Impaired LC-NE System—A Novel Molecular Mechanism Underlying Health Disparity and Increased Prevalence of Alzheimer’s Disease Among African Americans
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Magnetic Resonance Imaging
2.3. PET Imaging and Data Analysis
3. Results
3.1. Associations of NET Availability with Race, Sex, and Age
3.2. Race Effects and Sex Effects on Age-Associated Decline Rate of Regional NET Availability
3.3. Representative Images
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| L (left) or R (right) of CbCtx, Amy, Acc, Hip, Ofac, Pal, ThlP, BS | |
| CbCtx | cerebellar cortex |
| Amy | amygdala |
| Acc | anterior cingulate cortex |
| Hip | hippocampus |
| Ofac | olfactory lobe |
| Pal | pallidum (Globus Pallidus) |
| THIP | thalamus |
| BS | brain stem |
References
- Shin, J.; Doraiswamy, P.M. Underrepresentation of African-Americans in Alzheimer’s Trials: A Call for Affirmative Action. Front. Aging Neurosci. 2016, 8, 123. [Google Scholar] [CrossRef] [PubMed]
- Barnes, L.L.; Bennett, D.A. Alzheimer’s Disease in African Americans: Risk Factors and Challenges for the Future. Health Aff. 2014, 33, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Dilworth-Anderson, P.; Hendrie, H.C.; Manly, J.J.; Khachaturian, A.S.; Fazio, S. Diagnosis and Assessment of Alzheimer’s Disease in Diverse Populations. Alzheimer’s Dement. 2008, 4, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Gurland, B.J.; Wilder, D.E.; Lantigua, R.; Stern, Y.; Chen, J.; Killeffer, E.H.; Mayeux, R. Rates of Dementia in Three Ethnoracial Groups. Int. J. Geriatr. Psychiatry 1999, 14, 481–493. [Google Scholar] [CrossRef]
- Potter, G.G.; Plassman, B.L.; Burke, J.R.; Kabeto, M.U.; Langa, K.M.; Llewellyn, D.J.; Rogers, M.A.; Steffens, D.C. Cognitive Performance and Informant Reports in the Diagnosis of Cognitive Impairment and Dementia in African Americans and Whites. Alzheimer’s Dement. 2009, 5, 445–453. [Google Scholar] [CrossRef]
- Jagust, W. Imaging the Evolution and Pathophysiology of Alzheimer Disease. Nat. Rev. Neurosci. 2018, 19, 687–700. [Google Scholar] [CrossRef]
- Gottesman, R.F.; Schneider, A.L.; Zhou, Y.; Chen, X.; Green, E.; Gupta, N.; Knopman, D.S.; Mintz, A.; Rahmim, A.; Sharrett, A.R.; et al. The Aric-Pet Amyloid Imaging Study: Brain Amyloid Differences by Age, Race, Sex, and Apoe. Neurology 2016, 87, 473–480. [Google Scholar] [CrossRef]
- Morris, J.C.; Schindler, S.E.; McCue, L.M.; Moulder, K.L.; Benzinger, T.L.S.; Cruchaga, C.; Fagan, A.M.; Grant, E.; Gordon, B.A.; Holtzman, D.M.; et al. Assessment of Racial Disparities in Biomarkers for Alzheimer Disease. JAMA Neurol. 2019, 76, 264–273. [Google Scholar] [CrossRef]
- Garrett, S.L.; McDaniel, D.; Obideen, M.; Trammell, A.R.; Shaw, L.M.; Goldstein, F.C.; Hajjar, I. Racial Disparity in Cerebrospinal Fluid Amyloid and Tau Biomarkers and Associated Cutoffs for Mild Cognitive Impairment. JAMA Netw. Open 2019, 2, e1917363. [Google Scholar] [CrossRef]
- Howell, J.C.; Watts, K.D.; Parker, M.W.; Wu, J.; Kollhoff, A.; Wingo, T.S.; Dorbin, C.D.; Qiu, D.; Hu, W.T. Race Modifies the Relationship between Cognition and Alzheimer’s Disease Cerebrospinal Fluid Biomarkers. Alzheimer’s Res. Ther. 2017, 9, 88. [Google Scholar] [CrossRef]
