Beyond DXA: Trabecular Bone Score, Quantitative Ultrasound and Bone Turnover Markers for Morphometric Vertebral Fracture Assessment in People Living with HIV
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Participants and Eligibility Criteria
2.3. Bone Quality and Laboratory Assessments
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Analysis of Findings
4.2. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Starup-Linde, J.; Rosendahl, S.B.; Storgaard, M.; Langdahl, B. Management of Osteoporosis in Patients Living with HIV-A Systematic Review and Meta-analysis. J. Acquir. Immune Defic. Syndr. 2020, 83, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.J.; Chan, Y.L.; Pramukti, I.; Ko, N.Y.; Tai, T.W. People with HIV infection had lower bone mineral density and increased fracture risk: A meta-analysis. Arch. Osteoporos. 2021, 16, 47. [Google Scholar] [CrossRef] [PubMed]
- Lazcano, I.; Ross, R.D.; Yin, M.T. Updates on bone health in people living with HIV: Global impact, prediction tools, and treatment. Curr. Opin. HIV AIDS 2025, 20, 331–336. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moldovan, F.; Moldovan, L. A Modeling Study for Hip Fracture Rates in Romania. J. Clin. Med. 2025, 14, 3162. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bolland, M.J.; Grey, A.B.; Gamble, G.D.; Reid, I.R. CLINICAL Review #: Low body weight mediates the relationship between HIV infection and low bone mineral density: A meta-analysis. J. Clin. Endocrinol. Metab. 2007, 92, 4522–4528. [Google Scholar] [CrossRef] [PubMed]
- Shiau, S.; Arpadi, S.M.; Yin, M.T. Bone Update: Is It Still an Issue Without Tenofovir Disoproxil Fumarate? Curr. HIV/AIDS Rep. 2020, 17, 1–5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zeng, Y.Q.; Xiao, J.; Li, C.L.; Wang, Y.; Zhang, L.; Pang, X.L.; Wang, D.; Du, J.; Zhao, H.X. Prevalence and risk factors for bone mineral density changes in antiretroviral therapy-naive human immunodeficiency virus-infected adults: A Chinese cohort study. Chin. Med. J. 2020, 133, 2940–2946. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mondy, K.; Yarasheski, K.; Powderly, W.G.; Whyte, M.; Claxton, S.; DeMarco, D.; Hoffmann, M.; Tebas, P. Longitudinal evolution of bone mineral density and bone markers in human immunodeficiency virus-infected individuals. Clin. Infect. Dis. 2003, 36, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Focà, E.; Motta, D.; Borderi, M.; Gotti, D.; Albini, L.; Calabresi, A.; Izzo, I.; Bellagamba, R.; Narciso, P.; Sighinolfi, L.; et al. Prospective evaluation of bone markers, parathormone and 1,25-(OH)2 vitamin D in HIV-positive patients after the initiation of tenofovir/emtricitabine with atazanavir/ritonavir or efavirenz. BMC Infect. Dis. 2012, 12, 38. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sharma, A.; Ma, Y.; Tien, P.C.; Scherzer, R.; Anastos, K.; Cohen, M.H.; Hans, D.; Yin, M.T. HIV Infection Is Associated With Abnormal Bone Microarchitecture: Measurement of Trabecular Bone Score in the Women’s Interagency HIV Study. J. Acquir. Immune Defic. Syndr. 2018, 78, 441–449. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pramukti, I.; Lindayani, L.; Chen, Y.C.; Yeh, C.Y.; Tai, T.W.; Fetzer, S.; Ko, N.Y. Bone fracture among people living with HIV: A systematic review and meta-regression of prevalence, incidence, and risk factors. PLoS ONE 2020, 15, e0233501. [Google Scholar] [CrossRef]
