Recent Progress in the Development of Diagnostic Tests for Malaria
Abstract
1. Introduction
2. Current Clinical Diagnostic Methods
3. Advances in the Identification of Diagnostic Biomarkers for Malaria
4. Advances in the Detection of Malaria Biomarkers in Clinical Samples
4.1. Non-blood Based Assays
4.2. Blood-Based Assays
Nucleic Acid Detection Techniques
5. Application of Bio-Sensing Technology in Malaria Diagnosis
6. Multiplex Biomarker Detection
7. Conclusions
Acknowledgements
Conflicts of Interest
References
- Newby, G.; Bennett, A.; Larson, E.; Cotter, C.; Shretta, R.; Phillips, A.A.; Feachem, R.G.A. The path to eradication: A progress report on the malaria-eliminating countries. Lancet 2016, 387, 1775–1784. [Google Scholar] [CrossRef]
- O’Meara, W.P.; Mangeni, J.N.; Steketee, R.; Greenwood, B. Changes in the burden of malaria in sub-Saharan Africa. Lancet Infect. Dis. 2010, 10, 545–555. [Google Scholar] [CrossRef]
- World Health Organization (WHO). World Malaria Report 2016; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Whitty, C.J.M.; Lalloo, D.; Ustianowski, A. Malaria: An update on treatment of adults in non-endemic countries. BMJ 2006, 333, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Schellenberg, J.R.M.A.; Smith, T.; Alonso, P.L.; Hayes, R.J. What is clinical malaria? Finding case definitions for field research in highly endemic areas. Parasitol. Today 1994, 10, 439–442. [Google Scholar] [CrossRef]
- Reyburn, H.; Mbakilwa, H.; Mwangi, R.; Mwerinde, O.; Olomi, R.; Drakeley, C.; Whitty, C.J. Rapid diagnostic tests compared with malaria microscopy for guiding outpatient treatment of febrile illness in Tanzania: Randomised trial. BMJ 2007, 334, 403. [Google Scholar] [CrossRef] [PubMed]
- Bell, D.R.; Jorgensen, P.; Christophel, E.M.; Palmer, K.L. Malaria risk: Estimation of the malaria burden. Nature 2005, 437, E3–E4. [Google Scholar] [CrossRef] [PubMed]
- Wongsrichanalai, C.; Barcus, M.J.; Muth, S.; Sutamihardja, A.; Wernsdorfer, W.H. A review of malaria diagnostic tools: Microscopy and rapid diagnostic test (RDT). Am. J. Trop. Med. Hyg. 2007, 77, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.W.; Williams, J.; Bain, B.J.; Parker-Williams, J.; Chiodini, P.L. Guideline: The laboratory diagnosis of malaria. Br. J. Haematol. 2013, 163, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Foxman, B.; Foxman, B. Chapter 6—Molecular Tools. In Molecular Tools and Infectious Disease Epidemiology; Academic Press: Cambridge, MA, USA, 2012; pp. 79–97. [Google Scholar] [CrossRef]
- Ray, S.; Reddy, P.J.; Jain, R.; Gollapalli, K.; Moiyadi, A.; Srivastava, S. Proteomic technologies for the identification of disease biomarkers in serum: Advances and challenges ahead. Proteomics 2011, 11, 2139–2161. [Google Scholar] [CrossRef] [PubMed]
- Bergman, N.; Bergquist, J. Recent developments in proteomic methods and disease biomarkers. Analyst 2014, 139, 3836–3851. [Google Scholar] [CrossRef] [PubMed]
- Bozdech, Z.; Llinás, M.; Pulliam, B.L.; Wong, E.D.; Zhu, J.; DeRisi, J.L. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 2003, 1, e5. [Google Scholar] [CrossRef] [PubMed]