- Wilkins, C.H.; Grant, E.A.; Schmitt, S.E.; McKeel, D.W.; Morris, J.C. The Neuropathology of Alzheimer Disease in African American and White Individuals. Arch. Neurol. 2006, 63, 87–90. [Google Scholar] [CrossRef]
- Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a biological Definition Of Alzheimer’s Disease. Alzheimer’s Dement. 2018, 14, 535–562. [Google Scholar]
- Chen, H.Y.; Panegyres, P.K. The Role of Ethnicity in Alzheimer’s Disease: Findings from the C-Path Online Data Repository. J. Alzheimer’s Dis. 2016, 51, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Mayeda, E.R.; Glymour, M.M.; Quesenberry, C.P.; Whitmer, R.A. Inequalities in Dementia Incidence between Six Racial and Ethnic Groups over 14 years. Alzheimer’s Dement. 2016, 12, 216–224. [Google Scholar]
- Barnes, L.L.; Leurgans, S.; Aggarwal, N.T.; Shah, R.C.; Arvanitakis, Z.; James, B.D.; Buchman, A.S.; Bennett, D.A.; Schneider, J.A. Mixed Pathology Is More Likely in Black Than White Decedents with Alzheimer Dementia. Neurology 2015, 85, 528–534. [Google Scholar] [CrossRef]
- Williams, D.R.; Lawrence, J.A.; Davis, B.A. Racism and Health: Evidence and Needed Research. Annu. Rev. Public Health 2019, 40, 105–125. [Google Scholar]
- Williams, D.R.; Mohammed, S.A. Racism and Health II: A Needed Research Agenda for Effective Interventions. Am. Behav. Sci. 2013, 57, 1200–1226. [Google Scholar] [CrossRef]
- Williams, D.R.; Mohammed, S.A. Racism and Health I: Pathways and Scientific Evidence. Am. Behav. Sci. 2013, 57, 1152–1173. [Google Scholar] [CrossRef]
- Williams, D.R. Race and Health: Basic Questions, Emerging Directions. Ann. Epidemiol. 1997, 7, 322–333. [Google Scholar]
- Braveman, P.A.; Cubbin, C.; Egerter, S.; Williams, D.R.; Pamuk, E. Socioeconomic Disparities in Health in the United States: What the Patterns Tell Us. Am. J. Public Health 2010, 100, S186–S196. [Google Scholar] [CrossRef]
- Williams, D.R. Stress and the Mental Health of Populations of Color: Advancing Our Understanding of Race-Related Stressors. J. Health Soc. Behav. 2018, 59, 466–485. [Google Scholar] [CrossRef] [PubMed]
- Spencer, S.J.; Logel, C.; Davies, P.G. Stereotype Threat. Annu. Rev. Psychol. 2016, 67, 415–437. [Google Scholar] [CrossRef] [PubMed]
- Slopen, N.; Lewis, T.T.; Williams, D.R. Discrimination and Sleep: A Systematic Review. Sleep Med. 2016, 18, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Hicken, M.T.; Lee, H.; Ailshire, J.; Burgard, S.A.; Williams, R.D. “Every Shut Eye, Ain’t Sleep”: The Role of Racism-Related Vigilance in Racial/Ethnic Disparities in Sleep Difficulty. Race Soc. Probl. 2013, 5, 100–112. [Google Scholar] [CrossRef]
- Leventhal, A.M.; Cho, J.; Andrabi, N.; Barrington-Trimis, J. Association of Reported Concern About Increasing Societal Discrimination with Adverse Behavioral Health Outcomes in Late Adolescence. JAMA Pediatr. 2018, 172, 924–933. [Google Scholar] [CrossRef]
- Borrell, L.N.; Crawford, N.D.; Barrington, D.S.; Maglo, K.N. Black/White Disparity in Self-Reported Hypertension: The Role of Nativity Status. J. Health Care Poor Underserved 2008, 19, 1148–1162. [Google Scholar] [CrossRef]
