The Effect of Zoledronic Acid on Serum Biomarkers among Patients with Chronic Low Back Pain and Modic Changes in Lumbar Magnetic Resonance Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Selection of Patients
2.2. Treatment Intervention
2.3. Magnetic Resonance Imaging
2.4. Image Analysis
2.5. Analysis of Serum Biomarkers
2.6. Statistical Analyses
3. Results
3.1. Study Population
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AFOS | alkaline phosphatase |
bFGF | fibroblast growth factor beta |
COMP | cartilage oligomeric matrix protein |
CTX1 | C telopeptide of type I collagen |
Flt | fms related tyrosine kinase (=VEGFR1) |
hs-CRP | high-sensitive C-reactive protein |
HGF | hepatocyte growth factor |
ICAM | intercellular adhesion molecule |
IL | interleukin |
IFN | interferon |
IP | interferon-γ-inducible protein |
iPINP | intact procollagen I N-terminal propeptide |
LBP | low back pain |
MC | Modic change |
M1 | type 1 Modic change |
M2 | type 2 Modic change |
MCP | monocyte chemotactic protein |
MDC, | macrophage derived chemokine |
MIG | monokine induced by gamma-interferon |
MIP | macrophage inflammatory protein |
MRI | magnetic resonance imaging |
ODI | Oswestry Disability Index |
RANKL | receptor activator of NF-κB ligand |
RANTES | regulated upon activation, normally T-expressed, and presumably secreted |
SAA | serum amyloid A |
SD | standard deviation |
TARC | thymus and activation-regulated chemokine |
Tie | TEK receptor tyrosine kinase |
TNF | tumor necrosis factor |
VAS | Visual Analog Scale |
VCAM | vascular cell adhesion molecule |
VEGF | vascular endothelial growth factor |
ZA | zoledronic acid |
References
- De Roos, A.; Kressel, H.; Spritzer, C.; Dalinka, M. MR imaging of marrow changes adjacent to end plates in degenerative lumbar disk disease. Am. J. Roentgenol. 1987, 149, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Modic, M.T.; Steinberg, P.M.; Ross, J.S.; Masaryk, T.J.; Carter, J.R. Degenerative disk disease: Assessment of changes in vertebral body marrow with MR imaging. Radiology 1988, 166, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Modic, M.T.; Masaryk, T.J.; Ross, J.S.; Carter, J.R. Imaging of degenerative disk disease. Radiology 1988, 168, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Perilli, E.; Parkinson, I.H.; Truong, L.H.; Chong, K.C.; Fazzalari, N.L.; Osti, O.L. Modic (endplate) changes in the lumbar spine: Bone micro-architecture and remodelling. Eur. Spine J. 2015, 24, 1926–1934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kjaer, P.; Korsholm, L.; Bendix, T.; Sorensen, J.S.; Leboeuf-Yde, C. Modic changes and their associations with clinical findings. Eur. Spine J. 2006, 15, 1312–1319. [Google Scholar] [CrossRef] [Green Version]
- Jensen, T.S.; Karppinen, J.; Sorensen, J.S.; Niinimaki, J.; Leboeuf-Yde, C. Vertebral endplate signal changes (Modic change): A systematic literature review of prevalence and association with non-specific low back pain. Eur. Spine J. 2008, 17, 407–422. [Google Scholar] [CrossRef] [Green Version]
- Määttä, J.H.; Wadge, S.; MacGregor, A.; Karppinen, J.; Williams, F.M. ISSLS Prize Winner: Vertebral Endplate (Modic) Change is an Independent Risk Factor for Episodes of Severe and Disabling Low Back Pain. Spine (Phila Pa 1976) 2015, 40, 1187–1193. [Google Scholar] [CrossRef]