- Hansen, A.B.; Gerstoft, J.; Kronborg, G.; Larsen, C.S.; Pedersen, C.; Pedersen, G.; Obel, N. Incidence of low- and high-energy fractures in persons with and without HIV infection: A Danish population-based cohort study. AIDS 2012, 26, 285–293. [Google Scholar] [CrossRef]
- Overton, E.T.; Chan, E.S.; Brown, T.T.; Tebas, P.; McComsey, G.A.; Melbourne, K.M.; Napoli, A.; Hardin, W.R.; Ribaudo, H.J.; Yin, M.T. Vitamin D and calcium attenuate bone loss with antiretroviral therapy initiation: A randomized trial. Ann. Intern. Med. 2015, 162, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Aydın, Ö.; Ankaralı, H.; Ergen, P.; Baysal, N.B.; Çağ, Y. The evaluation of risk factors related to reduced bone mineral density in young people living with HIV. Afr. Health Sci. 2022, 22, 461–469. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Razvan, D.V.; Rosca, O.; Bratosin, F.; Predescu, V.; Vlad, S.V.; Vlad, A. Bone Quality Beyond DXA in People Living with HIV: A Systematic Review of HR-pQCT, TBS, Microindentation, and Vertebral Fractures. J. Clin. Med. 2025, 14, 7669. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Genant, H.K.; Wu, C.Y.; van Kuijk, C.; Nevitt, M.C. Vertebral fracture assessment using a semiquantitative technique. J. Bone Miner. Res. 1993, 8, 1137–1148. [Google Scholar] [CrossRef] [PubMed]
- Vasikaran, S.; Eastell, R.; Bruyère, O.; Foldes, A.J.; Garnero, P.; Griesmacher, A.; McClung, M.; Morris, H.A.; Silverman, S.; Trenti, T.; et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: A need for international reference standards. Osteoporos. Int. 2011, 22, 391–420. [Google Scholar] [CrossRef] [PubMed]
- Shevroja, E.; Reginster, J.Y.; Lamy, O.; Al-Daghri, N.; Chandran, M.; Demoux-Baiada, A.L.; Kohlmeier, L.; Lecart, M.P.; Messina, D.; Camargos, B.M.; et al. Update on the clinical use of trabecular bone score (TBS) in the management of osteoporosis: Results of an expert group meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO), and the International Osteoporosis Foundation (IOF) under the auspices of WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging. Osteoporos. Int. 2023, 34, 1501–1529. [Google Scholar] [CrossRef]
- Palomo, T.; Muszkat, P.; Weiler, F.G.; Dreyer, P.; Brandão, C.M.A.; Silva, B.C. Update on trabecular bone score. Arch. Endocrinol. Metab. 2022, 66, 694–706. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Clò, A.; Gibellini, D.; Damiano, D.; Vescini, F.; Ponti, C.; Morini, S.; Miserocchi, A.; Musumeci, G.; Calza, L.; Colangeli, V.; et al. Calcaneal quantitative ultrasound (QUS) and dual X-ray absorptiometry (DXA) bone analysis in adult HIV-positive patients. New Microbiol. 2015, 38, 345–356. [Google Scholar] [PubMed]
