Extracellular Vesicles in Cardiac Amyloidosis: From Pathogenesis to Clinical Applications
Abstract
1. Introduction
2. Methods
3. Pathogenic Mechanisms of EVs in Cardiac Amyloidosis
3.1. ATTR Amyloidosis: EV-Associated TTR Aggregation and Deposition
3.2. Reactive Cardiac Amyloidogenesis via EV-SAA3 After Myocardial Injury (Non-AL/ATTR Mechanism)
3.3. Evidence Gaps in AL and ATTRwt
4. Clinical Applications of EVs in Cardiac Amyloidosis
5. Limitations and Challenges
6. Clinical Implications, Biomarker Potential, and Future Directions
6.1. AL Amyloidosis: EV-Associated Light-Chain Species in Urine and Blood
6.2. ATTR Amyloidosis: Circulating EV Proteome and Tissue-Derived Injury Signatures
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Wechalekar, A.D.; Gillmore, J.D.; Hawkins, P.N. Systemic amyloidosis. Lancet 2016, 387, 2641–2654. [Google Scholar] [CrossRef]
- Ruberg, F.L.; Grogan, M.; Hanna, M.; Kelly, J.W.; Maurer, M.S. Transthyretin amyloid cardiomyopathy: Jacc state-of-the-art review. J. Am. Coll. Cardiol. 2019, 73, 2872–2891. [Google Scholar] [CrossRef]
- Falk, R.H.; Alexander, K.M.; Liao, R.; Dorbala, S. Al (Light-chain) cardiac amyloidosis: A review of diagnosis and therapy. J. Am. Coll. Cardiol. 2016, 68, 1323–1341. [Google Scholar] [CrossRef]
- Barbhaiya, C.R.; Kumar, S.; Baldinger, S.H.; Michaud, G.F.; Stevenson, W.G.; Falk, R.; John, R.M. Electrophysiologic assessment of conduction abnormalities and atrial arrhythmias associated with amyloid cardiomyopathy. Heart Rhythm 2016, 13, 383–390. [Google Scholar] [CrossRef]
- Kittleson, M.M.; Maurer, M.S.; Ambardekar, A.V.; Bullock-Palmer, R.P.; Chang, P.P.; Eisen, H.J.; Nair, A.P.; Nativi-Nicolau, J.; Ruberg, F.L.; On behalf of the American Heart Association Heart Failure. Cardiac amyloidosis: Evolving diagnosis and management: A scientific statement from the American Heart Association. Circulation 2020, 142, e7–e22. [Google Scholar] [CrossRef] [PubMed]
- Maia, J.; Caja, S.; Moraes, M.C.S.; Couto, N.; Costa-Silva, B. Exosome-based cell-cell communication in the tumor microenvironment. Front. Cell Dev. Biol. 2018, 6, 18. [Google Scholar] [CrossRef] [PubMed]
- Cano, A.; Ettcheto, M.; Bernuz, M.; Puerta, R.; de Antonio, E.E.; Sánchez-López, E.; Souto, E.B.; Camins, A.; Martí, M.; Pividori, M.I.; et al. Extracellular vesicles, the emerging mirrors of brain physiopathology. Int. J. Biol. Sci. 2023, 19, 721–743. [Google Scholar] [CrossRef]
- Colombo, M.; Raposo, G.; Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 2014, 30, 255–289. [Google Scholar] [CrossRef] [PubMed]
- Busatto, S.; Morad, G.; Guo, P.; Moses, M.A. The role of extracellular vesicles in the physiological and pathological regulation of the blood–brain barrier. FASEB BioAdv. 2021, 3, 665. [Google Scholar] [CrossRef]
- Tian, C.; Ziegler, J.N.; Zucker, I.H. Extracellular vesicle microRNAs in heart failure: Pathophysiological mediators and therapeutic targets. Cells 2023, 12, 2145. [Google Scholar] [CrossRef]
- Fu, S.; Zhang, Y.; Li, Y.; Luo, L.; Zhao, Y.; Yao, Y. Extracellular vesicles in cardiovascular diseases. Cell Death Discov. 2020, 6, 68. [Google Scholar] [CrossRef]
- Hu, H.; Wang, X.; Yu, H.; Wang, Z. Extracellular vesicular microRNAs and cardiac hypertrophy. Front. Endocrinol. 2025, 15, 1444940. [Google Scholar] [CrossRef]
