Understanding Current Trends and Advances in Transarterial Radioembolization Dosimetry
Abstract
1. Introduction
2. Methods
3. Dosimetry Methods
4. Current State of Dosimetry Based on Tumor Histology
4.1. Hepatocellular Carcinoma
4.2. Intrahepatic Cholangiocarcinoma
4.3. Metastatic Colorectal Cancer (mCRC)
4.4. Metastatic Neuroendocrine Tumor and Breast Cancer
5. Evolving Concepts in Dosimetry
6. Adoption Barriers and Solutions
7. Limitations of Existing Evidence and Dosimetric Approaches
7.1. Study Design Limitations
7.2. Imaging and Dosimetry Variability
7.3. Mismatch Between MAA and Y90 Distribution
7.4. Generalizability and Access Barriers
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| HCC | Hepatocellular Carcinoma |
| TARE | Transarterial Radioembolization |
| iCCA | Intrahepatic Cholangiocarcinoma |
| mCRC | Metastatic Colorectal Cancer |
| NET | Neuroendocrine Tumor |
| D95 | Minimum Dose Received by 95% of the Target Volume/Tumor |
| DVH | Dose Volume Histograms |
| BSA | Body Surface Area |
| mBSA | Modified Body Surface Area |
| CLM | Colorectal Liver Metastases |
| CMS | Center for Medicare & Medicaid Services |
| CPT | Current Procedural Terminology |
| CPN | Complete Pathologic Necrosis |
| CR | Complete (Radiologic) Response |
| CT | Computed Tomography |
| HR | Hazard Ratio |
| ITILD50 | Intention to Irradiate Liver Dose Covering at Least 50% of the Tumor |
| ITT | Intention to Treat |
| MIRD | Medical Internal Radiation Dose |
| MMAD | Margin Mean Absorbed Dose |
| MTD | Mean Tumor Dose |
| OS | Overall Survival |
| PERCIST | PET Response Criteria in Solid Tumors |
| PFS | Progression Free Survival |
| RECIST 1.1 | Response Evaluation Criteria in Solid Tumors, version 1.1 |
| RS | Radiation Segmentectomy |
| SBRT | Stereotactic Body Radiation Therapy |
| SHR | Subdistribution Hazard Ratio |
| T:N (TNR) | Tumor-to-Normal Ratio |
| TLPFS | Target Liver Progression Free Survival |
| WTD90 | Weighted Tumor Absorbed Dose Covering at Least 90% of Tumor |
| mRL | Modified Radiation Lobectomy |
References
- Garin, E.; Tselikas, L.; Guiu, B.; Chalaye, J.; Edeline, J.; de Baere, T.; Assénat, E.; Tacher, V.; Robert, C.; Terroir-Cassou-Mounat, M.; et al. Personalized versus standard dosimetry approach of selective internal radiation therapy in patients with locally advanced hepatocellular carcinoma (DOSISPHERE-01): A randomised, multicentre, open-label phase 2 trial. Lancet Gastroenterol. Hepatol. 2021, 6, 17–29. [Google Scholar] [CrossRef]
- Salem, R.; Johnson, G.E.; Kim, E.; Riaz, A.; Bishay, V.; Boucher, E.; Fowers, K.; Lewandowski, R.; Padia, S.A. Yttrium-90 radioembolization for the treatment of solitary, unresectable HCC: The LEGACY study. Hepatology 2021, 74, 2342–2352. [Google Scholar] [CrossRef]
- Mulcachy, M.F.; Mhvash, A.; Pracht, M.; Montazeri, A.H.; Bandula, S.; Martin, R.C. Radioembolization with Chemotherapy for Colorectal Liver Metastases: A Randomized, Open-Label, International, Multicenter, Phase III Trial. J. Clin. Oncol. 2021, 39, 3897–3907. [Google Scholar] [CrossRef] [PubMed]
- Young, S.; Torkian, P.; Flanagan, S.; D’sOuza, D.; Sanghvi, T.; Golzarian, J. Intrahepatic cholangiocarcinoma: A dose threshold evaluation in those undergoing transarterial radioembolization. J. Gastrointest. Oncol. 2023, 14, 2202–2211. [Google Scholar] [CrossRef]
- Edeline, J.; Touchefeu, Y.; Guiu, B.; Farge, O.; Tougeron, D.; Baumgaertner, I.; Garin, E. Radioembolization Plus Chemotherapy for First-line Treatment of Locally Advanced Intrahepatic Cholangiocarcinoma: A Phase 2 Clinical Trial. JAMA Oncol. 2020, 6, 51–59. [Google Scholar] [CrossRef]
- Villalobos, A.; Pisanie, J.L.D.; Gandhi, R.T.; Kokabi, N. Yttrium-90 Radioembolization Dosimetry: Dose Considerations, Optimization, and Tips. Semin. Interv. Radiol. 2024, 41, 63–78. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Young, S.; Goldberg, D.; Hannallah, J.; Stuycken, L.; Woodhead, G. Advancing Radioembolization Through Personalized Dosimetry. Adv. Clin Rad. 2024, 6, 55–64. [Google Scholar] [CrossRef]
- CMS. CMS Standard Analytical Files. Available online: https://www.cms.gov/data-research/files-for-order/limited-data-set-lds-files/standard-analytical-files-medicare-claims-lds (accessed on 16 November 2023).
