Invasive Pulmonary Aspergillosis in Non-Neutropenic Patients: An Evolving Clinical Paradigm
Abstract
1. Introduction
2. Epidemiological and Pathophysiological Considerations
2.1. Compromised Pulmonary Integrity
2.2. Dysregulated Innate Immunity
2.2.1. Impaired Alveolar Macrophage Function
2.2.2. C-Type Lectin Receptor (CLR) Alterations
2.2.3. Defective Toll-like Receptor (TLR) Signaling
2.2.4. Neutrophil Dysfunction
2.2.5. Th1/Th2 Imbalance
2.2.6. Immunomodulatory Therapies
2.3. Critical Illness-Associated Immunosuppression
2.4. Host Genetic Factors
2.5. COVID and H1N1 Associated Invasive Pulmonary Aspergillosis
3. Clinical Presentation and Diagnosis
3.1. Radiological Imaging
- •
- Pulmonary nodules, which may be solitary or multiple.
- •
- Halo sign, which represents a zone of ground-glass attenuation surrounding a nodule, indicative of hemorrhagic infarction [51].
- •
- Air crescent sign, which signifies the separation of necrotic tissue from surrounding viable lung parenchyma.
- •
- Cavitation, which may occur in areas of pulmonary necrosis.
- •
- Infiltrates.
3.2. Microbiological Investigations
3.3. Histopathological Examination
3.4. Clinical Laboratory Findings
4. Management of IPA: Therapeutic Strategies
- •
- Developing more sensitive and specific diagnostic tools for early detection.
- •
- Evaluating the efficacy of novel antifungal agents and combination therapies.
- •
- Identifying biomarkers for predicting treatment response and prognosis.
- •
- Developing personalized treatment approaches based on individual risk factors and comorbidities.
5. Mechanisms of Azole Resistance in Aspergillus spp.
- 1.
- Point Mutations in cyp51A.
- •
- Mutations such as G54, M220, and G448 alter azole binding, reducing drug efficacy.
- 2.
- TR34/L98H and TR46/Y121F/T289A Mutations [96].
- •
- The tandem repeat (TR) mutations are associated with environmental resistance due to agricultural azole use.
- 3.
- Efflux Pump Overexpression.
- •
- Increased expression of efflux pumps, such as ATP-binding cassette (ABC) transporters, reduces intracellular azole concentration.
- 4.
- Biofilm Formation and Stress Responses.
- •
- Biofilm production enhances fungal persistence and reduces azole penetration.
- •
- Long-term azole therapy in patients with chronic aspergillosis.
- •
- Antifungal prophylaxis with azole in hematologic patients.
- •
6. Comparative Efficacy and Safety of Isavuconazole Versus Voriconazole
7. Emerging Antifungal Agents: A New Era
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, C.; Shan, Q.; Xia, J. Incidence, risk factors and mortality of invasive pulmonary aspergillosis in patients with influenza: A systematic review and meta-analysis. Mycoses 2022, 65, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Parra, J.; Mills-Sanchez, P.; Moreno-Torres, V. COVID-19-associated pulmonary aspergillosis (CAPA): Risk factors and development of a predictive score for critically ill COVID-19 patients. Mycoses 2022, 65, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Peghin, M.; Vena, A. Challenges and Solution of Invasive Aspergillosis in Non-neutropenic Patients: A Review. Infect. Dis. Ther. 2018, 7, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Bocci, M.G.; Cascarano, L.; Capecchi, G. Pulmonary Aspergillosis in Immunocompromised Critically Ill Patients: Prevalence, Risk Factors, Clinical Features and Diagnosis—A Narrative Review. J. Fungi 2025, 11, 617. [Google Scholar] [CrossRef]
- Gutiérrez-Villanueva, A.; Diego-Yagüe, I.; Gutiérrez-Martín, I. Is neutropenia still the main risk factor for invasive aspergillosis? A contemporary university hospital retrospective cohort of invasive aspergillosis in neutropenic and non-neutropenic patients. Ann. Clin. Microbiol. Antimicrob. 2025, 24, 28. [Google Scholar] [CrossRef]
- Fernandez-Pittol, M.; Alejo-Cancho, I.; Rubio-García, E. Aspergillosis by cryptic Aspergillus species: A case series and review of the literature. Rev. Iberoam. Micol. 2022, 39, 44–49. [Google Scholar] [CrossRef]