- Brondolo, E.; Love, E.E.; Pencille, M.; Schoenthaler, A.; Ogedegbe, G. Racism and Hypertension: A Review of the Empirical Evidence and Implications for Clinical Practice. Am. J. Hypertens. 2011, 24, 518–529. [Google Scholar] [CrossRef]
- Fiscella, K.; Holt, K. Racial Disparity in Hypertension Control: Tallying the Death Toll. Ann. Fam. Med. 2008, 6, 497–502. [Google Scholar] [CrossRef]
- Fuchs, F.D. Why Do Black Americans Have Higher Prevalence of Hypertension?: An Enigma Still Unsolved. Hypertension 2011, 57, 379–380. [Google Scholar] [CrossRef]
- Hajjar, I.; Kotchen, T.A. Trends in Prevalence, Awareness, Treatment, and Control of Hypertension in the United States, 1988–2000. JAMA 2003, 290, 199–206. [Google Scholar] [CrossRef]
- Halder, I.; Kip, K.E.; Mulukutla, S.R.; Aiyer, A.N.; Marroquin, O.C.; Huggins, G.S.; Reis, S.E. Biogeographic Ancestry, Self-Identified Race, and Admixture-Phenotype Associations in the Heart Score Study. Am. J. Epidemiol. 2012, 176, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Dolezsar, C.M.; McGrath, J.J.; Herzig, A.J.M.; Miller, S.B. Perceived Racial Discrimination and Hypertension: A Comprehensive Systematic Review. Health Psychol. 2014, 33, 20–34. [Google Scholar] [CrossRef] [PubMed]
- Peek, M.E.; Cargill, A.; Huang, E.S. Diabetes Health Disparities: A Systematic Review of Health Care Interventions. Med. Care Res. Rev. 2007, 64, 101S–156S. [Google Scholar] [CrossRef] [PubMed]
- Fuller-Rowell, T.E.; Homandberg, L.K.; Curtis, D.S.; Tsenkova, V.K.; Williams, D.R.; Ryff, C.D. Disparities in Insulin Resistance between Black and White Adults in the United States: The Role of Lifespan Stress Exposure. Psychoneuroendocrinology 2019, 107, 1–8. [Google Scholar] [CrossRef]
- Bernardo, C.O.; Bastos, J.L.; Gonzalez-Chica, D.A.; Peres, M.A.; Paradies, Y.C. Interpersonal Discrimination and Markers of Adiposity in Longitudinal Studies: A Systematic Review. Obes. Rev. 2017, 18, 1040–1049. [Google Scholar] [CrossRef]
- Aronson, J.; Burgess, D.; Phelan, S.M.; Juarez, L. Unhealthy Interactions: The Role of Stereotype Threat in Health Disparities. Am. J. Public Health 2013, 103, 50–56. [Google Scholar] [CrossRef]
- Leitner, J.B.; Hehman, E.; Ayduk, O.; Mendoza-Denton, R. Blacks’ Death Rate Due to Circulatory Diseases Is Positively Related to Whites’ Explicit Racial Bias. Psychol. Sci. 2016, 27, 1299–1311. [Google Scholar] [CrossRef]
- Lee, H.; Wildeman, C.; Wang, E.A.; Matusko, N.; Jackson, J.S. A Heavy Burden: The Cardiovascular Health Consequences of Having a Family Member Incarcerated. Am. J. Public Health 2014, 104, 421–427. [Google Scholar] [CrossRef]
- Lewis, T.T.; Williams, D.R.; Tamene, M.; Clark, C.R. Self-Reported Experiences of Discrimination and Cardiovascular Disease. Curr. Cardiovasc. Risk Rep. 2014, 8, 365. [Google Scholar] [CrossRef]
- Chae, D.H.; Clouston, S.; Hatzenbuehler, M.L.; Kramer, M.R.; Cooper, H.L.; Wilson, S.M.; Stephens-Davidowitz, S.I.; Gold, R.S.; Link, B.G. Association between an Internet-Based Measure of Area Racism and Black Mortality. PLoS ONE 2015, 10, e0122963. [Google Scholar]