- Van Hazel, G.; Blackwell, A.; Anderson, J.; Price, D.; Moroz, P.; Bower, G.; Cardaci, G.; Gray, B. Randomised phase 2 trial of SIR-Spheres plus fluorouracil/leucovorin chemotherapy versus fluorouracil/leucovorin chemotherapy alone in advanced colorectal cancer. J. Surg. Oncol. 2004, 88, 78–85. [Google Scholar] [CrossRef]
- Kao, Y.H.; Lichtenstein, M. Origin, dosimetric effect and clinical limitations of the semi-empirical body surface area method for radioembolization using yttrim-90 resin microspheres. J. Med. Imagin. Radiat. Oncol. 2016, 60, 382–385. [Google Scholar] [CrossRef]
- Webster, L.A.; Villalobos, A.; Majdalany, B.S.; Bercu, Z.L.; Gandhi, R.T.; Kokabi, N. Standard Radiation Dosimetry Models: What Interventional Radiologists Need to Know. Semin. Interv. Radiol. 2021, 38, 405–411. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schaefer, N.; Grozinger, G.; Pech, M.; Pfammatter, T.; Soydal, C.; Arnold, D.; Kolligs, F.; Maleux, G.; Munneke, G.; Peynircioglu, B.; et al. Prognostic Factors for Effectiveness Outcomes After Transarterial Radioembolization in Metastatic Colorectal Cancer: Results From the Multicentre Observational Study CIRT. Clin. Colorectal Cancer 2022, 21, 285–296. [Google Scholar] [CrossRef]
- Reimer, P.; Vilgrain, V.; Arnold, D.; Balli, T.; Golfieri, R.; Loffroy, R.; Mosconi, C.; Ronot, M.; Sengel, C.; Schaefer, N.; et al. Factors Impacting Survival After Transarterial Radioembolization in Patients with Unresectable Intrahepatic Cholangiocarcinoma: A Combined Analysis of the Prospective CIRT Studies. Cardiovasc. Interv. Radiol. 2024, 47, 310–324. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Levillain, H.; Bagni, O.; Deroose, C.M.; Dieudonné, A.; Gnesin, S.; Grosser, O.S.; Kappadath, S.C.; Kennedy, A.; Kokabi, N.; Liu, D.M.; et al. International recommendations for personalised selective internal radiation therapy of primary and metastatic liver diseases with yttrium-90 resin microspheres. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1570–1584. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Knight, G.M.; Gordon, A.C.; Gates, V.; Talwar, A.; Riaz, A.; Salem, R.; Lewandowski, R. Evolution of Personalized Dosimetry for Radioembolization of Hepatocellular Carcinoma. J. Vasc. Interv. Radiol. 2023, 34, 1214–1225. [Google Scholar] [CrossRef]
- Gulec, S.A.; McGoron, A.J. Radiomicrosphere Dosimetry: Principles and Current State of the Art. Semin. Nucl. Med. 2022, 52, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Villalobos, A.; Soliman, M.M.; Majdalany, B.S.; Schuster, D.M.; Galt, J.; Bercu, Z.L.; Kokabi, N. Yttrium-90 Radioembolization Dosimetry: What Trainees Need to Know. Semin. Interv. Radiol. 2020, 37, 543–554, Erratum in Semin. Interv. Radiol. 2020, 37, 1. https://doi.org/10.1055/s-0041-1722877. [Google Scholar] [PubMed]
- Keane, G.; Lam, M.; Jong, H.D. Beyond the MAA-Y90 Paradigm: The Evolution of Radioembolization Dosimetry Approaches and Scout Particles. Semin. Interv. Radiol. 2021, 38, 542–553. [Google Scholar] [CrossRef] [PubMed]
- Pianka, K.T.; Barahman, M.; Minocha, J.; Minocha, J.; Redmond, J.W.; Schnickel, G.T.; Rose, S.C.; Fowler, K.J.; Berman, Z.T. Voxel-based tumor dose correlates to complete pathologic necrosis after transarterial radioembolization for hepatocellular carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 3744–3752. [Google Scholar] [CrossRef]