- Chen, M.; Wu, Y.; Chen, C. Extracellular vesicles as emerging regulators in ischemic and hypertrophic cardiovascular diseases: A review of pathogenesis and therapeutics. Med. Sci. Monit. 2025, 31, e948948. [Google Scholar] [CrossRef]
- Gokulnath, P.; Spanos, M.; Lehmann, H.I.; Sheng, Q.; Rodosthenous, R.; Chaffin, M.; Varrias, D.; Chatterjee, E.; Hutchins, E.; Li, G.; et al. Distinct plasma extracellular vesicle transcriptomes in acute decompensated heart failure subtypes: A liquid biopsy approach. Circulation 2024, 149, 1147–1149. [Google Scholar] [CrossRef]
- Tong, M.; Cheng, S.B.; Chen, Q.; DeSousa, J.; Stone, P.R.; James, J.L.; Chamley, L.W.; Sharma, S. Aggregated transthyretin is specifically packaged into placental nano-vesicles in preeclampsia. Sci. Rep. 2017, 7, 6694. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Kawahara, H.; Kodera, N.; Kumaki, A.; Tada, Y.; Tang, Z.; Sakai, K.; Ono, K.; Yamada, M.; Hanayama, R. Extracellular vesicles contribute to the metabolism of transthyretin amyloid in hereditary transthyretin amyloidosis. Front. Mol. Biosci. 2022, 9, 839917. [Google Scholar] [CrossRef]
- Phan, T.H.; Reed, J.H. Extracellular vesicles as next-generation therapeutics and biomarkers in amyloidosis: A new frontier. Front. Biomater. Sci. 2024, 2, 1343658. [Google Scholar] [CrossRef]
- Cimini, M.; Gonzalez, C.; Tukel, C.; Barbe, M.; Lucchese, A.M.; Wang, C.; Truongcao, M.; Huang, G.; Elia, A.; Mallaredy, V.; et al. Abstract p2053: Role of podoplanin positive cells exosomes in cardiac inflammation and amyloidosis. Circ. Res. 2022, 131, AP2053. [Google Scholar] [CrossRef]
- Whitehead, M.; Yusoff, S.; Ahmad, S.; Schmidt, L.; Mayr, M.; Madine, J.; Middleton, D.; Shanahan, C.M. Vascular smooth muscle cell senescence accelerates medin aggregation via small extracellular vesicle secretion and extracellular matrix reorganization. Aging Cell 2023, 22, e13746. [Google Scholar] [CrossRef]
- Liang, T.; Wu, Z.; Li, J.; Wu, S.; Shi, W.; Wang, L. The emerging double-edged sword role of exosomes in Alzheimer’s disease. Front. Aging Neurosci. 2023, 15, 1209115. [Google Scholar] [CrossRef]
- Biagiotti, S.; Abbas, F.; Montanari, M.; Barattini, C.; Rossi, L.; Magnani, M.; Papa, S.; Canonico, B. Extracellular vesicles as new players in drug delivery: A focus on red blood cells-derived EVs. Pharmaceutics 2023, 15, 365. [Google Scholar] [CrossRef]
- Du, S.; Guan, Y.; Xie, A.; Yan, Z.; Gao, S.; Li, W.; Rao, L.; Chen, X.; Chen, T. Extracellular vesicles: A rising star for therapeutics and drug delivery. J. Nanobiotechnol. 2023, 21, 231. [Google Scholar] [CrossRef]
- El Harane, N.; Kervadec, A.; Bellamy, V.; Pidial, L.; Neametalla, H.J.; Perier, M.-C.; Lima Correa, B.; Thiébault, L.; Cagnard, N.; Duché, A.; et al. Acellular therapeutic approach for heart failure: In vitro production of extracellular vesicles from human cardiovascular progenitors. Eur. Heart J. 2018, 39, 1835–1847. [Google Scholar] [CrossRef]
- González-King, H.; Rodrigues, P.G.; Albery, T.; Tangruksa, B.; Gurrapu, R.; Silva, A.M.; Musa, G.; Kardasz, D.; Liu, K.; Kull, B.; et al. Head-to-head comparison of relevant cell sources of small extracellular vesicles for cardiac repair: Superiority of embryonic stem cells. J. Extracell. Vesicles 2024, 13, e12445. [Google Scholar] [CrossRef]