- Toyone, T.; Takahashi, K.; Kitahara, H.; Yamagata, M.; Murakami, M.; Moriya, H. Vertebral bone-marrow changes in degenerative lumbar disc disease. An MRI study of 74 patients with low back pain. J. Bone Jt. Surg. Br. 1994, 76, 757–764. [Google Scholar] [CrossRef]
- Kjaer, P.; Leboeuf-Yde, C.; Korsholm, L.; Sorensen, J.S.; Bendix, T. Magnetic resonance imaging and low back pain in adults: A diagnostic imaging study of 40-year-old men and women. Spine (Phila Pa 1976). 2005, 30, 1173–1180. [Google Scholar] [CrossRef]
- Kuisma, M.; Karppinen, J.; Niinimäki, J.; Ojala, R.; Haapea, M.; Heliövaara, M.; Korpelainen, R.; Taimela, S.; Natri, A.; Tervonen, O. Modic changes in endplates of lumbar vertebral bodies: Prevalence and association with low back and sciatic pain among middle-aged male workers. Spine (Phila Pa 1976) 2007, 32, 1116–1122. [Google Scholar] [CrossRef]
- Järvinen, J.; Karppinen, J.; Niinimäki, J.; Haapea, M.; Grönblad, M.; Luoma, K.; Rinne, E. Association between changes in lumbar Modic changes and low back symptoms over a two-year period. BMC Musculoskelet. Disord. 2015, 16, 98. [Google Scholar] [CrossRef] [PubMed]
- Jensen, R.K.; Leboeuf-Yde, C.; Wedderkopp, N.; Sorensen, J.S.; Jensen, T.S.; Manniche, C. Is the development of Modic changes associated with clinical symptoms? A 14-month cohort study with MRI. Eur. Spine J. 2012, 21, 2271–2279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudli, S.; Fields, A.J.; Samartzis, D.; Karppinen, J.; Lotz, J.C. Pathobiology of Modic changes. Eur. Spine J. 2016, 25, 3723–3734. [Google Scholar] [CrossRef] [PubMed]
- Dudli, S.; Miller, S.; Demir-Deviren, S.; Lotz, J.C. Inflammatory response of disc cells against Propionibacterium acnes depends on the presence of lumbar Modic changes. Eur. Spine J. 2018, 27, 1013–1020. [Google Scholar] [CrossRef]
- Dudli, S.; Liebenberg, E.; Magnitsky, S.; Lu, B.; Lauricella, M.; Lotz, J.C. Modic type 1 change is an autoimmune response that requires a proinflammatory milieu provided by the “Modic disc”. Spine J. 2018, 18, 831–844. [Google Scholar] [CrossRef]
- Magnitsky, S.; Dudli, S.; Tang, X.; Kaur, J.; Diaz, J.; Miller, S.; Lotz, J.C. Quantification of Propionic Acid in the Bovine Spinal Disk After Infection of the Tissue With Propionibacteria acnes Bacteria. Spine (Phila Pa 1976) 2018, 43, E634–E638. [Google Scholar] [CrossRef] [Green Version]
- Gornet, M.G.; Peacock, J.; Claude, J.; Schranck, F.W.; Copay, A.G.; Eastlack, R.K.; Benz, R.; Olshen, A.; Lotz, J.C. Magnetic resonance spectroscopy (MRS) can identify painful lumbar discs and may facilitate improved clinical outcomes of lumbar surgeries for discogenic pain. Eur. Spine J. 2019, 28, 674–687. [Google Scholar] [CrossRef] [Green Version]
- Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar] [CrossRef]
- Rannou, F.; Ouanes, W.; Boutron, I.; Lovisi, B.; Fayad, F.; Mace, Y.; Borderie, D.; Guerini, H.; Poiraudeau, S.; Revel, M. High-sensitivity C-reactive protein in chronic low back pain with vertebral end-plate Modic signal changes. Arthritis Rheum. 2007, 57, 1311–1315. [Google Scholar] [CrossRef] [Green Version]