- Bassetti, M.; Giacobbe, D.R.; Agvald-Ohman, C. Invasive Fungal Diseases in Adult Patients in Intensive Care Unit (FUNDICU): 2024 consensus definitions from ESGCIP, EFISG, ESICM, ECMM, MSGERC, ISAC, and ISHAM. Intensive Care Med. 2024, 50, 502–515. [Google Scholar] [CrossRef]
- Bosetti, D.; Neofytos, D. Invasive Aspergillosis and the Impact of Azole-resistance. Curr. Fungal Infect. Rep. 2023, 17, 77–86. [Google Scholar] [CrossRef]
- Tejeda, M.I.; Salso, S.; Barberán, J. Invasive pulmonary aspergillosis in non-neutropenic patients. Rev. Esp. Quimioter. 2016, 29, 56–58. [Google Scholar]
- Azim, A.; Ahmed, A. Diagnosis and management of invasive fungal diseases in non-neutropenic ICU patients, with focus on candidiasis and aspergillosis: A comprehensive review. Front. Cell Infect. Microbiol. 2024, 14, 1256158. [Google Scholar] [CrossRef]
- Zaragoza, R.; Sole-Violan, J.; Cusack, R. Invasive Pulmonary Aspergillosis: Not Only a Disease Affecting Immunosuppressed Patients. Diagnostics 2023, 13, 440. [Google Scholar] [CrossRef]
- Russo, A.; Falcone, M.; Vena, A. Invasive Pulmonary Aspergillosis in Non-Neutropenic Patients: Analysis of a 14-Month Prospective Clinical Experience. J. Chemother. 2011, 23, 290–294. [Google Scholar] [CrossRef] [PubMed]
- van de Veerdonk, F.L.; Gresnigt, M.S.; Romani, L. Aspergillus fumigatus morphology and dynamic host interactions. Nat. Rev. Microbiol. 2017, 15, 661–674. [Google Scholar] [CrossRef]
- Al-Bader, N.; Sheppard, D.C. Aspergillosis and stem cell transplantation: An overview of experimental pathogenesis studies. Virulence 2016, 7, 950–966. [Google Scholar] [CrossRef] [PubMed]
- Otu, A.; Kosmidis, C.; Mathioudakis, A.G.; Ibe, C.; Denning, D.W. The clinical spectrum of aspergillosis in chronic obstructive pulmonary disease. Infection 2023, 51, 813–829. [Google Scholar] [CrossRef] [PubMed]
- Denning, D.W.; Cadranel, J.; Beigelman-Aubry, C.; Ader, F.; Chakrabarti, A.; Blot, S.; Ullmann, A.J.; Dimopoulos, G.; Lange, C. Chronic pulmonary aspergillosis: Rationale and clinical guidelines for diagnosis and management. Eur. Respir. J. 2016, 47, 45–68. [Google Scholar] [CrossRef]
- Reizine, F.; Pinceaux, K.; Lederlin, M.; Autier, B.; Guegan, H.; Gacouin, A.; Luque-Paz, D.; Boglione-Kerrien, C.; Bacle, A.; Le Daré, B.; et al. Influenza- and COVID-19-Associated Pulmonary Aspergillosis: Are the Pictures Different? J. Fungi 2021, 7, 388. [Google Scholar] [CrossRef]
- Philippe, B.; Ibrahim-Granet, O.; Prévost, M.C. Killing of Aspergillus fumigatus by alveolar macrophages is mediated by reactive oxidant intermediates. Infect. Immun. 2003, 71, 3034–3042. [Google Scholar] [CrossRef]
- Lewis, R.E.; Kontoyiannis, D.P. Invasive aspergillosis in glucocorticoid-treated patients. Med. Mycol. 2009, 47, S271–S281. [Google Scholar] [CrossRef]
- Reis e Sousa, C.; Yamasaki, S.; Brown, G.D. Myeloid C-type lectin receptors in innate immune recognition. Immunity 2024, 57, 700–717. [Google Scholar] [CrossRef] [PubMed]
- Hatinguais, R.; Willment, J.A.; Brown, G.D. C-type lectin receptors in antifungal immunity: Current knowledge and future developments. Parasite Immunol. 2023, 45, e12951. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, F.S.Y.; Wakatsuki, M.; Yoshida, K.; Yabe, R.; Torigoe, S.; Yamasaki, S.; Barber, G.N.; Saijo, S. Dectin-1/IL-15 Pathway Affords Protection against Extrapulmonary Aspergillus fumigatus Infection by Regulating Natural Killer Cell Survival. J. Innate Immun. 2023, 15, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Cunha, D.d.O.; Leão-Cordeiro, J.A.B.; Paula, H.d.S.C.d.; Ataides, F.S.; Saddi, V.A.; Vilanova-Costa, C.A.S.T.; Silva, A.M.T.C. Association between polymorphisms in the genes encoding toll-like receptors and dectin-1 and susceptibility to invasive aspergillosis: A systematic review. Rev. Soc. Bras. Med. Trop. 2018, 51, 725–730. [Google Scholar] [CrossRef]
- Thimmappa, P.Y.; Vasishta, S.; Ganesh, K. Neutrophil (dys) function due to altered immuno-metabolic axis in type 2 diabetes: Implications in combating infections. Hum. Cell 2023, 36, 1265–1282. [Google Scholar] [CrossRef]