- Vaka, R.; Remortel, S.V.; Ly, V.; Davis, D.R. Extracellular vesicle therapy for non-ischemic heart failure: A systematic review of preclinical studies. Extracell. Vesicle 2022, 1, 100009. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, W.; Ali, S.R.; Takeda, K.; Vahl, T.P.; Zhu, D.; Hong, Y.; Cheng, K. Extracellular vesicle therapeutics for cardiac repair. J. Mol. Cell. Cardiol. 2025, 199, 12–32. [Google Scholar] [CrossRef]
- Kumar, M.A.; Baba, S.K.; Sadida, H.Q.; Marzooqi, S.A.; Jerobin, J.; Altemani, F.H.; Algehainy, N.; Alanazi, M.A.; Abou-Samra, A.-B.; Kumar, R.; et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct. Target. Ther. 2024, 9, 27. [Google Scholar] [CrossRef]
- Menasché, P.; Renault, N.K.; Hagège, A.; Puscas, T.; Bellamy, V.; Humbert, C.; Le, L.; Blons, H.; Granier, C.; Benhamouda, N.; et al. First-in-man use of a cardiovascular cell-derived secretome in heart failure. Case report. eBioMedicine 2024, 103, 105145. [Google Scholar] [CrossRef]
- Cimini, M.; Hansmann, U.H.; Gonzalez, C.; Chesney, A.D.; Truongcao, M.M.; Gao, E.; Wang, T.; Roy, R.; Forte, E.; Mallaredy, V.; et al. Podoplanin positive cell-derived extracellular vesicles contribute to cardiac amyloidosis after myocardial infarction. bioRxiv 2024, preprint. [Google Scholar] [CrossRef]
- Asleh, K.; Dery, V.; Taylor, C.; Davey, M.; Djeungoue-Petga, M.A.; Ouellette, R.J. Extracellular vesicle-based liquid biopsy biomarkers and their application in precision immuno-oncology. Biomark. Res. 2023, 11, 99. [Google Scholar] [CrossRef]
- Ye, C.; Ma, Y.; Shrestha, R.; Cai, J.; Liu, Y.; Peng, L.; Yu, J.; Cai, H. Extracellular vesicle-mediated delivery of CRISPR machinery silences androgen receptor in castration-resistant prostate cancer cells. Mol. Ther. 2026, 34, 281–299. [Google Scholar] [CrossRef]
- Brannagan, T.H.; Berk, J.L.; Gillmore, J.D.; Maurer, M.S.; Waddington-Cruz, M.; Fontana, M.; Masri, A.; Obici, L.; Brambatti, M.; Baker, B.F.; et al. Liver-directed drugs for transthyretin-mediated amyloidosis. J. Peripher. Nerv. Syst. 2022, 27, 228–237. [Google Scholar] [CrossRef]
- Yin, X.; Jiang, L.H. Extracellular vesicles: Targeting the heart. Front. Cardiovasc. Med. 2023, 9, 1041481. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, D.; Shi, X.; Hou, Y.; Zang, S.; Chen, L.; Spanos, M.; Li, G.; Cretoiu, D.; Zhou, Q.; et al. Injectable hydrogel with miR-222-engineered extracellular vesicles ameliorates myocardial ischemic reperfusion injury via mechanotransduction. Cell Rep. Med. 2025, 6, 101987. [Google Scholar] [CrossRef]
- Welsh, J.A.; Goberdhan, D.C.; O’Driscoll, L.; Théry, C.; Witwer, K.W. MISEV2023: An updated guide to EV research and applications. J. Extracell. Vesicles 2024, 13, e12416. [Google Scholar] [CrossRef]
- Lötvall, J. Publishing the MISEV guidelines; The editorial process. J. Extracell. Vesicles 2024, 13, e12415. [Google Scholar] [CrossRef]
- European Medicines Agency. Guideline on Quality, Non-Clinical and Clinical Requirements for Investigational Advanced Therapy Medicinal Products in Clinical Trials. EMA/CHMP/GTWP/671639/2008 Rev.1. Public Consultation Version. Section 6. 2024. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-quality-non-clinical-clinical-requirements-investigational-advanced-therapy-medicinal-products-clinical-trials_en.pdf (accessed on 1 January 2026).