- Nie, R.; Chen, F.; Provencio, M.; Wang, Y.; Ende, T.v.D.; van Laarhoven, H.W.; Yuan, S.; Pless, M.; Hayoz, S.; Zhou, Z.; et al. Predictive value of radiological response, pathological response and relapse-free survival for overall survival in neoadjuvant immunotherapy trials: Pooled analysis of 29 clinical trials. Eur. J. Cancer 2023, 186, 211–221. [Google Scholar] [CrossRef]
- Young, S.; Chen, T.; Flanagan, S.; Golzarian, J.; Sanghvi, T. Realized tumor to normal ratios in hepatocellular carcinoma patients undergoing transarterial radioembolization: A retrospective evaluation. Eur. Radiol. 2022, 32, 4167. [Google Scholar] [CrossRef]
- Garin, E.; Tselikas, L.; Guiu, B.; Chalaye, J.; Rolland, Y.; de Baere, T.; Assenat, E.; Tacher, V.; Palard, X.; Déandreis, D.; et al. Long-Term Overall Survival After Selective Internal Radiation Therapy for Locally Advanced Hepatocellular Carcinomas: Updated Analysis of DOSISPHERE-01 Trial. J. Nucl. Med. 2020, 65, 264–269. [Google Scholar] [CrossRef]
- Lam, M.; Garin, E.; Maccauro, M.; Kappadath, S.C.; Sze, D.Y.; Turkmen, C.; Cantasdemir, M.; Haste, P.; Herrmann, K.; Alsuhaibani, H.S.; et al. A global evaluation of advanced dosimetry in transarterial radioembolization of hepatocellular carcinoma with Yttrium-90: The TARGET study. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 3340–3352. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gabr, A.; Riaz, A.; Johnson, G.E.; Kim, E.; Padia, S.; Lewandowski, R.J.; Salem, R. Correlation of Y90-absorbed radiation dose to pathological necrosis in hepatocellular carcinoma: Confirmatory multicenter analysis in 45 explants. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 580–583. [Google Scholar] [CrossRef] [PubMed]
- Toskich, B.; Vidal, L.L.; Olson, M.T.; Lewis, J.T.; LeGout, J.D.; Sella, D.M.; Patel, T.C. Pathologic Response of Hepatocellular Carcinoma Treated with Yttrium-90 Glass Microsphere Radiation Segmentectomy Prior to Liver Transplantation: A Validation Study. J. Vasc. Interv. Radiol. 2021, 32, 518–526, Erratum in J. Vasc. Interv. Radiol. 2021, 32, 1100. https://doi.org/10.1016/j.jvir.2021.05.019. [Google Scholar] [CrossRef]
- Montazeri, S.A.; De la Garza-Ramos, C.; Lewis, A.R.; Lewis, J.T.; LeGout, J.D.; Sella, D.M.; Paz-Fumagalli, R.; Devcic, Z.; Ritchie, C.A.; Frey, G.T.; et al. Hepatocellular carcinoma radiation segmentectomy treatment intensification prior to liver transplantation increases rates of complete pathologic necrosis: An explant analysis of 75 tumors. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 3892–3897. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Paz-Fumagalli, R.; Frey, G.; Sella, D.M.; McKinney, J.M.; Wang, W. Resin-based Yttrium-90 microspheres for unresectable and failed first-line chemotherapy intrahepatic cholangiocarcinoma: Preliminary results. J. Cancer Res. Clin. Oncol. 2017, 143, 481–489. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Manceau, V.; Palard, X.; Rolland, Y.; Pracht, M.; Le Sourd, S.; Laffont, S.; Boudjema, K.; Lievre, A.; Mesbah, H.; Haumont, L.-A.; et al. A MAA-based dosimetric study in patients with intrahepatic cholangiocarcinoma treated with a combination of chemotherapy and 90Y-loaded glass microsphere selective internal radiation therapy. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1731–1741. [Google Scholar] [CrossRef]