- Teboul-Core, S.; Roux, C.; Borderie, D.; Kolta, S.; Lefevre-Colau, M.M.; Poiraudeau, S.; Rannou, F.; Nguyen, C. Bone mineral density and bone remodeling markers in chronic low back pain patients with active discopathy: A case-control exploratory study. PLoS ONE 2018, 13, e0196536. [Google Scholar] [CrossRef] [Green Version]
- Koivisto, K.; Kyllönen, E.; Haapea, M.; Niinimäki, J.; Sundqvist, K.; Pehkonen, T.; Seitsalo, S.; Tervonen, O.; Karppinen, J. Efficacy of zoledronic acid for chronic low back pain associated with Modic changes in magnetic resonance imaging. BMC Musculoskelet. Disord. 2014, 15, 64. [Google Scholar] [CrossRef] [Green Version]
- Fairbank, J.C.; Pynsent, P.B. The Oswestry Disability Index. Spine (Phila Pa 1976) 2000, 25, 2940–2952. [Google Scholar] [CrossRef]
- Koivisto, K.; Järvinen, J.; Karppinen, J.; Haapea, M.; Paananen, M.; Kyllönen, E.; Tervonen, O.; Niinimäki, J. The effect of zoledronic acid on type and volume of Modic changes among patients with low back pain. BMC Musculoskelet. Disord. 2017, 18, 274. [Google Scholar] [CrossRef] [Green Version]
- Black, D.M.; Reid, I.R.; Boonen, S.; Bucci-Rechtweg, C.; Cauley, J.A.; Cosman, F.; Cummings, S.R.; Hue, T.F.; Lippuner, K.; Lakatos, P.; et al. The effect of 3 versus 6 years of zoledronic acid treatment of osteoporosis: A randomized extension to the HORIZON-Pivotal Fracture Trial (PFT). J. Bone Miner. Res. 2012, 27, 243–254. [Google Scholar] [CrossRef]
- Tan, W.; Sun, J.; Zhou, L.; Li, Y.; Wu, X. Randomized trial comparing efficacies of zoledronate and alendronate for improving bone mineral density and inhibiting bone remodelling in women with post-menopausal osteoporosis. J. Clin. Pharm. Ther. 2016, 41, 519–523. [Google Scholar] [CrossRef]
- Al-Mazidi, S.; Farhat, K.; Nedjadi, T.; Chaudhary, A.; Zin Al-Abdin, O.; Rabah, D.; Al-Zoghaibi, M.; Djouhri, L. Association of Interleukin-6 and Other Cytokines with Self-Reported Pain in Prostate Cancer Patients Receiving Chemotherapy. Pain Med. 2017, 19, 1058–1066. [Google Scholar] [CrossRef] [Green Version]
- Parkitny, L.; McAuley, J.H.; Di Pietro, F.; Stanton, T.R.; O’Connell, N.E.; Marinus van Hilten, J.J.; Moseley, GL. Inflammation in complex regional pain syndrome: A systematic review and meta-analysis. Neurology 2013, 80, 106–117. [Google Scholar] [CrossRef] [Green Version]
- Romero-Sanchez, C.; Tsou, H.K.; Jan, M.S.; Wong, R.H.; Chang, I.C.; Londono, J.; Valle-Onate, R.; Howe, H.S.; Yu, D.; Leung, B.P.; et al. Serum monocyte chemotactic protein-1 concentrations distinguish patients with ankylosing spondylitis from patients with mechanical low back pain. J. Spinal Disord. Tech. 2011, 24, 202–207. [Google Scholar] [CrossRef] [Green Version]
- Weber, K.T.; Satoh, S.; Alipui, D.O.; Virojanapa, J.; Levine, M.; Sison, C.; Quraishi, S.; Bloom, O.; Chahine, N.O. Exploratory study for identifying systemic biomarkers that correlate with pain response in patients with intervertebral disc disorders. Immunol. Res. 2015, 63, 170–180. [Google Scholar] [CrossRef] [Green Version]