- U.S. Food and Drug Administration. Potency Assurance for Cellular and Gene Therapy Products: Draft Guidance for Industry; FDA: Silver Spring, MD, USA, 2023; pp. 5–7. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/potency-assurance-cellular-and-gene-therapy-products (accessed on 1 January 2026).
- Spanos, M.; Gokulnath, P.; Li, G.; Hutchins, E.; Meechoovet, B.; Sheng, Q.; Chatterjee, E.; Sharma, R.; Carnel-Amar, N.; Lin, C.; et al. Cardiomyocyte-derived circulating extracellular vesicles allow a non-invasive liquid biopsy of myocardium in health and disease. medRxiv 2024, preprint. [Google Scholar] [CrossRef]
- Cooper, S.A.; Dick, C.J.; Misra, P.; Leung, N.; Schinstock, C.A.; Ramirez-Alvarado, M. Pathologic light chain amyloidosis oligomer detection in urinary extracellular vesicles as a diagnostic tool for response and progression of disease. Front. Oncol. 2022, 12, 978198. [Google Scholar] [CrossRef]
- DiGiovanni, B.; Gustafson, D.; Adamson, M.; Runeckles, K.; Fish, J.; Delgado, D. The extracellular vesicle proteome as a novel biomarker in patients with amyloid transthyretin cardiac amyloidosis. J. Am. Coll. Cardiol. 2020, 75, 1037. [Google Scholar] [CrossRef]
- Li, W.; Zheng, Y. Micrornas in extracellular vesicles of alzheimer’s disease. Cells 2023, 12, 1378. [Google Scholar] [CrossRef]
- Derda, A.A.; Pfanne, A.; Bär, C.; Schimmel, K.; Kennel, P.J.; Xiao, K.; Schulze, P.C.; Bauersachs, J.; Thum, T. Blood-based microRNA profiling in patients with cardiac amyloidosis. PLoS ONE 2018, 13, e0204235. [Google Scholar] [CrossRef]
- Bernáth-Nagy, D.; Kalinyaprak, M.S.; Giannitsis, E.; Ábrahám, P.; Leuschner, F.; Frey, N.; Krohn, J.B. Circulating extracellular vesicles as biomarkers in the diagnosis, prognosis and therapy of cardiovascular diseases. Front. Cardiovasc. Med. 2024, 11, 1425159. [Google Scholar] [CrossRef]
- Schöler, D.; Loosen, S.H.; Wirtz, T.H.; Brozat, J.F.; Grani, L.A.D.S.F.; Luedde, T.; Heinrichs, L.; Frank, D.; Koch, A.; Roderburg, C.; et al. Low extracellular vesicle concentrations predict survival in patients with heart failure. Front. Cardiovasc. Med. 2023, 10, 1163525. [Google Scholar] [CrossRef]
| Strategy | Source/Approach | Mechanism | Target Pathway | Delivery/Targeting | Evidence Level | Current Status | Key References |
|---|---|---|---|---|---|---|---|
| Stem-cell or progenitor-derived EVs | Cardiac progenitor, mesenchymal, iPSC | Promote angiogenesis, reduce fibrosis, restore function | Fibrosis, remodeling, repair | Intravenous infusion | Preclinical, Phase I (SECRET-HF 2024) | Safe, early efficacy | [22,27,28] |
| EV-based amyloid antagonists | Engineered EVs w/D-peptide or siRNA | Inhibit SAA3 or TTR aggregation | SAA/TTR aggregation | Systemic (experimental IV) | Preclinical (evidence derived from mouse models) | Experimental | [29] |
