google Scholar] [CrossRef] [PubMed]
- De Maria, B.; Bari, V.; Sgoifo, A.; Carnevali, L.; Cairo, B.; Vaini, E.; Catai, A.M.; de Medeiros Takahashi, A.C.; Dalla Vec-chia, L.A.; Porta, A. Concomitant Evaluation of Heart Period and QT Interval Variability Spectral Markers to Typify Cardiac Control in Humans and Rats. Front. Physiol. 2019, 10, 1478. [Google Scholar] [CrossRef]
- Ball, P. Computer science: Algorithmic Rapture. Nature 2012, 488, 458. [Google Scholar] [CrossRef]
- Raglio, A.; Bellandi, D.; Gianotti, M.; Zanacchi, E.; Gnesi, M.; Monti, M.C.; Montomoli, C.; Vico, F.; Imbriani, C.; Giorgi, I.; et al. Daily Music Listening to Reduce Work-Related Stress: A Randomized Controlled Pilot Trial. J. Public Health 2020, 42, e81–e87. [Google Scholar] [CrossRef]
- Leman, M.; Moelants, D.; Varewyck, M.; Styns, F.; van Noorden, L.; Martens, J.P. Activating and Relaxing Music Entrains the Speed of Beat Synchronized Walking. PLoS ONE 2013, 8, e67932. [Google Scholar]
- Malik, M.; Bigger, J.T.; Camm, A.J.; Kleiger, R.E.; Malliani, A.; Moss, A.J.; Schwartz, P.J. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart Rate Variability. Standards of Measurement, Physiological Interpretation, and Clinical use. Eur. Heart J. 1996, 17, 354–381. [Google Scholar] [CrossRef] [Green Version]
- Pagani, M.; Lombardi, F.; Guzzetti, S.; Rimoldi, O.; Furlan, R.; Pizzinelli, P.; Sandrone, G.; Malfatto, G.; Dell’Orto, S.; Pic-caluga, E. Power Spectral Analysis of Heart Rate and Arterial Pressure Variabilities as a Marker of Sympatho-Vagal Interac-tion in Man and Conscious Dog. Circ. Res. 1986, 59, 178–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertinieri, G.; di Rienzo, M.; Cavallazzi, A.; Ferrari, A.U.; Pedotti, A.; Mancia, G. A New Approach to Analysis of the Arterial Baroreflex. J. Hypertens. Suppl. 1985, 3, S79–S81. [Google Scholar]
- De Maria, B.; Bari, V.; Ranucci, M.; Pistuddi, V.; Ranuzzi, G.; Takahashi, A.C.M.; Catai, A.M.; Dalla Vecchia, L.; Cerutti, S.; Porta, A. Separating Arterial Pressure Increases and Decreases in Assessing Cardiac Baroreflex Sensitivity Via Sequence and Bivariate Phase-Rectified Signal Averaging Techniques. Med. Biol. Eng. Comput. 2018, 56, 1241–1252. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, L.; Porta, C.; Sleight, P. Cardiovascular, Cerebrovascular, and Respiratory Changes Induced by Different Types of Music in Musicians and Non-Musicians: The Importance of Silence. Heart 2006, 92, 445–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etzel, J.A.; Johnsen, E.L.; Dickerson, J.; Tranel, D.; Adolphs, R. Cardiovascular and Respiratory Responses during Musical Mood Induction. Int. J. Psychophysiol. 2006, 61, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Nyklcek, I.; Thayer, J.F.; Van Doornen, L.J. Cardiorespiratory Differentiation of Musically-Induced Emotions. J. Psycho-Physiol. 1997, 11, 304–321. [Google Scholar]
- Kannel, W.B.; Kannel, C.; Paffenbarger, R.S.; Cupples, L.A. Heart Rate and Cardiovascular Mortality: The Framingham Study. Am. Heart J. 1987, 113, 1489–1494. [Google Scholar] [CrossRef]
- Johansen, C.D.; Olsen, R.H.; Pedersen, L.R.; Kumarathurai, P.; Mouridsen, M.R.; Binici, Z.; Intzilakis, T.; Kober, L.; Sajadieh, A. Resting, Night-Time, and 24 H Heart Rate as Markers of Cardiovascular Risk in Middle-Aged and Elderly Men and Women with no Apparent Heart Disease. Eur. Heart J. 2013, 34, 1732–1739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aune, D.; Sen, A.; o’Hartaigh, B.; Janszky, I.; Romundstad, P.R.; Tonstad, S.; Vatten, L.J. Resting Heart Rate and the Risk of Cardiovascular Disease, Total Cancer, and all-Cause Mortality—A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 504–517. [Google Scholar] [CrossRef] [PubMed]
- Bohm, M.; Reil, J.C.; Deedwania, P.; Kim, J.B.; Borer, J.S. Resting Heart Rate: Risk Indicator and Emerging Risk Factor in Cardiovascular Disease. Am. J. Med. 2015, 128, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Tanna, M.S.; Messerli, F.H.; Bangalore, S. Stable Coronary Artery Disease: Are there Therapeutic Benefits of Heart Rate Lowering? J. Hypertens. 2019, 37, 1112–1118. [Google Scholar] [CrossRef] [PubMed]