- Levillain, H.; Derijckere, I.D.; Ameye, L.; Guiot, T.; Braat, A.; Meyer, C.; Vanderlinden, B.; Reynaert, N.; Hendlisz, A.; Lam, M.; et al. Personalised radioembolization improves outcomes in refractory intra-hepatic cholangiocarcinoma: A multicenter study. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2270–2279. [Google Scholar] [CrossRef]
- Gupta, A.N.; Serhal, M.; Gordon, A.C.; Gabr, A.; Kalyan, A.; Kulik, L.; Sato, K.T.; Riaz, A.; Hohlastos, E.S.; Salem, R.; et al. Radiation Segmentectomy and Modified Radiation Lobectomy for Unresectable Early-Stage Intrahepatic Cholangiocarcinoma. J. Vasc. Interv. Radiol. 2025, 36, 650–659. [Google Scholar] [CrossRef]
- Willowson, K.P.; Eslick, E.M.; Bailey, D.L. Individualised dosimetry and safety of SIRT for intrahepatic cholangiocarcinoma. EJNMMI Phys. 2021, 8, 65. [Google Scholar] [CrossRef]
- Mouli, S.; Memon, K.; Baker, T.; Benson, A.B., 3rd; Mulcahy, M.F.; Gupta, R.; Ryu, R.K.; Salem, R.; Lewandowski, R.J. Yttrium-90 radioembolization for intrahepatic cholangiocarcinoma: Safety, response, and survival analysis. J. Vasc. Interv. Radiol. 2013, 24, 1227–1234. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schartz, D.A.; Porter, M.; Schartz, E.; Kallas, J.; Gupta, A.; Butani, D.; Cantos, A. Transarterial Yttrium-90 Radioembolization for Unresectable Intrahepatic Cholangiocarcinoma: A Systematic Review and Meta-Analysis. J. Vasc. Interv. Radiol. 2022, 33, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Edeline, J.; Bridgewater, J.; Campillo-Gimenez, B.; Neveu, E.; Phelip, J.-M.; Neuzillet, C.; Boudjema, K.; Rolland, Y.; Valle, J.W.; Garin, E.; et al. Chemotherapy with or without selective internal radiation therapy for intrahepatic cholangiocarcinoma: Data from clinical trials. Hepatology 2024, 79, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Bourien, H.; Palard, X.; Rolland, Y.; Le Du, F.; Beuzit, L.; Uguen, T.; Le Sourd, S.; Pracht, M.; Manceau, V.; Lièvre, A.; et al. Yttrium-90 glass microspheres radioembolization (RE) for biliary tract cancer: A large single-center experience. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Soydal, C.; Araz, M.; Demir, B.; Ones, T.; Sonmezoglu, K.; Selcuk, N.A.; Balli, T.; Isık, E.G.; Salancı, B.V.; Derebek, E.; et al. Transarterial Radioembolization in the TACOME Trial: Dosimetric Analysis and Clinical Features in Predicting Response and Overall Survival. J. Nucl. Med. 2025, 66, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Alsultan, A.A.; van Roekel, C.; Barentsz, M.W.; Smits, M.L.J.; Kunnen, B.; Koopman, M.; Braat, A.J.; Bruijnen, R.C.; de Keizer, B.; Lam, M.G. Dose-Response and Dose-Toxicity Relationships for Glass 90Y Radioembolization in Patients with Liver Metastases from Colorectal Cancer. J. Nucl. Med. 2021, 62, 1616–1623. [Google Scholar] [CrossRef]