- Mannarino, T.; D’Antonio, A.; Mercinelli, S.; Falzarano, M.; Volpicelli, F.; Mainolfi, C.G.; Zappulo, E.; Di Filippo, G.; Cotugno, M.R.; Gentile, I.; et al. Trabecular bone score assessed by dual-energy X ray absorption predicts vertebral fractures in HIV infected young adults. Bone Rep. 2024, 22, 101797. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ciullini, L.; Pennica, A.; Argento, G.; Novarini, D.; Teti, E.; Pugliese, G.; Aceti, A.; Conti, F.G. Trabecular bone score (TBS) is associated with sub-clinical vertebral fractures in HIV-infected patients. J. Bone Miner. Metab. 2018, 36, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Vartolomei, M.D.; Cotoi, O.S.; Badea, M.A.; Chibelean, C.B.; Cotoi, T.; Morariu, V.; Albu, C.; Morariu, S.H. Indurative Edema of the Prepuce Mimicing Phimosis, an Atypical Manifestation of Primary Syphilis. Acta Dermatovenerol. Croat. 2015, 23, 301–303. [Google Scholar] [PubMed]
- Daliu, P.; Bogdan, I.; Rosca, O.; Licker, M.; Stanga, L.C.; Hogea, E.; Vaduva, D.B.; Muntean, D. Fungal Pulmonary Coinfections in COVID-19: Microbiological Assessment, Inflammatory Profiles, and Clinical Outcomes. Biomedicines 2025, 13, 864. [Google Scholar] [CrossRef]
- Decean, L.; Badea, M.; Rus, V.; Buicu, G.; Sasu, A.; Pilut, C.N.; Mihai, A. The Implication of Misinformation and Stigma in Age-Related Quality of Life, Depression, and Coping Mechanisms of Adult Patients with Psoriasis. Medicina 2022, 58, 1420. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stanciu, I.-V.; Fildan, A.-P.; Thakur, B.R.; Ilie, A.C.; Stanga, L.; Oancea, C.; Tudorache, E.; Bratosin, F.; Rosca, O.; Bogdan, I.; et al. Full-Blood Inflammatory Ratios Predict Length of Stay but Not Early Death in Romanian Pulmonary Tuberculosis. Medicina 2025, 61, 1238. [Google Scholar] [CrossRef]
- Cozma, G.V.; Muntean, C.; Faur, A.M.; Gaborean, V.; Petrache, I.A.; Feier, C.V.I. Unveiling the Effects of the COVID-19 Pandemic on Lung Cancer Surgery. Medicina 2024, 60, 964. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moore, A.E.B.; Burns, J.E.; Sally, D.; Milinkovic, A.; Krokos, G.; John, J.; Rookyard, C.; Borca, A.; Pool, E.R.M.; Tostevin, A.; et al. Bone turnover change after randomized switch from tenofovir disoproxil to tenofovir alafenamide fumarate in men with HIV. AIDS 2024, 38, 521–529. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hagins, D.; Orkin, C.; Daar, E.S.; Mills, A.; Brinson, C.; DeJesus, E.; Post, F.A.; Morales-Ramirez, J.; Thompson, M.; Osiyemi, O.; et al. Switching to coformulated rilpivirine (RPV), emtricitabine (FTC) and tenofovir alafenamide from either RPV, FTC and tenofovir disoproxil fumarate (TDF) or efavirenz, FTC and TDF: 96-week results from two randomized clinical trials. HIV Med. 2018, 19, 724–733. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- DeJesus, E.; Haas, B.; Segal-Maurer, S.; Ramgopal, M.N.; Mills, A.; Margot, N.; Liu, Y.P.; Makadzange, T.; McCallister, S. Superior Efficacy and Improved Renal and Bone Safety After Switching from a Tenofovir Disoproxil Fumarate- to a Tenofovir Alafenamide-Based Regimen Through 96 Weeks of Treatment. AIDS Res. Hum. Retroviruses 2018, 34, 337–342. [Google Scholar] [CrossRef] [PubMed]
- McCloskey, E.V.; Odén, A.; Harvey, N.C.; Leslie, W.D.; Hans, D.; Johansson, H.; Barkmann, R.; Boutroy, S.; Brown, J.; Chapurlat, R.; et al. A Meta-Analysis of Trabecular Bone Score in Fracture Risk Prediction and Its Relationship to FRAX. J. Bone Miner. Res. 2016, 31, 940–948. [Google Scholar] [CrossRef] [PubMed]