- Shoemark, D.K.; Cliff, M.J.; Sessions, R.B.; Clarke, A.R. Enzymatic properties of the lactate dehydrogenase enzyme from Plasmodium falciparum. FEBS J. 2007, 274, 2738–2748. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.; Biswas, S.; Mohan, T.; Ali, S.; Rao, D.N. Detection of histidine rich protein & lactate dehydrogenase of Plasmodium falciparum in malaria patients by sandwich ELISA using in-house reagents. Indian J. Med. Res. 2013, 138, 977–987. [Google Scholar] [PubMed]
- Jain, P.; Chakma, B.; Patra, S.; Goswami, P. Potential biomarkers and their applications for rapid and reliable detection of malaria. BioMed Res. Int. 2014, 2014, 852645. [Google Scholar] [CrossRef] [PubMed]
- Pologe, L.G.; Pavlovec, A.; Shio, H.; Ravetch, J.V. Primary structure and subcellular localization of the knob-associated histidine-rich protein of Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 1987, 84, 7139–7143. [Google Scholar] [CrossRef] [PubMed]
- Dondorp, A.M.; Desakorn, V.; Pongtavornpinyo, W.; Sahassananda, D.; Silamut, K.; Chotivanich, K.; Newton, P.N.; Pitisuttithum, P.; Smithyman, A.M.; White, N.J.; et al. Estimation of the total parasite biomass in acute falciparum malaria from plasma PfHRP2. PLoS Med. 2005, 2, e204. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Khalid, N.; Hira, P.R. Comparison of two commercial assays with expert microscopy for confirmation of symptomatically diagnosed malaria. J. Clin. Microbiol. 2002, 40, 4675–4678. [Google Scholar] [CrossRef] [PubMed]
- Ndonwi, M.; Burlingame, O.O.; Miller, A.S.; Tollefsen, D.M.; Broze, G.J.; Goldberg, D.E. Inhibition of antithrombin by Plasmodium falciparum histidine-rich protein II. Blood 2011, 117, 6347–6354. [Google Scholar] [CrossRef] [PubMed]
- Wellems, T.E.; Howard, R.J. Homologous genes encode two distinct histidine-rich proteins in a cloned isolate of Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 1986, 83, 6065–6069. [Google Scholar] [CrossRef] [PubMed]
- Sharma, Y.D. Genomic organization, structure and possible function of histidine-rich proteins of malaria parasites. Int. J. Biochem. 1988, 20, 471–477. [Google Scholar] [CrossRef]
- Lee, N.; Baker, J.; Bell, D.; McCarthy, J.; Cheng, Q. Assessing the genetic diversity of the aldolase genes of Plasmodium falciparum and Plasmodium vivax and its potential effect on performance of aldolase-detecting rapid diagnostic tests. J. Clin. Microbiol. 2006, 44, 4547–4549. [Google Scholar] [CrossRef] [PubMed]
- Knapp, B.; Hundt, E.; Küpper, H.A. Plasmodium falciparum aldolase: Gene structure and localization. Mol. Biochem. Parasitol. 1990, 40, 1–12. [Google Scholar] [CrossRef]
- Grimberg, B.T.; Grimberg, K.O. Hemozoin detection may provide an inexpensive, sensitive, 1-minute malaria test that could revolutionize malaria screening. Expert Rev. Anti Infect. Ther. 2016, 14, 879–883. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ning, Y.S.; Li, L.; Peng, D.D.; Dong, W.Q.; Li, M. Preparation of a monoclonal antibodies against Plasmodium falciparum glutamate dehydrogenase and establishment of colloidal gold-immunochromatographic assay. J. First Mil. Med. Univ. 2005, 25, 435–438. [Google Scholar]
- Rodríguez-Acosta, A.; Domínguez, N.G.; Aguilar, I.; Girón, M.E. Characterization of Plasmodium falciparum glutamate dehydrogenase-soluble antigen. Braz. J. Med. Biol. Res. 1998, 31, 1149–1155. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, C.J.; Hallett, R. Detecting Malaria Parasites outside the Blood. J. Infect. Dis. 2009, 199, 1561–1563. [Google Scholar] [CrossRef] [PubMed]