- Braak, H.; Thal, D.R.; Ghebremedhin, E.; Del Tredici, K. Stages of the Pathologic Process in Alzheimer Disease: Age Categories from 1 to 100 Years. J. Neuropathol. Exp. Neurol. 2011, 70, 960–969. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.C.; He, B.; Perez, S.E.; Ginsberg, S.D.; Mufson, E.J.; Counts, S.E. Locus Coeruleus Cellular and Molecular Pathology during the Progression of Alzheimer’s Disease. Acta Neuropathol. Commun. 2017, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Gannon, M.; Che, P.; Chen, Y.; Jiao, K.; Roberson, E.D.; Wang, Q. Noradrenergic Dysfunction in Alzheimer’s Disease. Front. Neurosci. 2015, 9, 220. [Google Scholar]
- Burke, W.J.; Chung, H.D.; Huang, J.S.; Huang, S.S.; Haring, J.H.; Strong, R.; Marshall, G.L.; Joh, T.H. Evidence for Retrograde Degeneration of Epinephrine Neurons in Alzheimer’s Disease. Ann. Neurol. 1988, 24, 532–536. [Google Scholar]
- Mann, D.M.; Yates, P.O.; Hawkes, J. The Noradrenergic System in Alzheimer and Multi-Infarct Dementias. J. Neurol. Neurosurg. Psychiatry 1982, 45, 113–119. [Google Scholar] [CrossRef]
- Bondareff, W.; Mountjoy, C.Q.; Roth, M. Selective Loss of Neurones of Origin of Adrenergic Projection to Cerebral Cortex (Nucleus Locus Coeruleus) in Senile Dementia. Lancet 1981, 1, 783–784. [Google Scholar] [CrossRef]
- Bondareff, W.; Mountjoy, C.Q.; Roth, M.; Rossor, M.N.; Iversen, L.L.; Reynolds, G.P.; Hauser, D.L. Neuronal Degeneration in Locus Ceruleus and Cortical Correlates of Alzheimer Disease. Alzheimer Dis. Assoc. Disord. 1987, 1, 256–262. [Google Scholar] [CrossRef]
- Mather, M.; Harley, C.W. The Locus Coeruleus: Essential for Maintaining Cognitive Function and the Aging Brain. Trends Cogn. Sci. 2016, 20, 214–226. [Google Scholar] [CrossRef]
- Chrousos, G.P. Stress and Disorders of the Stress System. Nat. Rev. Endocrinol. 2009, 5, 374–381. [Google Scholar] [CrossRef]
- Chrousos, G.P.; Gold, P.W. The Concepts of Stress and Stress System Disorders. Overview of Physical and Behavioral Homeostasis. JAMA 1992, 267, 1244–1252. [Google Scholar] [CrossRef]
- Ding, Y.S.; Lin, K.S.; Logan, J. Pet Imaging of Norepinephrine Transporters. Curr. Pharm. Des. 2006, 12, 3831–3845. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.S. Progress in PET imaging of the norepinephrine transporter system. In PET and SPECT of Neurobiological Systems; Dierckx, R.A.J.O., Otte, A., de Vries, E.F.J., van Waarde, A., Lammertsma, A.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 561–584. [Google Scholar]
- Ding, Y.S.; Lin, K.S.; Garza, V.; Carter, P.; Alexoff, D.; Logan, J.; Shea, C.; Xu, Y.; King, P. Evaluation of a New Norepinephrine Transporter Pet Ligand in Baboons, Both in Brain and Peripheral Organs. Synapse 2003, 50, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.S.; Naganawa, M.; Gallezot, J.D.; Nabulsi, N.; Lin, S.F.; Ropchan, J.; Weinzimmer, D.; McCarthy, T.J.; Carson, R.E.; Huang, Y.; et al. Clinical doses of atomoxetine significantly occupy both norepinephrine and serotonin transports: Implications on treatment of depression and ADHD. NeuroImage 2014, 86, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Gallezot, J.D.; Weinzimmer, D.; Nabulsi, N.; Lin, S.F.; Fowles, K.; Sandiego, C.; McCarthy, T.J.; Maguire, R.P.; Carson, R.E.; Ding, Y.S. Evaluation of [(11)C]MRB for assessment of occupancy of norepinephrine transporters: Studies with atomoxetine in non-human primates. NeuroImage 2011, 56, 268–279. [Google Scholar] [CrossRef]