| Variable | Total (n = 87) | Normal TBS (n = 25) | Partially Degraded TBS (n = 30) | Degraded TBS (n = 32) | p-Value |
|---|---|---|---|---|---|
| Age, years, mean ± SD | 44.8 ± 8.9 | 39.7 ± 7.4 | 44.6 ± 8.6 | 49.1 ± 8.7 | 0.002 |
| Female sex, n (%) | 27 (31) | 5 (20) | 10 (33) | 12 (38) | 0.19 |
| BMI, kg/m2, mean ± SD | 25.1 ± 3.4 | 26.1 ± 3.2 | 25.3 ± 3.1 | 24.2 ± 3.6 | 0.089 |
| Duration of HIV, years, mean ± SD | 10.9 ± 5.0 | 8.8 ± 4.1 | 11.1 ± 4.8 | 12.7 ± 5.2 | 0.021 |
| Nadir CD4+, cells/mm3, mean ± SD | 252.3 ± 118.7 | 294.7 ± 123.1 | 258.9 ± 110.6 | 217.6 ± 107.4 | 0.035 |
| Current CD4+, cells/mm3, mean ± SD | 567.4 ± 176.3 | 613.7 ± 164.8 | 571.2 ± 173.6 | 529.3 ± 181.7 | 0.066 |
| Viral suppression (<50 copies/mL), n (%) | 68 (78) | 23 (92) | 24 (80) | 21 (66) | 0.041 |
| Tenofovir DF exposure ever, n (%) | 54 (62) | 13 (52) | 20 (67) | 21 (66) | 0.039 |
| Current smoker, n (%) | 29 (33) | 7 (28) | 9 (30) | 13 (41) | 0.27 |
| Measure | All Patients (n = 87) | Normal BMD (n = 33) | Low BMD * (n = 54) | p-Value † |
|---|---|---|---|---|
| Lumbar spine T-score, mean ± SD | −1.2 ± 0.9 | −0.4 ± 0.7 | −1.7 ± 0.8 | <0.001 |
| Total hip T-score, mean ± SD | −0.9 ± 0.8 | −0.2 ± 0.6 | −1.3 ± 0.7 | <0.001 |
| Femoral neck T-score, mean ± SD | −1.1 ± 0.8 | −0.3 ± 0.6 | −1.6 ± 0.7 | <0.001 |
| TBS (L1–L4), mean ± SD | 1.28 ± 0.09 | 1.34 ± 0.07 | 1.24 ± 0.08 | <0.001 |
| Calcaneal SOS, m/s, mean ± SD | 1543.7 ± 39.2 | 1561.3 ± 36.4 | 1532.4 ± 37.1 | 0.004 |
| Calcaneal BUA, dB/MHz, mean ± SD | 108.7 ± 12.4 | 112.6 ± 11.3 | 106.2 ± 12.7 | 0.018 |
| Calcaneal BUA, dB/MHz, mean ± SD | 108.7 ± 12.4 | 112.6 ± 11.3 | 106.2 ± 12.7 | 0.018 |
| BMD Category | n | TBS Normal, n (%) | TBS Partially Degraded, n (%) | TBS Degraded, n (%) | Vertebral Fracture, n (%) |
|---|---|---|---|---|---|
| Normal BMD | 33 | 18 (55) | 9 (27) | 6 (18) | 3 (9) |
| Osteopenia | 38 | 7 (18) | 14 (37) | 17 (45) | 6 (16) |
| Osteoporosis | 16 | 0 (0) | 7 (44) | 9 (56) | 6 (38) |
| Total | 87 | 25 (29) | 30 (34) | 32 (37) | 15 (17) |
| Variable | TDF Ever (n = 54) | TDF Never (n = 33) | p-Value |
|---|---|---|---|
| Age, years, mean ± SD | 45.3 ± 9.1 | 44.0 ± 8.6 | 0.547 |
| Lumbar spine T-score, mean ± SD | −1.4 ± 0.9 | −0.9 ± 0.8 | 0.016 |
| Total hip T-score, mean ± SD | −1.0 ± 0.8 | −0.7 ± 0.7 | 0.071 |
| TBS (L1–L4), mean ± SD | 1.25 ± 0.08 | 1.32 ± 0.07 | 0.004 |
| Calcaneal SOS, m/s, mean ± SD | 1539.2 ± 38.7 | 1550.8 ± 38.1 | 0.083 |
| Degraded TBS, n (%) | 25 (46) | 7 (21) | 0.012 |
| Vertebral fracture, n (%) | 12 (22) | 3 (9) | 0.089 |
| Predictor Variable | Pearson r | p-Value |
|---|---|---|
| Age, years | −0.41 | <0.001 |
| BMI, kg/m2 | 0.18 | 0.092 |
| Duration of HIV, years | −0.29 | 0.008 |
| Nadir CD4+, cells/mm3 | 0.27 | 0.012 |
| Lumbar spine T-score | 0.56 | <0.001 |
| Predictor | Adjusted OR | 95% CI | p-Value |
|---|---|---|---|
| Age (per 10-year increase) | 1.78 | 1.13–2.83 | 0.013 |
| BMI (per 1 kg/m2 increase) | 0.91 | 0.83–0.99 | 0.031 |
| Duration of HIV (per 5-year increase) | 1.36 | 1.02–1.82 | 0.036 |
| Nadir CD4+ < 200 vs. ≥200 cells/mm3 | 2.29 | 1.06–4.97 | 0.035 |
| TDF exposure ever (yes vs. no) | 2.14 | 0.97–4.72 | 0.059 |
| Viral suppression absent vs. present | 1.76 | 0.81–3.85 | 0.149 |