- Mharakurwa, S.; Simoloka, C.; Thuma, P.E.; Shiff, C.J.; Sullivan, D.J. PCR detection of Plasmodium falciparum in human urine and saliva samples. Malar. J. 2006, 5, 103. [Google Scholar] [CrossRef] [PubMed]
- Nwakanma, D.C.; Gomez-Escobar, N.; Walther, M.; Crozier, S.; Dubovsky, F.; Malkin, E.; Locke, E.; Conway, D.J. Quantitative Detection of Plasmodium falciparum DNA in Saliva, Blood, and Urine. J. Infect. Dis. 2009, 199. [Google Scholar] [CrossRef] [PubMed]
- Putaporntip, C.; Buppan, P.; Jongwutiwes, S. Improved performance with saliva and urine as alternative DNA sources for malaria diagnosis by mitochondrial DNA-based PCR assays. Clin. Microbiol. Infect. 2011, 17, 1484–1491. [Google Scholar] [CrossRef] [PubMed]
- Oguonu, T.; Shu, E.; Ezeonwu, B.U.; Lige, B.; Derrick, A.; Umeh, R.E.; Agbo, E. The performance evaluation of a urine malaria test (UMT) kit for the diagnosis of malaria in individuals with fever in south-east Nigeria: Cross-sectional analytical study. Malar. J. 2014, 13, 403. [Google Scholar] [CrossRef] [PubMed]
- Genton, B.; Paget, S.; Beck, H.P.; Gibson, N.; Alpers, M.P.; Hii, J. Diagnosis of Plasmodium falciparum infection using ParaSight(R)-F test in blood and urine of Papua New Guinean children. Southeast Asian J. Trop. Med. Public Health 1998, 29, 35–40. [Google Scholar] [PubMed]
- Bell, D.; Wongsrichanalai, C.; Barnwell, J.W. Ensuring quality and access for malaria diagnosis: How can it be achieved? Nat. Rev. Microbiol. 2006, 4, 682–695. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.K.; Bennett, J.W. Rapid Diagnosis of Malaria. Interdiscip. Perspect. Infect. Dis. 2009, 2009, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Lucchi, N.W.; Narayanan, J.; Karell, M.A.; Xayavong, M.; Kariuki, S.; DaSilva, A.J.; Hill, V.; Udhayakumar, V. Molecular Diagnosis of Malaria by Photo-Induced Electron Transfer Fluorogenic Primers: PET-PCR. PLoS ONE 2013, 8, e56677. [Google Scholar] [CrossRef] [PubMed]
- Lucchi, N.W.; Karell, M.A.; Journel, I.; Rogier, E.; Goldman, I.; Ljolje, D.; Huber, C.; Mace, K.E.; Jean, S.E.; Akom, E.E.; et al. PET-PCR method for the molecular detection of malaria parasites in a national malaria surveillance study in Haiti, 2011. Malar. J. 2014, 13, 462. [Google Scholar] [CrossRef] [PubMed]
- Fung, A.O.; Damoiseaux, R.; Grundeen, S.; Panes, J.L.; Horton, D.H.; Judy, J.W.; Moore, T.B. Quantitative detection of Pf HRP2 in saliva of malaria patients in the Philippines. Malar. J. 2012, 11, 175. [Google Scholar] [CrossRef] [PubMed]
- Oriero, E.C.; Okebe, J.; Jacobs, J.; Van, J.P.; Nwakanma, D.; Alessandro, U.D. Diagnostic performance of a novel loop-mediated isothermal amplification (LAMP) assay targeting the apicoplast genome for malaria diagnosis in a field setting in sub-Saharan Africa. Malar. J. 2015, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Sema, M.; Alemu, A.; Bayih, A.G.; Getie, S.; Getnet, G.; Guelig, D.; Burton, R.; LaBarre, P.; Pillai, D.R. Evaluation of non-instrumented nucleic acid amplification by loop-mediated isothermal amplification (NINA-LAMP) for the diagnosis of malaria in Northwest Ethiopia. Malar. J. 2015, 14, 44. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.; Aydin-schmidt, B.; González, I.J.; Bell, D.; Edlund, E.; Nassor, M.H.; Msellem, M.; Ali, A.; Abass, A.K.; Mårtensson, A.; et al. Loop-mediated isothermal amplification (LAMP) for point-of-care detection of asymptomatic low-density malaria parasite carriers in Zanzibar. Malar. J. 2015, 14, 43. [Google Scholar] [CrossRef] [PubMed]