- Stathopoulos, G.T.; Moschos, C.; Loutrari, H.; Kollintza, A.; Psallidas, I.; Karabela, S.; Magkouta, S.; Zhou, Z.; Papiris, S.A.; Roussos, C.; et al. Zoledronic acid is effective against experimental malignant pleural effusion. Am. J. Respir. Crit. Care Med. 2008, 178, 50–59. [Google Scholar] [CrossRef]
- Pennanen, N.; Lapinjoki, S.; Urtti. A.; Monkkonen, J. Effect of liposomal and free bisphosphonates on the IL-1 beta, IL-6 and TNF alpha secretion from RAW 264 cells in vitro. Pharm. Res. 1995, 12, 916–922. [Google Scholar] [CrossRef]
- Ohtori, S.; Inoue, G.; Ito, T.; Koshi, T.; Ozawa, T.; Doya, H.; Saito, T.; Moriya, H.; Takahashi, K. Tumor necrosis factor-immunoreactive cells and PGP 9.5-immunoreactive nerve fibers in vertebral endplates of patients with discogenic low back Pain and Modic Type 1 or Type 2 changes on MRI. Spine (Phila Pa 1976) 2006, 31, 1026–1031. [Google Scholar] [CrossRef]
- Fields, A.J.; Liebenberg, E.C.; Lotz, J.C. Innervation of pathologies in the lumbar vertebral end plate and intervertebral disc. Spine J. 2014, 14, 513–521. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Huang, Y.; Zhou, Z.J.; Hu, Z.J.; Wang, J.Y.; Xu, W.B.; Fang, X.Q.; Fan, S.W. Upregulation of tumor necrosis factor alpha and ADAMTS-5, but not ADAMTS-4, in human intervertebral cartilage endplate with modic changes. Spine (Phila Pa 1976) 2014, 39, E817–E825. [Google Scholar] [CrossRef]
- Nguyen, C.; Boutron, I.; Baron, G.; Sanchez, K.; Palazzo, C.; Benchimol, R.; Paris, G.; James-Belin, E.; Lefevre-Colau, M.M.; Beaudreuil, J.; et al. Intradiscal Glucocorticoid Injection for Patients With Chronic Low Back Pain Associated With Active Discopathy: A Randomized Trial. Ann. Intern. Med. 2017, 166, 547–556. [Google Scholar] [CrossRef]
- Brown, J.P.; Kendler, D.L.; McClung, M.R.; Emkey, R.D.; Adachi, J.D.; Bolognese, M.A.; Li, Z.; Balske, A.; Lindsay, R. The efficacy and tolerability of risedronate once a week for the treatment of postmenopausal osteoporosis. Calcif. Tissue Int. 2002, 71, 103–111. [Google Scholar] [CrossRef]
- Sauty, A.; Pecherstorfer, M.; Zimmer-Roth, I.; Fioroni, P.; Juillerat, L.; Markert, M.; Ludwig, H.; Leuenberger, P.; Burckhardt, P.; Thiebaud, D. Interleukin-6 and tumor necrosis factor alpha levels after bisphosphonates treatment in vitro and in patients with malignancy. Bone 1996, 18, 133–139. [Google Scholar] [CrossRef]
- Thiebaud, D.; Sauty, A.; Burckhardt, P.; Leuenberger, P.; Sitzler. L.; Green, J.R.; Kandra, A.; Zieschang, J.; Ibarra de Palacios, P. An in vitro and in vivo study of cytokines in the acute-phase response associated with bisphosphonates. Calcif. Tissue Int. 1997, 61, 382–392. [Google Scholar]
- Al-Bogami, M.M.; Alkhorayef, M.A.; Bystrom, J.; Akanle, O.A.; Al-Adhoubi, N.K.; Jawad, A.S.; Mageed, R.A. Favorable therapeutic response of osteoporosis patients to treatment with intravenous zoledronate compared with oral alendronate. Saudi Med. J. 2015, 36, 1305–1311. [Google Scholar] [CrossRef]
- Torkki, M.; Majuri, M.L.; Wolff, H.; Koskelainen, T.; Haapea, M.; Niinimäki, J.; Alenius, H.; Lotz, J.; Karppinen, J. Osteoclast activators are elevated in intervertebral disks with Modic changes among patients operated for herniated nucleus pulposus. Eur. Spine J. 2016, 25, 207–216. [Google Scholar] [CrossRef]