- Reule, S.; Drawz, P.E. Heart Rate and Blood Pressure: Any Possible Implications for Management of Hypertension? Curr. Hypertens. Rep. 2012, 14, 478–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, K.M.; Ferrari, R. Heart Rate: A Forgotten Link in Coronary Artery Disease? Nat. Rev. Cardiol. 2011, 8, 369–379. [Google Scholar] [CrossRef]
- Palatini, P.; Rosei, E.A.; Casiglia, E.; Chalmers, J.; Ferrari, R.; Grassi, G.; Inoue, T.; Jelakovic, B.; Jensen, M.T.; Julius, S.; et al. Management of the Hypertensive Patient with Elevated Heart Rate: Statement of the Second Consensus Conference En-dorsed by the European Society of Hypertension. J. Hypertens. 2016, 34, 813–821. [Google Scholar] [CrossRef]
- Levine, G.N.; Bates, E.R.; Bittl, J.A.; Brindis, R.G.; Fihn, S.D.; Fleisher, L.A.; Granger, C.B.; Lange, R.A.; Mack, M.J.; Mauri, L.; et al. 2016 ACC/AHA Guideline Focused Update on Duration of Dual Antiplatelet Therapy in Patients with Coronary Artery Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Prac-tice Guidelines: An Update of the 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention, 2011 ACCF/AHA Guideline for Coronary Artery Bypass Graft Surgery, 2012 ACC/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the Diagnosis and Management of Patients with Stable Ischemic Heart Disease, 2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction, 2014 AHA/ACC Guideline for the Management of Patients with Non-ST-Elevation Acute Coronary Syndromes, and 2014 ACC/AHA Guideline on Perioperative Cardiovascular Evaluation and Management of Patients Undergoing Noncardiac Surgery. Circulation 2016, 134, e123–e155. [Google Scholar] [PubMed] [Green Version]
- Mann, S.J. Redefining Beta-Blocker use in Hypertension: Selecting the Right Beta-Blocker and the Right Patient. J. Am. Soc. Hypertens. 2017, 11, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, R.M.F.L.; Borges, A.S.R.; Silva, N.P.; Resende, E.S.; Tse, G.; Liu, T.; Roever, L.; Biondi-Zoccai, G. How Heart Rate should be Controlled in Patients with Atherosclerosis and Heart Failure. Curr. Atheroscler. Rep. 2018, 20, 54. [Google Scholar] [CrossRef] [PubMed]
- Dalla Vecchia, L.; Barbic, F.; Galli, A.; Pisacreta, M.; Gornati, R.; Porretta, T.; Porta, A.; Furlan, R. Favorable Effects of Ca-rotid Endarterectomy on Baroreflex Sensitivity and Cardiovascular Neural Modulation: A 4-Month Follow-Up. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 304, R1114–R1120. [Google Scholar] [CrossRef] [Green Version]
- Barbic, F.; Galli, M.; Dalla Vecchia, L.; Canesi, M.; Cimolin, V.; Porta, A.; Bari, V.; Cerri, G.; Dipaola, F.; Bassani, T.; et al. Effects of Mechanical Stimulation of the Feet on Gait and Cardiovascular Autonomic Control in Parkinson’s Disease. J. Appl. Physiol. 2014, 116, 495–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terui, N.; Koizumi, K. Responses of Cardiac Vagus and Sympathetic Nerves to Excitation of Somatic and Visceral Nerves. J. Auton. Nerv. Syst. 1984, 10, 73–91. [Google Scholar] [CrossRef]
- Bernardi, L.; Porta, C.; Casucci, G.; Balsamo, R.; Bernardi, N.F.; Fogari, R.; Sleight, P. Dynamic Interactions between Mu-sical, Cardiovascular, and Cerebral Rhythms in Humans. Circulation 2009, 119, 3171–3180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardi, L.; Sleight, P.; Bandinelli, G.; Cencetti, S.; Fattorini, L.; Wdowczyc-Szulc, J.; Lagi, A. Effect of Rosary Prayer and Yoga Mantras on Autonomic Cardiovascular Rhythms: Comparative Study. BMJ 2001, 323, 1446–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, K.; Haga, M.; Endo, Y.; Fujiwara, J.; Maruyama, R. Left Recumbent Position Decreases Heart Rate without Altera-tions in Cardiac Autonomic Nervous System Activity in Healthy Young Adults. Tohoku J. Exp. Med. 2017, 241, 309–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, R.F.; Jiang, X.Y.; Hegadoren, K.M.; Zhang, Y.H. Effects of Earplugs and Eye Masks Combined with Relaxing Music on Sleep, Melatonin and Cortisol Levels in ICU Patients: A Randomized Controlled Trial. Crit. Care 2015, 19, 115. [Google Scholar] [CrossRef] [Green Version]