- Port, J.R.; Nguetse, C.; Adukpo, S.; Velavan, T.P. A reliable and rapid method for molecular detection of malarial parasites using microwave irradiation and loop mediated isothermal amplification. Malar. J. 2014, 13, 454. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B.J.; Howell, A.; Martin, K.A.; Manage, D.P.; Gordy, W.; Campbell, S.D.; Lam, S.; Jin, A.; Polley, S.D.; Samuel, R.A.; et al. A lab-on-chip for malaria diagnosis and surveillance A lab-on-chip for malaria diagnosis and surveillance. Malar. J. 2014, 13, 179. [Google Scholar] [CrossRef] [PubMed]
- Nair, C.B.; Manjula, J.; Subramani, P.A. Differential Diagnosis of Malaria on Truelab Uno®, a Portable, Real-Time, MicroPCR Device for Point-Of-Care Applications. PLoS ONE 2016, 11, e0146961. [Google Scholar] [CrossRef] [PubMed]
- Kersting, S.; Rausch, V.; Bier, F.; von Nickisch-Rosenegk, M. Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malar. J. 2014, 13, 99. [Google Scholar] [CrossRef] [PubMed]
- Lucchi, N.W.; Demas, A.; Narayanan, J.; Sumari, D.; Kabanywanyi, A.; Patrick Kachur, S.; Barnwell, J.W.; Udhayakumar, V. Real-time fluorescence loop mediated isothermal amplification for the diagnosis of malaria. PLoS ONE 2010, 5, e0013733. [Google Scholar] [CrossRef] [PubMed]
- Dinzouna-Boutamba, S.-D.; Yang, H.; Joo, S.; Jeong, S.; Na, B.; Inoue, N.; Lee, W.; Kong, H.; Chung, D.; Goo, Y.; et al. The development of loop-mediated isothermal amplification targeting alpha-tubulin DNA for the rapid detection of Plasmodium vivax. Malar. J. 2014, 13, 248. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Flaherty, B.R.; Cohen, C.E.; Peterson, D.S.; Zhao, Y. Direct detection of malaria infected red blood cells by surface enhanced Raman spectroscopy. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 1445–1451. [Google Scholar] [CrossRef] [PubMed]
- Wangmaung, N.; Chomean, S.; Promptmas, C.; Mas-oodi, S.; Tanyong, D.; Ittarat, W. Silver quartz crystal microbalance for differential diagnosis of Plasmodium falciparum and Plasmodium vivax in single and mixed infection. Biosens. Bioelectron. 2014, 62, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Manjunatha, D.H.; Jeon, W.; Ban, C. Cationic surfactant-based colorimetric detection of Plasmodium lactate dehydrogenase, a biomarker for malaria, using the specific DNA aptamer. PLoS ONE 2014, 9, e0100847. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Bhalla, V.; Singh Bhadoriya, R.P.; Suri, C.R.; Varshney, G.C.; Looareesuwan, S.; Newbold, C.; White, N.J.; White, N.J.; Soares, I.S.; et al. Label-free electrochemical detection of malaria-infected red blood cells. RSC Adv. 2016, 6, 75862–75869. [Google Scholar] [CrossRef]
- Bonizzoni, M.; Afrane, Y.; Yan, G. Loop-mediated isothermal amplification (LAMP) for rapid identification of Anopheles gambiae and Anopheles arabiensis Mosquitoes. Am. J. Trop. Med. Hyg. 2009, 81, 1030–1034. [Google Scholar] [CrossRef] [PubMed]