- Schroeder, G.D.; Markova, D.Z.; Koerner, J.D.; Rihn, J.A.; Hilibrand, A.S.; Vaccaro, A.R.; Anderson, D.G.; Kepler, C.K. Are Modic changes associated with intervertebral disc cytokine profiles? Spine J. 2017, 17, 129–134. [Google Scholar] [CrossRef]
- Klyne, D.M.; Barbe, M.F.; van den Hoorn, W.; Hodges, P.W. ISSLS PRIZE IN CLINICAL SCIENCE 2018: Longitudinal analysis of inflammatory, psychological, and sleep-related factors following an acute low back pain episode-the good, the bad, and the ugly. Eur. Spine J. 2018, 27, 763–777. [Google Scholar] [CrossRef] [Green Version]
- Van den Berg, R.; Jongbloed, E.M.; de Schepper, E.I.T.; Bierma-Zeinstra, S.M.A.; Koes, B.W.; Luijsterburg, P.A.J. The association between pro-inflammatory biomarkers and nonspecific low back pain: A systematic review. Spine J. 2018, 18, 2140–2151. [Google Scholar] [CrossRef]
- Khan, A.N.; Jacobsen, H.E.; Khan, J.; Filippi, C.G.; Levine, M.; Lehman, R.A.; Riew, K.D.; Lenke, L.G.; Chahine, N.O. Inflammatory biomarkers of low back pain and disc degeneration: A review. Ann. N. Y. Acad. Sci. 2017, 1410, 68–84. [Google Scholar] [CrossRef]
- Van Offel, J.F.; Schuerwegh, A.J.; Bridts, C.H.; Bracke, P.G.; Stevens, W.J.; De Clerck, L.S. Influence of cyclic intravenous pamidronate on proinflammatory monocytic cytokine profiles and bone density in rheumatoid arthritis treated with low dose prednisolone and methotrexate. Clin. Exp. Rheumatol. 2001, 19, 13–20. [Google Scholar]
- Varenna, M.; Zucchi, F.; Ghiringhelli, D.; Binelli, L.; Bevilacqua, M.; Bettica, P.; Sinigaglia, L. Intravenous clodronate in the treatment of reflex sympathetic dystrophy syndrome. A randomized, double blind, placebo controlled study. J. Rheumatol. 2000, 27, 1477–1483. [Google Scholar]
- Albert, H.B.; Lambert, P.; Rollason, J.; Sorensen, J.S.; Worthington, T.; Pedersen, M.B.; Norgaard, H.S.; Vernallis, A.; Busch, F.; Manniche, C.; et al. Does nuclear tissue infected with bacteria following disc herniations lead to Modic changes in the adjacent vertebrae? Eur. Spine J. 2013, 22, 690–696. [Google Scholar] [CrossRef] [Green Version]
- Fantuzzi, G. Adipose tissue, adipokines, and inflammation. J. Allergy Clin. Immunol. 2005, 115, 911–920. [Google Scholar] [CrossRef]
- Petrescu, F.; Voican, S.C.; Silosi, I. Tumor necrosis factor-alpha serum levels in healthy smokers and nonsmokers. Int. J. Chronic Obstruct. Pulm. Dis. 2010, 5, 217–222. [Google Scholar]
Variable | ZA | Placebo | p-Value |
---|---|---|---|
Age (years), mean (SD) | 49.2 (9.3) | 51.5 (7.3) | 0.400 |
BMI (kg/m2), mean (SD) | 26.1 (3.3) | 27.4 (3.2) | 0.203 |
Males, n (%) | 15 (75.0%) | 11 (55.0%) | 0.320 |
Regular smoker, n (%) | 5 (25.0%) | 6 (30.0%) | >0.999 |
Primary MC type,n(%) | 0.103 | ||
MI | 3 (15.0%) | 3 (15.0%) | |
MI/II-1 | 14 (70.0%) | 7 (35.0%) | |
MI/II-2 | 2 (10.0%) | 8 (40.0%) | |
MII | 1 (5.0%) | 2 (10.0%) | |
Number of MCs, n (%) | 0.333 | ||
1 | 10 (50.0%) | 14 (70.0%) | |
2 or more | 10 (50%) | 6 (30.0%) | |
Volume of primary MC, mean (SD) | |||
Type 1 | 7443 (4474) | 5044 (3551) | 0.068 |
Type 2 | 4542 (3897) | 5868 (4840) | 0.346 |
Total | 11,985 (5140) | 10,911 (5963) | 0.546 |
Osteoarthritis, n (%) | 1 (5.0%) | 6 (30.0%) | 0.091 |