- Hannestad, J.; Gallezot, J.D.; Planeta-Wilson, B.; Lin, S.F.; Williams, W.A.; van Dyck, C.H.; Malison, R.T.; Carson, R.E.; Ding, Y.S. Clinically relevant doses of methylphenidate significantly occupy norepinephrine transporters in humans in vivo. Biol. Psychiatry 2010, 68, 854–860. [Google Scholar] [CrossRef]
- Li, C.S.; Potenza, M.N.; Lee, D.E.; Planeta, B.; Gallezot, J.D.; Labaree, D.; Henry, S.; Nabulsi, N.; Sinha, R.; Ding, Y.S.; et al. Decreased Norepinephrine Transporter Availability in Obesity: Positron Emission Tomography Imaging with (S,S)-[(11)C]O-Methylreboxetine. NeuroImage 2014, 86, 306–310. [Google Scholar] [CrossRef]
- Hesse, S.; Becker, G.A.; Rullmann, M.; Bresch, A.; Luthardt, J.; Hankir, M.K.; Zientek, F.; Reissig, G.; Patt, M.; Arelin, K.; et al. Central Noradrenaline Transporter Availability in Highly Obese, Non-Depressed Individuals. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 1056–1064. [Google Scholar] [CrossRef]
- Melasch, J.; Rullmann, M.; Hilbert, A.; Luthardt, J.; Becker, G.A.; Patt, M.; Villringer, A.; Arelin, K.; Meyer, P.M.; Lobsien, D.; et al. The Central Nervous Norepinephrine Network Links a Diminished Sense of Emotional Well-Being to an Increased Body Weight. Int. J. Obes. 2016, 40, 779–787. [Google Scholar] [CrossRef]
- Schinke, C.; Hesse, S.; Rullmann, M.; Becker, G.A.; Luthardt, J.; Zientek, F.; Patt, M.; Stoppe, M.; Schmidt, E.; Meyer, K.; et al. Central noradrenaline transporter availability is linked with HPA axis responsiveness and copeptin in human obesity and non-obese controls. Stress 2018, 22, 93–102. [Google Scholar] [CrossRef]
- Vettermann, F.J.; Rullmann, M.; Becker, G.A.; Luthardt, J.; Zientek, F.; Patt, M.; Meyer, P.M.; McLeod, A.; Brendel, M.; Bluher, M.; et al. Noradrenaline Transporter Availability on [(11)C]Mrb Pet Predicts Weight Loss Success in Highly Obese Adults. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1618–1625. [Google Scholar] [CrossRef]
- Bresch, A.; Rullmann, M.; Luthardt, J.; Becker, G.A.; Patt, M.; Ding, Y.S.; Hilbert, A.; Sabri, O.; Hesse, S. Hunger and Disinhibition but Not Cognitive Restraint Are Associated with Central Norepinephrine Transporter Availability. Appetite 2017, 117, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Bresch, A.; Rullmann, M.; Luthardt, J.; Becker, G.A.; Reissig, G.; Patt, M.; Ding, Y.S.; Hilbert, A.; Sabri, O.; Hesse, S. Emotional Eating and in Vivo Norepinephrine Transporter Availability in Obesity: A [(11) C]Mrb Pet Pilot Study. Int. J. Eat. Disord. 2017, 50, 152–156. [Google Scholar] [PubMed]
- Hwang, J.J.; Yeckel, C.W.; Gallezot, J.D.; Aguiar, R.B.; Ersahin, D.; Gao, H.; Kapinos, M.; Nabulsi, N.; Huang, Y.; Cheng, D.; et al. Imaging Human Brown Adipose Tissue under Room Temperature Conditions with (11)C-Mrb, a Selective Norepinephrine Transporter Pet Ligand. Metabolism 2015, 64, 747–755. [Google Scholar] [PubMed]