- Kurilova, I.; Bendet, A.; Fung, E.K.; Petre, E.N.; Humm, J.L.; Boas, F.E.; Crane, C.H.; Kemeny, N.; Kingham, T.P.; Cercek, A.; et al. Radiation segmentectomy of hepatic metastases with Y-90 glass microspheres. Abdom. Radiol. 2021, 46, 3428–3436. [Google Scholar] [CrossRef]
- Dimopoulos, P.M.; Sotirchos, V.S.; Dunne-Jaffe, C.B.; Petre, E.N.; Gonen, M.; Zhao, K.; Kirov, A.S.; Crane, C.; D’aNgelica, M.; Connell, L.C.; et al. Voxel-Based Dosimetry Predicts Local Tumor Progression Post 90 Y Radiation Segmentectomy of Colorectal Liver Metastases. Clin. Nucl. Med. 2025, 50, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, M.-P.; Sotirchos, V.S.; Dunne-Jaffe, C.; Mitchell, A.; Petre, E.N.; Alexander, E.S.; Gonen, M.; Rao, D.; Connell, L.C.; Soares, K.; et al. Tumor Absorbed Dose Predicts Survival and Local Tumor Control in Colorectal Liver Metastases Treated with 90Y Radioembolization. Cardiovasc. Interv. Radiol. 2025. [Google Scholar] [CrossRef]
- Ebbers, S.C.; van Roekel, C.; Braat, M.N.G.J.A.; Barentsz, M.W.; Lam, M.G.E.H.; Braat, A.J.A.T. Dose-response relationship after yttrium-90-radioembolization with glass microspheres in patients with neuroendocrine tumor liver metastases. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1700–1710. [Google Scholar] [CrossRef]
- Chansanti, O.; Jahangiri, Y.; Matsui, Y.; Adachi, A.; Geeratikun, Y.; Kaufman, J.A.; Kolbeck, K.J.; Stevens, J.S.; Farsad, K. Tumor Dose Response in Yttrium-90 Resin Microsphere Embolization for Neuroendocrine Liver Metastases: A Tumor-Specific Analysis with Dose Estimation Using SPECT-CT. J. Vasc. Interv. Radiol. 2017, 28, 1528–1535. [Google Scholar] [CrossRef]
- Watanabe, M.; Leyser, S.; Theysohn, J.; Schaarschmidt, B.; Ludwig, J.; Fendler, W.P.; Moraitis, A.; Lahner, H.; Mathew, A.; Herrmann, K.; et al. Dose-Response Relationship in Patients with Liver Metastases from Neuroendocrine Neoplasms Undergoing Radioembolization with 90Y Glass Microspheres. J. Nucl. Med. 2024, 65, 1175–1180. [Google Scholar] [CrossRef] [PubMed]
- Gordon, A.C.; Savoor, R.; Kircher, S.M.; Kalyan, A.; Benson, A.B.; Hohlastos, E.; Desai, K.R.; Sato, K.; Salem, R.; Lewandowski, R.J. Yttrium-90 Radiation Segmentectomy for Treatment of Neuroendocrine Liver Metastases. J. Vasc. Interv. Radiol. 2025, 36, 293–300. [Google Scholar] [CrossRef]
- Ridouani, F.; Soliman, M.M.; England, R.W.; Hsu, M.; Moskowitz, C.S.; Doustaly, R.; Sofocleous, C.T.; Boas, F.E.; Yarmohammadi, H.; Deipolyi, A.R. Relationship of radiation dose to efficacy of radioembolization of liver metastasis from breast cancer. Eur. J. Radiol. 2021, 136, 109539. [Google Scholar] [CrossRef] [PubMed]
- Demir, B.; Soydal, C.; Kucuk, N.O.; Celebioglu, E.C.; Bilgic, M.S.; Oz, D.K.; Elhan, A.H.; Kir, K.M. Voxel-based dosimetry with integrated Y-90 PET/MRI and prediction of response of primary and metastatic liver tumors to radioembolization with Y-90 glass microspheres. Ann. Nucl. Med. 2024, 39, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Sandow, T.; Gimenez, J.; Nunez, K.; Tramel, R.; Gilbert, P.; Oliver, B.; Cline, M.; Fowers, K.; Cohen, A.; Thevenot, P. Using Voxel-Based Dosimetry to Evaluate Sphere Concentration and Tumor Dose in Hepatocellular Carcinoma Treated with Yttrium-90 Radiation Segmentectomy with Glass Microspheres. J. Vasc. Interv. Radiol. 2024, 35, 1602–1611. [Google Scholar] [CrossRef]