- Han, E.T.; Watanabe, R.; Sattabongkot, J.; Khuntirat, B.; Sirichaisinthop, J.; Iriko, H.; Jin, L.; Takeo, S.; Tsuboi, T. Detection of four Plasmodium species by genus- and species-specific loop-mediated isothermal amplification for clinical diagnosis. J. Clin. Microbiol. 2007, 45, 2521–2528. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, H.; González, I.J.; Polley, S.D.; Angutoko, P.; Ategeka, J.; Asiimwe, C.; Agaba, B.; Kyabayinze, D.J.; Sutherland, C.J.; Perkins, M.D.; et al. Highly sensitive detection of malaria parasitemia in a malaria-endemic setting: Performance of a new loop-mediated isothermal amplification kit in a remote clinic in Uganda. J. Infect. Dis. 2013, 208, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Vallejo, A.F.; Martínez, N.L.; González, I.J.; Arévalo-Herrera, M.; Herrera, S. Evaluation of the Loop Mediated Isothermal DNA Amplification (LAMP) Kit for Malaria Diagnosis in P. vivax Endemic Settings of Colombia. PLoS Negl. Trop. Dis. 2015, 9. [Google Scholar] [CrossRef] [PubMed]
- Goto, M.; Honda, E.; Ogura, A.; Nomoto, A.; Hanaki, K.I. Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. BioTechniques 2009, 46, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Britton, S.; Cheng, Q.; Sutherland, C.J.; McCarthy, J.S. A simple, high-throughput, colourimetric, field applicable loop-mediated isothermal amplification (HtLAMP) assay for malaria elimination. Malar. J. 2015, 14, 335. [Google Scholar] [CrossRef] [PubMed]
- Yongkiettrakul, S.; Jaroenram, W.; Arunrut, N.; Chareanchim, W.; Pannengpetch, S.; Suebsing, R.; Kiatpathomchai, W.; Pornthanakasem, W.; Yuthavong, Y.; Kongkasuriyachai, D. Application of loop-mediated isothermal amplification assay combined with lateral flow dipstick for detection of Plasmodium falciparum and Plasmodium vivax. Parasitol. Int. 2014, 63, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Koyun, A.; Ahlatcıoğlu, E.; İpek, Y.K. Biosensors and Their Principles. A Roadmap of Biomedical Engineers and Milestones. InTech 2012, 117–142. [Google Scholar] [CrossRef]
- Chen, K.; Yuen, C.; Aniweh, Y.; Preiser, P.; Liu, Q. Towards ultrasensitive malaria diagnosis using surface enhanced Raman spectroscopy. Sci. Rep. 2016, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ittarat, W.; Chomean, S.; Sanchomphu, C.; Wangmaung, N.; Promptmas, C.; Ngrenngarmlert, W. Clinica Chimica Acta Biosensor as a molecular malaria differential diagnosis. Clin. Chim. Acta 2013, 419, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Song, K.M.; Lee, S.; Ban, C. Aptamers and their biological applications. Sensors 2012, 12, 612–631. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Song, K.M.; Jeon, W.; Jo, H.; Shim, Y.B.; Ban, C. A highly sensitive aptasensor towards Plasmodium lactate dehydrogenase for the diagnosis of malaria. Biosens. Bioelectron. 2012, 35, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Jeon, W.; Lee, S.; Dh, M.; Ban, C. A colorimetric aptasensor for the diagnosis of malaria based on cationic polymers and gold nanoparticles. Anal. Biochem. 2013, 439, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Schoenhoff, F.S.; Savage, W.J.; Zhang, P.; van Eyk, J.E. Multiplex assays for biomarker research and clinical application: Translational science coming of age. Proteomics Clin. Appl. 2010, 4, 271–284. [Google Scholar] [CrossRef] [PubMed]
- Nash, M.A.; Waitumbi, J.N.; Hoffman, A.S.; Yager, P.; Stayton, P.S. Multiplexed enrichment and detection of malarial biomarkers using a stimuli-responsive iron oxide and gold nanoparticle reagent system. ACS Nano 2012, 6, 6776–6785. [Google Scholar] [CrossRef] [PubMed]