- Hasanah, I.; Mulatsih, S.; Haryanti, F.; Haikal, Z. Effect of Music Therapy on Cortisol as a Stress Biomarker in Children Undergoing IV-Line Insertion. J. Taibah Univ. Med. Sci. 2020, 15, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.M.; Knapp, C.F.; Goswami, N. Artificial Gravity as a Countermeasure to the Cardiovascular Deconditioning of Spaceflight: Gender Perspectives. Front. Physiol. 2018, 9, 716. [Google Scholar] [CrossRef] [PubMed]
- Goswami, N. Falls and Fall-Prevention in Older Persons: Geriatrics Meets Spaceflight! Front. Physiol. 2017, 8, 603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goswami, N.; Blaber, A.P.; Hinghofer-Szalkay, H.; Convertino, V.A. Lower Body Negative Pressure: Physiological Ef-fects, Applications, and Implementation. Physiol. Rev. 2019, 99, 807–851. [Google Scholar] [CrossRef] [PubMed]
μRR [ms] | Mean of the RR intervals [21] |
σ2RR [ms2] | Variance of the RR intervals [21] |
LFa,RR [ms2] | Absolute power of RR series in the low frequency band (LF, 0.04–0.15 Hz), index of cardiac sympathetic modulation [17,22] |
LFnu,RR [nu] | Normalized power of RR series in the LF band, index of cardiac sympathetic modulation [17,22] |
HFa,RR [ms2] | Absolute power of RR in the high frequency band (HF, 0.15–0.4 Hz), index of cardiac vagal modulation [14,21] |
HFnu,RR [nu] | Absolute power of RR in the high frequency band, index of cardiac vagal modulation [14,21] |
LF/HF | Index of cardiac sympathovagal balance [21] |
μSAP [mmHg] | Mean of the SAP values [21,22] |
μDAP [mmHg] | Mean of the DAP values [21,22] |
σ2SAP [mmHg2] | Variance of the SAP [21,22] |
LFSAP [mmHg2] | Absolute power of SAP series in the low frequency band (LF, 0.04–0.15 Hz), index of vascular sympathetic modulation [21,22] |
cBRS [ms/mmHg] | Cardiac baroreflex sensitivity [23,24] |
Age, years | 39.2 ± 6.4 |
Gender, males/females | 5/5 |
BMI, kg/m2 | 22.6 ± 1.4 |
BMI males, kg/m2 | 23.4 ± 1.3 |
BMI females, kg/m2 | 21.8 ± 1.1 |
Sleep per night, hours | 6.1 ± 1.0 |
Occasional smoking, n (%) | 2 (20) |
Regular physical exercise, n (%) | 8 (80) |
Physical exercise, hours/week | 4.4 ± 2.4 |
Regular social activities, n (%) | 8 (80) |
Social activities, hours/week | 7.1 ± 4.4 |
B | Track1 | Track2 | ||||
---|---|---|---|---|---|---|
REST | TILT | REST | TILT | REST | TILT | |
μSAP, mmHg | 119 ± 8 | 116 ± 10 | 112 ± 16 | 115 ± 9 | 113 ± 8 | 110 ± 15 |
μDAP, mmHg | 76 ± 11 | 77 ± 12 | 72 ± 14 | 77 ± 12 | 74 ± 8 | 76 ± 7 |
σ2SAP, mmHg2 | 23.7 ± 15.9 | 38.6 ± 26.7 | 36.9 ± 33.6 | 31.1 ± 18.9 | 22.9 ± 13.5 | 32.1 ± 20.3 |
LFSAP, mmHg2 | 0.91 ± 1.05 | 2.88 ± 3.09 § | 0.66 ± 0.33 | 3.42 ± 4.19 § | 0.75 ± 0.52 | 2.82 ± 2.75 § |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raglio, A.; De Maria, B.; Perego, F.; Galizia, G.; Gallotta, M.; Imbriani, C.; Porta, A.; Dalla Vecchia, L.A. Effects of Algorithmic Music on the Cardiovascular Neural Control. J. Pers. Med. 2021, 11, 1084. https://doi.org/10.3390/jpm11111084
Raglio A, De Maria B, Perego F, Galizia G, Gallotta M, Imbriani C, Porta A, Dalla Vecchia LA. Effects of Algorithmic Music on the Cardiovascular Neural Control. Journal of Personalized Medicine. 2021; 11(11):1084. https://doi.org/10.3390/jpm11111084
Chicago/Turabian StyleRaglio, Alfredo, Beatrice De Maria, Francesca Perego, Gianluigi Galizia, Matteo Gallotta, Chiara Imbriani, Alberto Porta, and Laura Adelaide Dalla Vecchia. 2021. "Effects of Algorithmic Music on the Cardiovascular Neural Control" Journal of Personalized Medicine 11, no. 11: 1084. https://doi.org/10.3390/jpm11111084
APA StyleRaglio, A., De Maria, B., Perego, F., Galizia, G., Gallotta, M., Imbriani, C., Porta, A., & Dalla Vecchia, L. A. (2021). Effects of Algorithmic Music on the Cardiovascular Neural Control. Journal of Personalized Medicine, 11(11), 1084. https://doi.org/10.3390/jpm11111084