| EV-based gene therapy | Liver-targeted EVs w/CRISPR or siRNA | Silence mutant TTR synthesis | TTR production | Liver-tropic EVs/ligand-targeted | Preclinical concept | No human data | [22,27] |
| EV-mediated immune modulation | Regulatory immune-cell EVs | Reduce inflammation and fibrosis | Immune/fibrosis | Intravenous | Conceptual | Not yet tested | [30] |
| EV-loaded cardioprotective drugs | Engineered EVs | Targeted drug delivery to myocardium | Remodeling, ischemia | IV/hydrogel patch targeted | Preclinical | Optimization ongoing | [9,11] |
| Limitation | Impact | Emerging Solution | Reference |
|---|---|---|---|
| Inconsistent EV isolation/reporting | Reproducibility issues | MISEV-2023 guidelines application, EV-TRACK, harmonized reporting | [35,36] |
| Quantification variability | Dosing uncertainty | Multi-metric quantification (particles + protein + RNA) | [35] |
| Off-target biodistribution | Reduced cardiac delivery and off-target effects | Cardio-tropic ligand engineering, local delivery hydrogels | [9,22] |
| GMP scale-up and QC | Regulatory bottleneck | Closed-system bioreactors, potency assays | [22,27] |
| Storage degradation | Loss of integrity and function | Optimized cryoprotectants, lyophilization | [35] |
| Safety/immunogenicity | Off-target effects/toxicity/Clinical risk | Standardized preclinical toxicology and CQA testing | EMA ATMP guideline (2024 consultation; Section 6) [37] FDA draft guidance (December 2023): Potency Assurance for CGT products (pp. 5–7, [38]) |
| Lack of amyloidosis-specific data | Limited clinical validation | Multicenter observational and interventional EV studies | [16,29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Batikyan, A.; Brown, D.; Elahmadi, Z.; Park, J.H.; Ragupathi, A.; Lohana, P.; Zoumpourlis, P.; Shah, P.; Vishakha, M.; Mcintosh, M.; et al. Extracellular Vesicles in Cardiac Amyloidosis: From Pathogenesis to Clinical Applications. Diagnostics 2026, 16, 430. https://doi.org/10.3390/diagnostics16030430
Batikyan A, Brown D, Elahmadi Z, Park JH, Ragupathi A, Lohana P, Zoumpourlis P, Shah P, Vishakha M, Mcintosh M, et al. Extracellular Vesicles in Cardiac Amyloidosis: From Pathogenesis to Clinical Applications. Diagnostics. 2026; 16(3):430. https://doi.org/10.3390/diagnostics16030430
Chicago/Turabian StyleBatikyan, Ashot, Donclair Brown, Zainab Elahmadi, Joo Hee Park, Ashwin Ragupathi, Petras Lohana, Panagiotis Zoumpourlis, Priyansh Shah, Modak Vishakha, Martin Mcintosh, and et al. 2026. "Extracellular Vesicles in Cardiac Amyloidosis: From Pathogenesis to Clinical Applications" Diagnostics 16, no. 3: 430. https://doi.org/10.3390/diagnostics16030430
APA StyleBatikyan, A., Brown, D., Elahmadi, Z., Park, J. H., Ragupathi, A., Lohana, P., Zoumpourlis, P., Shah, P., Vishakha, M., Mcintosh, M., Kladas, M., Gokulnath, P., & Spanos, M. (2026). Extracellular Vesicles in Cardiac Amyloidosis: From Pathogenesis to Clinical Applications. Diagnostics, 16(3), 430. https://doi.org/10.3390/diagnostics16030430