- Lin, S.F.; Fan, X.; Yeckel, C.W.; Weinzimmer, D.; Mulnix, T.; Gallezot, J.D.; Carson, R.E.; Sherwin, R.S.; Ding, Y.S. Ex Vivo and in Vivo Evaluation of the Norepinephrine Transporter Ligand [11c]Mrb for Brown Adipose Tissue Imaging. Nucl. Med. Biol. 2012, 39, 1081–1086. [Google Scholar] [CrossRef]
- Belfort-DeAguiar, R.; Gallezot, J.D.; Hwang, J.J.; Elshafie, A.; Yeckel, C.W.; Chan, O.; Carson, R.E.; Ding, Y.S.; Sherwin, R.S. Noradrenergic Activity in the Human Brain: A Mechanism Supporting the Defense against Hypoglycemia. J. Clin. Endocrinol. Metab. 2018, 103, 2244–2252. [Google Scholar] [CrossRef]
- Goldstein, D.S.; Holmes, C.; Ding, Y.-S.; Sharabi, Y. Neuroimaging evidence for decreased cardiac sympathetic innervation and a vesicular storage defect in residual nerves in Lewy body forms of neurogenic orthostatic hypotension. In Proceedings of the American Autonomic Society 2018, Newport Beach, CA, USA, 28 September 2018. [Google Scholar]
- Ding, Y.S.; Singhal, T.; Planeta-Wilson, B.; Gallezot, J.D.; Nabulsi, N.; Labaree, D.; Ropchan, J.; Henry, S.; Williams, W.; Carson, R.E.; et al. Pet Imaging of the Effects of Age and Cocaine on the Norepinephrine Transporter in the Human Brain Using (S,S)-[(11)C]O-Methylreboxetine and Hrrt. Synapse 2010, 64, 30–38. [Google Scholar]
- Destrieux, C.; Fischl, B.; Dale, A.; Halgren, E. Automatic Parcellation of Human Cortical Gyri and Sulci Using Standard Anatomical Nomenclature. NeuroImage 2010, 53, 1–15. [Google Scholar] [CrossRef]
- Innis, R.B.; Cunningham, V.J.; Delforge, J.; Fujita, M.; Gjedde, A.; Gunn, R.N.; Holden, J.; Houle, S.; Huang, S.C.; Ichise, M.; et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J. Cereb. Blood Flow Metab. 2007, 27, 1533–1539. [Google Scholar] [CrossRef]
- Clegg, L.X.; Hankey, B.F.; Tiwari, R.; Feuer, E.J.; Edwards, B.K. Estimating Average Annual Per Cent Change in Trend Analysis. Stat. Med. 2009, 28, 3670–3682. [Google Scholar] [CrossRef]
- Agresti, A. A Survey of Exact Inference for Contingency Tables. Stat. Sci. 1992, 7, 131–177. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Chen, P.; Fan, Y.; Li, Y.; Sun, Z.; Bissette, G.; Zhu, M.Y. Chronic Social Defeat up-Regulates Expression of Norepinephrine Transporter in Rat Brains. Neurochem. Int. 2012, 60, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.K.; Knudsen, K.; Lillethorup, T.P.; Landau, A.M.; Parbo, P.; Fedorova, T.; Audrain, H.; Bender, D.; Østergaard, K.; Brooks, D.J.; et al. In Vivo Imaging of Neuromelanin in Parkinson’s Disease Using 18 F-Av-1451 Pet. Brain 2016, 139, 2039–2049. [Google Scholar] [CrossRef] [PubMed]
- Saint-Aubert, L.; Lemoine, L.; Chiotis, K.; Leuzy, A.; Rodriguez-Vieitez, E.; Nordberg, A. Tau Pet Imaging: Present and Future Directions. Mol. Neurodegener. 2017, 12, 19. [Google Scholar] [CrossRef]
- Lemoine, L.; Leuzy, A.; Chiotis, K.; Rodriguez-Vieitez, E.; Nordberg, A. Tau Positron Emission Tomography Imaging in Tauopathies: The Added Hurdle of Off-Target Binding. Alzheimer’s Dement. 2018, 10, 232–236. [Google Scholar] [CrossRef]