Back pain (VAS), mean (SD) | 6.6 (1.4) | 6.8 (1.6) | 0.646 |
Leg pain (VAS), mean (SD) | 3.0 (3.1) | 2.9 (2.3) | 0.864 |
Oswestry disability index, mean (SD) | 30.1 (11.0) | 34.9 (9.8) | 0.157 |
Serum Biomarkers | Baseline Median (IQR) | 1-Month Median (IQR) | P1 | P2 | 1-Year Median (IQR) | P1 | P2 |
---|---|---|---|---|---|---|---|
Bone panel | |||||||
AFOS (U/L) | 0.554 | <0.001 * | |||||
Placebo | 64 (53, 76) | 63 (58, 77) | 0.480 | 61 (55, 82) | 0.528 | ||
ZA | 71 (58, 80) | 67 (62, 78) | 0.826 | 57 (49, 68) | <0.001 | ||
RANKL (pg/mL) | 0.369 | 0.724 | |||||
Placebo | 11.3 (0.0, 49.2) | 14.6 (0.0, 67.2) | 0.470 | 11.3 (0.0, 59.6) | 0.520 | ||
ZA | 13.0 (0.0, 37.0) | 0.0 (0.0, 41.3) | 0.891 | 14.4 (0.0, 48.5) | 0.853 | ||
iPINP (ng/mL) | 0.018 | <0.001 * | |||||
Placebo | 35 (27, 40) | 36 (23, 42) | 0.729 | 38 (26, 45) | 0.123 | ||
ZA | 36 (27, 49) | 29 (20, 33) | 0.004 | 15 (13, 18) | <0.001 | ||
CTX-1 (pg/mL) | 0.009 | 0.211 | |||||
Placebo | 0.2 (0.1, 0.4) | 0.2 (0.1, 0.6) | 0.546 | 0.3 (0.2, 0.4) | 0.189 | ||
ZA | 0.3 (0.2, 0.5) | 0.0 (0.0, 0.0) | 0.154 | 0.2 (0.1, 5.4) | 0.927 | ||
Chemokine panel | |||||||
Eotaxin-1 (pg/mL) | 0.841 | 0.398 | |||||
Placebo | 214 (136, 263) | 202 (151, 258) | 0.956 | 193 (149, 239) | 0.622 | ||
ZA | 163 (146, 201) | 167 (140, 224) | 0.841 | 180 (144, 232) | 0.546 | ||
Eotaxin-3 (pg/mL) | 0.565 | 0.862 | |||||
Placebo | 17.9 (10.5, 22.7) | 16.0 (10.4, 19.6) | 0.245 | 13.9 (11.9, 19.9) | 0.261 | ||
ZA | 20.2 (12.2, 31.6) | 18.3 (11.5, 27.6) | 0.076 | 22.3 (12.9, 31.7) | 0.388 | ||
IP-10 (pg/mL) | 0.056 | 0.005 * | |||||
Placebo | 265 (199, 349) | 240 (204, 351) | 0.756 | 248 (171, 305) | 0.177 | ||
ZA | 253 (187, 305) | 282 (231, 423) | 0.036 | 316 (240, 420) | 0.015 | ||
MIP-1A (pg/mL) | 0.518 | 0.817 | |||||
Placebo | 13.5 (5.3, 21.7) | 16.7 (5.3, 21.5) | 0.818 | 16.7 (5.3, 19.1) | 0.804 | ||
ZA | 5.3 (5.3, 16.3) | 5.3 (5.3, 15.7) | 0.945 | 5.3 (5.3, 17.5) | 0.719 | ||
MIP-1B (pg/mL) | 0.883 | 0.091 | |||||
Placebo | 126 (79, 156) | 102 (91, 161) | 0.729 | 106 (83, 158) | 0.177 | ||
ZA | 85 (58, 144) | 87 (63, 136) | 0.330 | 85 (66, 156) | 0.277 | ||
MCP-1 (pg/mL) | 0.327 | 0.174 | |||||
Placebo | 276 (226, 337) | 286 (249, 332) | 0.812 | 267 (222, 346) | 0.756 | ||
ZA | 237 (207, 281) | 265 (207, 313) | 0.040 | 279 (206, 326) | 0.133 | ||
MCP-4 (pg/mL) | 0.925 | 0.429 | |||||
Placebo | 158 (108, 189) | 140 (111, 190) | 0.674 | 135 (109, 164) | 0.701 | ||
ZA | 136 (105, 172) | 133 (115, 180) | 0.571 | 136 (108, 193) | 0.330 | ||
MDC-1 (ng/mL) | 0.445 | 0.925 | |||||
Placebo | 1.1 (0.8, 1.4) | 1.1 (0.8, 1.4) | 0.498 | 1.1 (0.7, 1.4) | 0.546 | ||
ZA | 1.1 (0.9, 1.3) | 1.0 (0.9, 1.2) | 0.571 | 1.0 (0.9, 1.2) | 0.701 | ||
RANTES (ng/mL) | 0.529 | 0.968 | |||||
Placebo | 78 (48, 168) | 85 (52, 116) | 0.245 | 81 (62, 126) | 0.261 | ||
ZA | 72 (50, 163) | 80 (41, 126) | 0.097 | 81 (54, 113) | 0.648 | ||
TARC (pg/mL) | 0.157 | 0.512 | |||||
Placebo | 295 (197, 391) | 326 (229, 438) | 0.216 | 329 (198, 411) | 0.231 | ||
ZA | 202 (179, 391) | 241 (169, 344) | 0.409 | 269 (161, 383) | 0.812 | ||
MIG-1 (pg/mL) | 0.908 | 0.122 | |||||
Placebo | 72 (65, 118) | 72 (37, 154) | 0.880 | 72 (33, 118) | 0.446 | ||