| Predictor | Unit/Coding | B (Unstandardized) | SE | Standardized β | 95% CI for B | p-Value |
|---|---|---|---|---|---|---|
| Age (per 10-year increase) | years | −0.024 | 0.008 | −0.31 | −0.040 to −0.009 | 0.004 |
| BMI (per 1 kg/m2 increase) | kg/m2 | 0.006 | 0.003 | 0.19 | 0.000 to 0.011 | 0.038 |
| Duration of HIV (per 5-year increase) | years | −0.011 | 0.005 | −0.21 | −0.022 to −0.001 | 0.034 |
| Nadir CD4+ (per 100 cells/mm3) | cells/mm3 | 0.014 | 0.006 | 0.23 | 0.003 to 0.025 | 0.015 |
| TDF exposure ever | yes = 1, no = 0 | −0.031 | 0.013 | −0.22 | −0.056 to −0.006 | 0.017 |
| Age × TDF interaction | per 10 years, TDF yes vs. no | −0.009 | 0.005 | −0.16 | −0.019 to 0.001 | 0.082 |
| Model | Variables Included | AUC | 95% CI | p-Value vs. AUC = 0.5 | ΔAUC vs. Previous Model | p-Value for ΔAUC | Category-Free NRI vs. Previous (95% CI) | p-Value for NRI |
|---|---|---|---|---|---|---|---|---|
| A | Age, sex, BMI, smoking, duration of HIV | 0.71 | 0.58–0.84 | 0.006 | – | – | – | – |
| B | Model A + lumbar spine T-score | 0.79 | 0.68–0.90 | <0.001 | +0.08 | 0.041 | 0.17 (0.02–0.32) | 0.028 |
| C | Model B + TBS | 0.85 | 0.76–0.94 | <0.001 | +0.06 | 0.031 | 0.21 (0.04–0.37) | 0.017 |
| Characteristic | Cluster 1: “Low BMD/High Turnover” (n = 30) | Cluster 2: “Intermediate BMD/Mixed Turnover” (n = 27) | Cluster 3: “Near-Normal Bone” (n = 30) | p-Value |
|---|---|---|---|---|
| Lumbar spine T-score, mean ± SD | −1.9 ± 0.7 | −1.1 ± 0.6 | −0.4 ± 0.5 | <0.001 |
| TBS (L1–L4), mean ± SD | 1.21 ± 0.07 | 1.27 ± 0.07 | 1.35 ± 0.06 | <0.001 |
| Calcaneal SOS, m/s, mean ± SD | 1521.6 ± 32.9 | 1541.7 ± 33.8 | 1563.2 ± 34.4 | <0.001 |
| TDF exposure ever, n (%) | 25 (83.3) | 17 (63.0) | 12 (40.0) | 0.004 |
| Vertebral fracture, n (%) | 12 (40.0) | 5 (18.5) | 1 (3.3) | <0.001 |
| Age, years, mean ± SD | 47.8 ± 8.4 | 44.1 ± 8.7 | 42.1 ± 8.3 | 0.021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Razvan, D.V.; Rosca, O.; Bogdan, I.G.; Stanga, L.; Laitin, S.M.D.; Vlad, A. Beyond DXA: Trabecular Bone Score, Quantitative Ultrasound and Bone Turnover Markers for Morphometric Vertebral Fracture Assessment in People Living with HIV. Diagnostics 2026, 16, 277. https://doi.org/10.3390/diagnostics16020277
Razvan DV, Rosca O, Bogdan IG, Stanga L, Laitin SMD, Vlad A. Beyond DXA: Trabecular Bone Score, Quantitative Ultrasound and Bone Turnover Markers for Morphometric Vertebral Fracture Assessment in People Living with HIV. Diagnostics. 2026; 16(2):277. https://doi.org/10.3390/diagnostics16020277
Chicago/Turabian StyleRazvan, David Vladut, Ovidiu Rosca, Iulia Georgiana Bogdan, Livia Stanga, Sorina Maria Denisa Laitin, and Adrian Vlad. 2026. "Beyond DXA: Trabecular Bone Score, Quantitative Ultrasound and Bone Turnover Markers for Morphometric Vertebral Fracture Assessment in People Living with HIV" Diagnostics 16, no. 2: 277. https://doi.org/10.3390/diagnostics16020277
APA StyleRazvan, D. V., Rosca, O., Bogdan, I. G., Stanga, L., Laitin, S. M. D., & Vlad, A. (2026). Beyond DXA: Trabecular Bone Score, Quantitative Ultrasound and Bone Turnover Markers for Morphometric Vertebral Fracture Assessment in People Living with HIV. Diagnostics, 16(2), 277. https://doi.org/10.3390/diagnostics16020277