- Carson, R.E.; Naganawa, M.; Matuskey, D.; Mecca, A.; Pittman, B.; Toyonaga, T.; Lu, Y.; Dias, M.; Nabulsi, N.; Finnema, S.; et al. Age and sex effects on synaptic density in healthy humans as assessed with SV2A PET. J. Nucl. Med. 2018, 59, 541. [Google Scholar]
- Hesse, S.; Muller, U.; Rullmann, M.; Luthardt, J.; Bresch, A.; Becker, A.G.; Zientek, F.; Patt, M.; Meyer, M.P.; Bluher, M.; et al. The Association between in Vivo Central Noradrenaline Transporter Availability and Trait Impulsivity. Psychiatry Res. Neuroimaging 2017, 267, 9–14. [Google Scholar] [CrossRef]
- Ressler, K.J.; Nemeroff, C.B. Role of Norepinephrine in the Pathophysiology and Treatment of Mood Disorders. Biol. Psychiatry 1999, 46, 1219–1233. [Google Scholar] [CrossRef]
- Sommerauer, M.; Fedorova, T.D.; Hansen, A.K.; Knudsen, K.; Otto, M.; Jeppesen, J.; Frederiksen, Y.; Blicher, J.U.; Geday, J.; Nahimi, A.; et al. Evaluation of the Noradrenergic System in Parkinson’s Disease: An 11c-Mener Pet and Neuromelanin Mri Study. Brain 2018, 141, 496–504. [Google Scholar] [CrossRef]
- Grudzien, A.; Shaw, P.; Weintraub, S.; Bigio, E.; Mash, D.C.; Mesulam, M.M. Locus Coeruleus Neurofibrillary Degeneration in Aging, Mild Cognitive Impairment and Early Alzheimer’s Disease. Neurobiol. Aging 2007, 28, 327–335. [Google Scholar] [CrossRef]
- Haglund, M.; Sjobeck, M.; Englund, E. Locus Ceruleus Degeneration Is Ubiquitous in Alzheimer’s Disease: Possible Implications for Diagnosis and Treatment. Neuropathology 2006, 26, 528–532. [Google Scholar] [CrossRef]
- Theofilas, P.; Ehrenberg, A.J.; Dunlop, S.; Di Lorenzo Alho, A.T.; Nguy, A.; Leite, R.E.P.; Rodriguez, R.D.; Mejia, M.B.; Suemoto, C.K.; Ferretti-Rebustini, R.E.D.L.; et al. Locus Coeruleus Volume and Cell Population Changes during Alzheimer’s Disease Progression: A Stereological Study in Human Postmortem Brains with Potential Implication for Early-Stage Biomarker Discovery. Alzheimer’s Dement. 2017, 13, 236–246. [Google Scholar] [CrossRef]
- Tomlinson, B.E.; Irving, D.; Blessed, G. Cell Loss in the Locus Coeruleus in Senile Dementia of Alzheimer Type. J. Neurol. Sci. 1981, 49, 419–428. [Google Scholar] [CrossRef]
- Wilson, R.S.; Nag, S.; Boyle, P.A.; Hizel, L.P.; Yu, L.; Buchman, A.S.; Schneider, J.A.; Bennett, D.A. Neural Reserve, Neuronal Density in the Locus Ceruleus, and Cognitive Decline. Neurology 2013, 80, 1202–1208. [Google Scholar] [CrossRef]
- Kapur, T.; Pieper, S.; Fedorov, A.; Fillion-Robin, J.C.; Halle, M.; O’Donnell, L.; Lasso, A.; Ungi, T.; Pinter, C.; Finet, J.; et al. Increasing the Impact of Medical ImageComputing Using Community-Based Open-Access Hackathons: The Na-Mic and 3d SlicerExperience. Med. Image Anal. 2016, 33, 176–180. [Google Scholar] [CrossRef]





| AA | White | ||||
|---|---|---|---|---|---|
| Median | IQR a | Median | IQR a | q-Value b | |
| Hip | 0.06 | (−0.04 to 0.12) | −0.07 | (−0.13 to −0.02) | 0.020 * |
| Pal | 0.09 | (0 to 0.15) | −0.04 | (−0.08 to 0.04) | 0.032 * |
| CbCtx | −0.01 | (−0.08 to 0.05) | −0.08 | (−0.13 to −0.04) | 0.045 * |
| Ofac | 0.04 | (−0.03 to 0.16) | −0.04 | (−0.07 to 0.02) | 0.038 * |