ZA | 69 (28, 132) | 78 (33, 118) | 0.939 | 69 (47, 134) | 0.262 | ||
Cytokine panel | |||||||
IL-7 (pg/mL) | 0.738 | 0.445 | |||||
Placebo | 18.0 (14.0, 22.8) | 15.8 (11.1, 20.9) | 0.452 | 14.4 (11.4, 17.7) | 0.133 | ||
ZA | 19.3 (15.2, 23.7) | 16.2 (13.9, 20.1) | 0.154 | 18.7 (13.9, 21.0) | 0.064 | ||
IL-12/23p40 (pg/mL) | 0.341 | 0.758 | |||||
Placebo | 122 (92, 157) | 113 (87, 185) | 0.571 | 116 (94, 154) | 0.898 | ||
ZA | 102 (77, 145) | 97 (84, 134) | 0.546 | 100 (84, 135) | >0.999 | ||
IL-15 (pg/mL) | 0.134 | 0.678 | |||||
Placebo | 2.8 (2.3, 3.4) | 2.6 (2.4, 3.3) | 0.985 | 2.8 (2.5, 3.2) | 0.869 | ||
ZA | 3.0 (2.5, 3.2) | 3.1 (2.6, 3.4) | 0.123 | 3.0 (2.7, 3.3) | 0.312 | ||
IL-16 (pg/mL) | 0.301 | 0.035 | |||||
Placebo | 191 (151, 246) | 194 (167, 213) | 0.515 | 172 (156, 200) | 0.027 | ||
ZA | 173 (151, 223) | 205 (174, 220) | 0.349 | 207 (167, 248) | 0.245 | ||
IL-17A (pg/mL) | 0.201 | 0.841 | |||||
Placebo | 2.3 (1.7, 3.3) | 2.6 (1.5, 3.3) | 0.177 | 2.6 (1.5, 3.5) | 0.869 | ||
ZA | 2.2 (1.5, 3.3) | 2.3 (1.6, 2.9) | 0.622 | 2.2 (1.4, 3.4) | 0.829 | ||
TNF-B (pg/mL) | 0.175 | 0.636 | |||||
Placebo | 0.4 (0.1, 0.5) | 0.4 (0.1, 0.5) | 0.761 | 0.3 (0.1, 0.5) | 0.940 | ||
ZA | 0.1 (0.1, 0.4) | 0.1 (0.1, 0.4) | 0.240 | 0.3 (0.1, 0.4) | 0.588 | ||
Anti-inflammatory panel | |||||||
IL-1sRII (ng/mL) | 0.989 | 0.391 | |||||
Placebo | 22.1 (18.8, 28.1) | 23 (15, 26) | 0.515 | 23 (16, 27) | 0.651 | ||
ZA | 24.7 (20.5, 28.0) | 22 (19, 28) | 0.522 | 25 (21, 27) | 0.181 | ||
Pro-inflammatory panel | |||||||
IFN-A (pg/mL) | 0.329 | 0.267 | |||||
Placebo | 71 (55, 91) | 66 (47, 87) | 0.806 | 66 (55, 95) | 0.924 | ||
ZA | 61 (55, 78) | 66 (55, 78) | 0.070 | 71 (58, 79) | 0.032 | ||
IFN-G (pg/mL) | 0.820 | 0.445 | |||||
Placebo | 5.6 (4.3, 9.3) | 4.7 (3.2, 9.6) | 0.498 | 4.6 (3.7, 8.0) | 0.245 | ||
ZA | 4.5 (3.3, 7.1) | 5.5 (3.2, 8.8) | 0.898 | 5.3 (3.1, 8.3) | 0.756 | ||
IL-2R (pg/mL) | 0.425 | 0.625 | |||||
Placebo | 144 (95, 229) | 164 (109, 214) | 0.225 | 123 (89, 193) | 0.671 | ||
ZA | 117 (97, 163) | 117 (90, 161) | 0.588 | 125 (97, 150) | 0.899 | ||
IL-6 (pg/mL) | 0.445 | 0.192 | |||||
Placebo | 0.8 (0.5, 1.1) | 0.6 (0.5, 1.1) | 0.648 | 0.7 (0.4, 0.8) | 0.105 | ||
ZA | 0.7 (0.4, 0.9) | 0.6 (0.5, 1.0) | 0.674 | 0.6 (0.5, 0.9) | 0.522 | ||
IL-8 (pg/mL) | 0.583 | 0.659 | |||||
Placebo | 11.1 (7.5, 14.9) | 10.2 (7.9, 11.6) | 0.040 | 9.2 (6.8, 12.2) | 0.165 | ||
ZA | 9.7 (7.5, 11.7) | 9.7 (7.4, 14.2) | 0.294 | 10.0 (7.6, 13.7) | 0.546 | ||
TNF-A (pg/mL) | 0.512 | 0.049 | |||||
Placebo | 2.0 (1.6, 2.3) | 2.0 (1.7, 2.2) | 0.231 | 1.8 (1.4, 2.2) | 0.294 | ||
ZA | 1.6 (1.2, 2.2) | 1.7 (1.3, 2.3) | 0.956 | 1.7 (1.2, 2.5) | 0.202 | ||
Angiogenesis panel | |||||||
VEGF-A (pg/mL) | 0.758 | 0.947 | |||||
Placebo | 249 (110, 388) | 198 (125, 320) | 0.596 | 182 (111, 406) | 0.729 | ||
ZA | 380 (167, 530) | 348 (178, 502) | 0.189 | 412 (170, 497) | 0.841 | ||
VEGF-C (pg/mL) | 0.947 | 0.369 | |||||
Placebo | 417 (342, 498) | 459 (288, 510) | 0.812 | 432 (330, 548) | 0.245 | ||
ZA | 392 (382, 506) | 399 (369, 501) | 0.596 | 403 (346, 514) | 0.869 | ||
VEGF-D (ng/mL) | 0.529 | 0.495 | |||||
Placebo | 0.7 (0.6, 1.0) | 0.8 (0.6, 1.0) | 0.349 | 0.8 (0.6, 0.9) | 0.105 | ||