- Jepsen, M.P.G.; Röser, D.; Christiansen, M.; Larsen, S.O.; Cavanagh, D.R.; Dhanasarnsombut, K.; Bygbjerg, I.; Dodoo, D.; Remarque, E.J.; Dziegiel, M.; et al. Development and evaluation of a multiplex screening assay for Plasmodium falciparum exposure. J. Immunol. Methods 2012, 384, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Fouda, G.G.; Leke, R.F.G.; Long, C.; Druilhe, P.; Zhou, A.; Taylor, D.W.; Johnson, A.H. Multiplex assay for simultaneous measurement of antibodies to multiple Plasmodium falciparum antigens. Clin. Vaccine Immunol. 2006, 13, 1307–1313. [Google Scholar] [CrossRef] [PubMed]
- Ambrosino, E.; Dumoulin, C.; Orlandi-Pradines, E.; Remoue, F.; Toure-Baldé, A.; Tall, A.; Sarr, J.B.; Poinsignon, A.; Sokhna, C.; Puget, K.; et al. A multiplex assay for the simultaneous detection of antibodies against 15 Plasmodium falciparum and Anopheles gambiae saliva antigens. Malar. J. 2010, 9, 317. [Google Scholar] [CrossRef] [PubMed]
- Reller, M.E.; Chen, W.H.; Dalton, J.; Lichay, M.A.; Dumler, J.S. Multiplex 5′ nuclease quantitative real-time PCR for clinical diagnosis of malaria and species-level identification and epidemiologic evaluation of malaria-causing parasites, including Plasmodium knowlesi. J. Clin. Microbiol. 2013, 51, 2931–2938. [Google Scholar] [CrossRef] [PubMed]
Biomarker | Parasite species | Infection Stage | Diagnostic Method | Function/Description | Ref. |
---|---|---|---|---|---|
Lactate dehydrogenase (LDH) | P. falciparum | Trophozoite stage | Immunochromatographic assays | Metabolic enzyme in glycolytic pathway to convert pyruvate into lactate | [13,14,15] |
P. falciparum Histidine-Rich Protein 1 (PfHRP1) | P. falciparum | Asexual stages and gametocytes of P. falciparum, expressed on red blood cell membrane surface (Knob positive strains) | Immunochromatographic assays | Assist co-adherence of infected erythrocyte to venular endothelial cells | [16,17] |
P. falciparum Histidine-Rich Protein 2 (PfHRP2) | P. falciparum | Asexual stages and gametocytes of P. falciparum, expressed on red blood cell membrane surface (Knob-positive and negative strains) | Immunochromatographic assays, Enzyme-Linked Immunosorbent Assay (ELISA) | Tightly binding with glycosaminoglycans causing inhibition of antithrombin and detoxification of heme by forming hemozoin | [15,18,19,20] |
P. falciparum Histidine-Rich Protein 3 (PfHRP3) | P. falciparum | Asexual stages and gametocytes of P. falciparum, expressed on red blood cell membrane surface | Immunochromatographic assays | Function is similar to PfHRP2 | [21,22] |
Plasmodium aldolase | P. vivax and P. falciparum | Asexual blood-stage | Immunochromatographic assays | Enzymatic role in the cleavage of fructose-1,6-bisphosphate into glyceraldehyde-3-phosphate and dihydroxyacetone phosphate in the glycolytic pathway | [23,24] |
Hemozoin | All Plasmodium spp. | Intra-erythrocytic stage | Magneto-Optical Detection | Metabolite formed by polymerizing free-toxic heme after digestion of hemoglobulin by Plasmodium | [25] |
Glutamate dehydrogenase (GDH) | P. falciparum | Intra-erythrocytic development | Western blotting, immunochromatographic assays | Responsible for the oxidative deamination of l-glutamate to produce α-ketoglutarate and ammonia | [26,27] |
Methods | Specimen | Plasmodium spp. | Target | Limit of Detection | Sensitivity | Specificity | Ref. |
---|---|---|---|---|---|---|---|