| ACC | 0.16 | (−0.05 to 0.35) | −0.03 | (−0.1 to 0.11) | 0.034 * |
| ThlP | 0.39 | (0.3 to 0.49) | 0.28 | (0.22 to 0.39) | 0.036 * |
| Amy | 0.07 | (−0.02 to 0.12) | −0.07 | (−0.11 to 0.09) | 0.070 |
| Sample | Regions | Stats | White | AA | Wilcoxon Signed Rank p Value * |
|---|---|---|---|---|---|
| All participants (n = 30) | 16 ROIs a | Mean (SD) | 0.12 (0.22) | −0.53 (0.45) | <0.001 |
| Median [IQR] | 0.05 [−0.04 to 0.24] | −0.53 [−0.89 to −0.20] | |||
| 12 ROIs b | Mean (SD) | 0.06 (0.14) | −0.57 (0.34) | 0.003 | |
| Median [IQR] | 0.03 [−0.05 to 0.20] | −0.53 [−0.81 to −0.30] | |||
| Age matched c (n = 28) | 16 ROIs a | Mean (SD) | 0.23 (0.35) | −0.53 (0.45) | <0.001 |
| Median [IQR] | 0.24 [0.02 to 0.29] | −0.53 [−0.89 to −0.20] | |||
| 12 ROIs b | Mean (SD) | 0.15 (0.21) | −0.57 (0.34) | 0.002 | |
| Median [IQR] | 0.22 [0.02 to 0.27] | −0.53 [−0.81 to −0.3] |
| Sample | Regions | Stats | Male | Female | Wilcoxon Signed Rank p Value * |
|---|---|---|---|---|---|
| All participants (n = 30) | 16 ROIs a | Mean (SD) | −0.32 (0.23) | −0.02 (0.50) | 0.063 |
| Median [IQR] | −0.30 [−0.47 to −0.13] | 0.01 [−0.34 to 0.22] | |||
| 12 ROIs b | Mean (SD) | −0.36 (0.22) | 0.09 (0.45) | 0.015 | |
| Median [IQR] | −0.36 [−0.47 to −0.16] | 0.07 [−0.28 to 0.22] | |||
| White (n = 16) | 16 ROIs a | Mean (SD) | −0.05 (0.20) | 0.47 (0.35) | <0.001 |
| Median [IQR] | −0.10 [−0.20 to 0.06] | 0.4 [0.20 to 0.72] | |||
| 12 ROIs b | Mean (SD) | −0.10 (0.14) | 0.39 (0.31) | 0.002 | |
| Median [IQR] | −0.13 [−0.20 to −0.02] | 0.31 [0.20 to 0.57] | |||
| AA (n = 14) | 16 ROIs a | Mean (SD) | −0.58 (1.51) | −0.97 (0.90) | 0.234 |
| Median [IQR] | −0.24 [−1.18 to 0.30] | −1.24 [−1.55 to −0.33] | |||
| 12 ROIs b | Mean (SD) | −0.68 (1.35) | −1.02 (0.92) | 0.272 | |
| Median [IQR] | −0.46 [−1.18 to 0.22] | −1.34 [−1.55 to −0.97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ding, Y.-S.; Pirraglia, E.; Wang, J.; Mikheev, A.; Chen, J.; Rusinek, H.; Babb, J. Impaired LC-NE System—A Novel Molecular Mechanism Underlying Health Disparity and Increased Prevalence of Alzheimer’s Disease Among African Americans. Diagnostics 2026, 16, 190. https://doi.org/10.3390/diagnostics16020190
Ding Y-S, Pirraglia E, Wang J, Mikheev A, Chen J, Rusinek H, Babb J. Impaired LC-NE System—A Novel Molecular Mechanism Underlying Health Disparity and Increased Prevalence of Alzheimer’s Disease Among African Americans. Diagnostics. 2026; 16(2):190. https://doi.org/10.3390/diagnostics16020190
Chicago/Turabian StyleDing, Yu-Shin, Elizabeth Pirraglia, Jiacheng Wang, Artem Mikheev, Jingyun Chen, Henry Rusinek, and James Babb. 2026. "Impaired LC-NE System—A Novel Molecular Mechanism Underlying Health Disparity and Increased Prevalence of Alzheimer’s Disease Among African Americans" Diagnostics 16, no. 2: 190. https://doi.org/10.3390/diagnostics16020190
APA StyleDing, Y.-S., Pirraglia, E., Wang, J., Mikheev, A., Chen, J., Rusinek, H., & Babb, J. (2026). Impaired LC-NE System—A Novel Molecular Mechanism Underlying Health Disparity and Increased Prevalence of Alzheimer’s Disease Among African Americans. Diagnostics, 16(2), 190. https://doi.org/10.3390/diagnostics16020190