ZA | 0.7 (0.6, 0.9) | 0.7 (0.6, 0.8) | 0.596 | 0.7 (0.6, 0.9) | 0.571 | ||
Tie-2 (ng/mL) | 0.529 | 0.314 | |||||
Placebo | 4.6 (4.0, 5.2) | 4.7 (3.7, 5.5) | 0.869 | 4.5 (3.9, 5.1) | 0.701 | ||
ZA | 4.4 (4.0, 5.3) | 4.4 (3.7, 5.1) | 0.245 | 4.3 (3.5, 4.9) | 0.019 | ||
Flt-1 (pg/mL) | 0.925 | 0.989 | |||||
Placebo | 88 (77, 97) | 91 (63, 126) | 0.812 | 90 (80, 99) | 0.756 | ||
ZA | 91 (75, 98) | 83 (76, 93) | 0.349 | 82 (78, 99) | 0.756 | ||
bFGF (pg/mL) | 0.659 | 0.659 | |||||
Placebo | 3.4 (1.9, 5.1) | 3.2 (2.3, 5.3) | 0.869 | 3.5 (1.9, 8.0) | 0.123 | ||
ZA | 5.2 (2.7, 7.3) | 3.7 (2.9, 7.1) | 0.522 | 4.5 (3.8, 8.3) | 0.522 | ||
HGF-1 (pg/mL) | 0.974 | 0.201 | |||||
Placebo | 205 (110, 263) | 184 (115, 248) | 0.874 | 157 (84, 248) | 0.245 | ||
ZA | 146 (89, 219) | 143 (67, 193) | 0.374 | 171 (89, 248) | 0.430 | ||
Vascular injury panel | |||||||
hs-CRP (mg/L) | 0.176 | 0.551 | |||||
Placebo | 1.2 (0.4, 2.6) | 0.9 (0.6, 1.9) | 0.936 | 0.9 (0.6, 2.0) | 0.157 | ||
ZA | 0.9 (0.5, 1.2) | 1.3 (0.4, 2.2) | 0.042 | 0.8 (0.4, 1.3) | 0.652 | ||
ICAM-1 (µg/mL) | 0.341 | 0.773 | |||||
Placebo | 0.4 (0.4, 0.5) | 0.4 (0.3, 0.5) | 0.368 | 0.4 (0.3, 0.5) | 0.196 | ||
ZA | 0.4 (0.3, 0.5) | 0.4 (0.3, 0.5) | 0.622 | 0.3 (0.3, 0.4) | 0.073 | ||
VCAM-1 (µg/mL) | 0.547 | 0.603 | |||||
Placebo | 0.6 (0.6, 0.8) | 0.6 (0.5, 0.7) | 0.409 | 0.6 (0.5, 0.7) | 0.096 | ||
ZA | 0.6 (0.5, 0.7) | 0.5 (0.5, 0.7) | 0.841 | 0.5 (0.5, 0.7) | 0.369 | ||
SAA (µg/mL) | 0.512 | 0.954 | |||||
Placebo | 1.8 (1.1, 4.1) | 1.9 (1.2, 4.2) | 0.452 | 1.7 (1.3, 2.5) | 0.595 | ||
ZA | 1.7 (0.8, 2.2) | 1.9 (1.0, 4.3) | 0.048 | 1.5 (0.6, 2.8) | 0.922 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koivisto, K.; Karppinen, J.; Haapea, M.; Järvinen, J.; Kyllönen, E.; Tervonen, O.; Niinimäki, J.; Alini, M.; Lotz, J.; Dudli, S.; et al. The Effect of Zoledronic Acid on Serum Biomarkers among Patients with Chronic Low Back Pain and Modic Changes in Lumbar Magnetic Resonance Imaging. Diagnostics 2019, 9, 212. https://doi.org/10.3390/diagnostics9040212
Koivisto K, Karppinen J, Haapea M, Järvinen J, Kyllönen E, Tervonen O, Niinimäki J, Alini M, Lotz J, Dudli S, et al. The Effect of Zoledronic Acid on Serum Biomarkers among Patients with Chronic Low Back Pain and Modic Changes in Lumbar Magnetic Resonance Imaging. Diagnostics. 2019; 9(4):212. https://doi.org/10.3390/diagnostics9040212
Chicago/Turabian StyleKoivisto, Katri, Jaro Karppinen, Marianne Haapea, Jyri Järvinen, Eero Kyllönen, Osmo Tervonen, Jaakko Niinimäki, Mauro Alini, Jeffrey Lotz, Stefan Dudli, and et al. 2019. "The Effect of Zoledronic Acid on Serum Biomarkers among Patients with Chronic Low Back Pain and Modic Changes in Lumbar Magnetic Resonance Imaging" Diagnostics 9, no. 4: 212. https://doi.org/10.3390/diagnostics9040212
APA StyleKoivisto, K., Karppinen, J., Haapea, M., Järvinen, J., Kyllönen, E., Tervonen, O., Niinimäki, J., Alini, M., Lotz, J., Dudli, S., Samartzis, D., Risteli, J., Majuri, M.-L., Alenius, H., & Grad, S. (2019). The Effect of Zoledronic Acid on Serum Biomarkers among Patients with Chronic Low Back Pain and Modic Changes in Lumbar Magnetic Resonance Imaging. Diagnostics, 9(4), 212. https://doi.org/10.3390/diagnostics9040212