- Pasciak, A.S.; Abiola, G.; Liddell, R.P.; Crookston, N.; Besharati, S.; Donahue, D.; Thompson, R.E.; Frey, E.; Anders, R.A.; Dreher, M.R.; et al. The number of microspheres in Y90 radioembolization directly affects normal tissue radiation exposure. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 816–827. [Google Scholar] [CrossRef] [PubMed]
- Pasciak, A.S.; Bourgeois, A.C.; Bradley, Y.C. A Microdosimetric Analysis of Absorbed Dose to Tumor as a Function of Number of Microspheres per Unit Volume in 90Y Radioembolization. J. Nucl. Med. 2016, 57, 1020–1026. [Google Scholar] [CrossRef]
- Maxwell, A.W.P.; Mendoza, H.G.; Sellitti, M.J.; Camacho, J.C.; Deipolyi, A.R.; Ziv, E.; Sofocleous, C.T.; Yarmohammadi, H.; Maybody, M.; Humm, J.L.; et al. Correction to: Optimizing 90Y Particle Density Improves Outcomes After Radioembolization. Cardiovasc. Interv. Radiol. 2022, 45, 1055, Erratum in Cardiovasc. Interv. Radiol. 2022, 45, 958–969. https://doi.org/10.1007/s00270-022-03139-6. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, Y.; Asad, N.; Ahmad, R.; Reed, W.; Ahmed, O. Geospatial and Socioeconomic Disparities in Access to Interventional Radiology Care in the United States. J. Vasc. Interv. Radiol. 2023, 23, 789–793. [Google Scholar]
- Emmons, E.C.; Bishay, S.; Du, L.; Krebs, H.; Gandhi, R.T.; Collins, Z.S.; O’hAra, R.; Akhter, N.M.; Wang, E.A.; Grilli, C.; et al. Survival and Toxicities after 90Y Transarterial Radioembolization of Metastatic Colorectal Cancer in the RESIN Registry. Radiology 2022, 305, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.A.; Mahvash, A.; Abdelsalam, M.; Kaseb, A.O.; Kappadath, S.C. Planning dosimetry for 90 Y radioembolization with glass microspheres: Evaluating the fidelity of 99m Tc-MAA and partition model predictions. Med. Phys. 2020, 47, 5333–5342. [Google Scholar] [CrossRef] [PubMed]
| Dosimetry Method | Key Concepts | Advantages | Limitations |
|---|---|---|---|
| BSA/Modified BSA (mBSA) | Activity derived from body surface area and estimated % tumor involvement | Historical use with resin microspheres, ease of use | Does not incorporate perfused or tumor volume |
| Single-Compartment MIRD | Computes mean absorbed dose to the whole perfused liver volume | Historical use with glass microspheres, ease of use | Does not differentiate tumor vs. normal liver dose |
| Partition Dosimetry (Multicompartment MIRD) | Separates tumor, normal liver, and lung compartments based on uptake ratios | Accounts for tumor and normal liver separately, supports dose targeting | Unable to assess heterogeneity within tumor, relies on accurate tumor to normal ratio (TNR) estimation |
| Voxel-Based Dosimetry (VBD) | Calculates absorbed dose per voxel and generates DVHs (D95, V100, V400) | Highest precision, identifies hot/cold regions, predicts pathologic and radiologic response | Time-intensive, requires specialized software, dependent on high-quality imaging |
| Study | Design | N | Microsphere | Response Criteria | Key Outcome |
|---|---|---|---|---|---|
| Hepatocellular Carcinoma | |||||
| Garin et al. (DOSISPHERE-01) [1] | RCT MIRD (120 Gy) vs. Partition (205 Gy) | 60 | Glass; Lobar | RECIST 1.1 | OS 26.6 (partition) vs. 10.7 (MIRD) months No increased AEs |