Nested PCR | Urine, Saliva | P. falciparum, P. vivax | mitochondrial cytochrome b gene (cytb) | 10 parasites/μL | P.f; S-74.2% P.f; U-55.1% P.v; S-79.2% P.v; U-53.3% | P.f; S-100% P.f; U-100% P.v; S-98.7% P.v; U-97.5% | [31] |
Immunochromatography | Urine | P. falciparum | PfHRP-2 | - | 83.75% | 83.48% | [32] |
Nested PCR | Blood, Saliva, Urine | P. falciparum | 18S rRNA gene | - | B-98% S-73% U-32% | B-95% S-97% U-98% | [30] |
Photo-induced electron transfer (PET)-PCR | Blood | P. falciparum, P. vivax, P. malariae, P. ovale | 18S rRNA gene | P.f-3.2 parasites/µL P.v-5 parasites/µL P.m-3.5parasites/µL P.o-5.8 parasites/µL | P.f-**100% P.v-**100% P.m-**100% P.o-**100% | P.f-**100% P.v-**100% P.m-**100% P.o-**100% | [36] |
Photo-induced electron transfer (PET)-PCR | Blood | Plasmodium spp. | 3.2 parasites/μL | **92.3% | **100% | [37] | |
Chemiluminescent ELISA | Saliva | P. falciparum | PfHRP-2 | 173 pg/mL | *100% | *100% | [38] |
LAMP assay | Blood | P. falciparum | apicoplast genome | - | 92% | 97% | [39] |
Non-Instrumented Nucleic Acid (NINA)-LAMP | Blood | P. falciparum | DNA | - | 96.8% | 84.3% | [40] |
LAMP | Blood | P. falciparum | DNA | 5 DNA copies/test | 40–100% | 100% | [41] |
Microwave irradiation and LAMP | Blood | Plasmodium spp. | DNA | 1 parasite/μL | - | - | [42] |
Lab-on-chip PCR | Archival | Plasmodium spp. | 18S rRNA gene | 2 parasites/µL | 97% | 93.8% | [43] |
Chip-based micropcr test (Truenat® Malaria) | Blood | P. falciparum, P. vivax | <5 parasites/µL | 100% | 100% | [44] | |
Isothermal recombinase polymerase amplification (RPA) | Genomic DNA | P. falciparum | 18S rRNA gene | 100 fg of genomic P. falciparum DNA | - | - | [45] |
Realamp method. | P.f (3D7) culture, P.v (SV4), P.m (Uganda I), and P.v (Nigeria I) acquired from infected monkeys | P. falciparum | 18S rRNA gene | 1–100 p/mL | - | - | [46] |
LAMP assay | Blood | P. vivax | α-tubulin gene | 100 copies of P. vivax α-tubulin gene per reaction | 100% | 81.6% | [47] |
Surface enhanced Raman spectroscopy (SERS) | Blood | P. falciparum | hemozoin | 0.00005%&0.01% parasitemia level | - | - | [48] |
Quartz Crystal Microbalance (QCM) Biosensor | Blood | P. falciparum, P. vivax | DNA | 200 ng of target DNA | - | - | [49] |
Biosensor (colorimetric aptasensor) | Recombinant protein biomarkers | P. falciparum, P. vivax | Recombinant PvLDH & PfLDH | 1.25 pM (PvLDH), 2.94 pM (PfLDH) | - | - | [50] |
Biosensor (electrochemical immunosensor) | Blood | P. falciparum | P. falciparum infected red blood cells | - | - | - | [51] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krampa, F.D.; Aniweh, Y.; Awandare, G.A.; Kanyong, P. Recent Progress in the Development of Diagnostic Tests for Malaria. Diagnostics 2017, 7, 54. https://doi.org/10.3390/diagnostics7030054
Krampa FD, Aniweh Y, Awandare GA, Kanyong P. Recent Progress in the Development of Diagnostic Tests for Malaria. Diagnostics. 2017; 7(3):54. https://doi.org/10.3390/diagnostics7030054
Chicago/Turabian StyleKrampa, Francis D., Yaw Aniweh, Gordon A. Awandare, and Prosper Kanyong. 2017. "Recent Progress in the Development of Diagnostic Tests for Malaria" Diagnostics 7, no. 3: 54. https://doi.org/10.3390/diagnostics7030054
APA StyleKrampa, F. D., Aniweh, Y., Awandare, G. A., & Kanyong, P. (2017). Recent Progress in the Development of Diagnostic Tests for Malaria. Diagnostics, 7(3), 54. https://doi.org/10.3390/diagnostics7030054