| Salem et al. (LEGACY) [2] | Retrospective MIRD | 162 | Glass; Selective | mRECIST | Localized mRECIST 88% ORR with 76% demonstrating response ≥ 6 months |
| Pianka et al. [19] | Retrospective Voxel-based Explant Pathology | 41 | Glass; selective | Pathologic necrosis | D95 predicts CPN D95: 813 Gy (CPN) vs. 232 Gy (w/o CPN) |
| Intrahepatic Cholangiocarcinoma | |||||
| Edeline et al. (MISPHEC) [5] | Prospective single arm MIRD 120 Gy lobar, personalized dosimetry authorized | 41 | Glass; Lobar | RECIST 1.1 | OS 22 months 317 Gy median tumor dose Choi response rate 93% |
| Young et al. [4] | Retrospective BSA, MIRD, voxel-based | 20 | Glass/Resin | EASL | CR associated 542 Gy tumor dose (glass, post Y90 dosimetry) |
| Levillain et al. [29] | Retrospective BSA and partition | 58 | Resin | PERCIST | Median OS Partition, 14.9 months BSA, 5.5 months |
| Metastatic Colorectal Cancer | |||||
| Soydal et al. (TACOME) [36] | Retrospective Single-compartment or multicompartment dosimetry | 176 | Glass | PERCIST | Responders: 200 Gy Nonresponders: 104 Gy |
| Alsultan et al. [37] | Retrospective MIRD | 31 | Glass | PERCIST | CR 196 Gy PR 177 Gy (post Y90 dosimetry) |
| Dimopoulos et al. [39] | Retrospective MIRD | 36 | Glass | RECIST/PERCIST | ≥400 Gy—predictor of LTPFS (post Y90 dosimetry) |
| Neuroendocrine (NET) and Metastatic Breast Cancer | |||||
| Ebbers et al. (NET) [41] | Retrospective MIRD | 26 | Glass | RECIST1.1 | Absorbed dose (Gy) (post Y90 dosimetry): - Responder: 170 - Stable: 101 - Progressive: 67 |
| Chansanti et al. (NET) [42] | Retrospective Partition | 15 | Resin | mRECIST | Absorbed dose (Gy): - Responder: 286 - Nonresponder: 128 |
| Ridouani et al. [45] | Retrospective BSA and MIRD | 64 | Glass/Resin | Modified PERCIST | Absorbed dose (Gy) (post Y90 dosimetry): - Responder: 167 - Nonresponder: 54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Young, S.; Naser-Tavakolian, K.; Sajan, A.; Reis, S.; Woodhead, G.; Sandow, T.; Gimenez, J.; Garcia-Reyes, K.; Berman, Z.; Krishnasamy, V.P. Understanding Current Trends and Advances in Transarterial Radioembolization Dosimetry. Diagnostics 2026, 16, 43. https://doi.org/10.3390/diagnostics16010043
Young S, Naser-Tavakolian K, Sajan A, Reis S, Woodhead G, Sandow T, Gimenez J, Garcia-Reyes K, Berman Z, Krishnasamy VP. Understanding Current Trends and Advances in Transarterial Radioembolization Dosimetry. Diagnostics. 2026; 16(1):43. https://doi.org/10.3390/diagnostics16010043
Chicago/Turabian StyleYoung, Shamar, Kiyon Naser-Tavakolian, Abin Sajan, Stephen Reis, Gregory Woodhead, Tyler Sandow, Juan Gimenez, Kirema Garcia-Reyes, Zachary Berman, and Venkatesh P. Krishnasamy. 2026. "Understanding Current Trends and Advances in Transarterial Radioembolization Dosimetry" Diagnostics 16, no. 1: 43. https://doi.org/10.3390/diagnostics16010043
APA StyleYoung, S., Naser-Tavakolian, K., Sajan, A., Reis, S., Woodhead, G., Sandow, T., Gimenez, J., Garcia-Reyes, K., Berman, Z., & Krishnasamy, V. P. (2026). Understanding Current Trends and Advances in Transarterial Radioembolization Dosimetry. Diagnostics, 16(1), 43. https://doi.org/10.3390/diagnostics16010043