- Manchon, R.; Feys, S.; Hoenigl, M. Aspergillus and host-pathogen interaction: Focus on treatment-relevant aspects. Clin. Microbiol. Infect. 2025, in press. [Google Scholar] [CrossRef]
- Dewi, I.M.W.; van de Veerdonk, F.L.; Gresnigt, M.S. The Multifaceted Role of T-Helper Responses in Host Defense against Aspergillus fumigatus. J. Fungi 2017, 3, jof3040055. [Google Scholar] [CrossRef]
- Hennessee, I.; Benedict, K.; Bahr, N.C. Incidence and Risk Factors for Invasive Fungal Infections in Patients Initiating Tumor Necrosis Factor–Alpha Inhibitors for Inflammatory Bowel Disease and Rheumatoid Arthritis. Clin. Infect. Dis. 2025, 80, 364–366. [Google Scholar] [CrossRef]
- Monneret, G.; Venet, F.; Kullberg, B.-J. ICU-acquired immunosuppression and the risk for secondary fungal infections. Med. Mycol. 2011, 49, S17–S23. [Google Scholar] [CrossRef]
- Ward, N.S.; Casserly, B.; Ayala, A. The Compensatory Anti-inflammatory Response Syndrome (CARS) in Critically Ill Patients. Clin. Chest Med. 2008, 29, 617–625. [Google Scholar] [CrossRef]
- Torres, A.; Martin-Loeches, I. Invasive Pulmonary Aspergillosis in Ventilator-associated Pneumonia: The Hidden Enemy? Am. J. Respir. Crit. Care Med. 2020, 202, 1071–1073. [Google Scholar] [CrossRef] [PubMed]
- de Boer, M.G.J.; Jolink, H.; Halkes, C.J.M. Influence of Polymorphisms in Innate Immunity Genes on Susceptibility to Invasive Aspergillosis after Stem Cell Transplantation. PLoS ONE 2011, 6, e18403. [Google Scholar] [CrossRef] [PubMed]
- Drummond, R.A.; Franco, L.M.; Lionakis, M.S. Human CARD9: A Critical Molecule of Fungal Immune Surveillance. Front. Immunol. 2018, 9, 1836. [Google Scholar] [CrossRef] [PubMed]
- Corvilain, E.; Casanova, J.-L.; Puel, A. Inherited CARD9 Deficiency: Invasive Disease Caused by Ascomycete Fungi in Previously Healthy Children and Adults. J. Clin. Immunol. 2018, 38, 656–693. [Google Scholar] [CrossRef]
- Ceesay, M.M.; Kordasti, S.; Rufaie, E.; Lea, N.; Smith, M.; Wade, J.; Douiri, A.; Mufti, G.J.; Pagliuca, A. Baseline cytokine profiling identifies novel risk factors for invasive fungal disease among haematology patients undergoing intensive chemotherapy or haematopoietic stem cell transplantation. J. Infect. 2016, 73, 280–288. [Google Scholar] [CrossRef]
- Naik, B.; Ahmed, S.M.Q.; Laha, S.; Das, S.P. Genetic Susceptibility to Fungal Infections and Links to Human Ancestry. Front. Genet. 2021, 12, 709315. [Google Scholar] [CrossRef]
- Calderón-Parra, J.; Moreno-Torres, V.; Mills-Sanchez, P. Association of COVID-19-Associated Pulmonary Aspergillosis with Cytomegalovirus Replication: A Case-Control Study. J. Fungi 2022, 8, 161. [Google Scholar] [CrossRef]
- Feys, S.; Carvalho, A.; Clancy, C.J. Influenza-associated and COVID-19-associated pulmonary aspergillosis in critically ill patients. Lancet Respir. Med. 2024, 12, 728–742. [Google Scholar] [CrossRef]
- Tiew, P.Y.; Thing, K.X.; Chotirmall, S.H. Clinical Aspergillus Signatures in COPD and Bronchiectasis. J. Fungi 2022, 8, 480. [Google Scholar] [CrossRef]
- Singh, A.; Singh, J.; Kumar, S. Aspergillosis: A comprehensive review of pathogenesis, drug resistance, and emerging therapeutics. J. Food Drug Anal. 2025, 33, 75–96. [Google Scholar] [CrossRef]
- Lee, C.K.; Oliveira, L.V.N.; Akalin, A. Dysregulated pulmonary inflammatory responses exacerbate the outcome of secondary aspergillosis following influenza. MBio 2023, 14, e0163323. [Google Scholar] [CrossRef]
- Luvanda, M.K.; Posch, W.; Vosper, J. Dexamethasone Promotes Aspergillus fumigatus Growth in Macrophages by Triggering M2 Repolarization via Targeting PKM2. J. Fungi 2021, 7, 70. [Google Scholar] [CrossRef]
- Cornillet, A.; Camus, C.; Nimubona, S. Comparison of Epidemiological, Clinical, and Biological Features of Invasive Aspergillosis in Neutropenic and Nonneutropenic Patients: A 6-Year Survey. Clin. Infect. Dis. 2006, 43, 577–584. [Google Scholar] [CrossRef]
- Li, Z.; Denning, D.W. The Impact of Corticosteroids on the Outcome of Fungal Disease: A Systematic Review and Meta-analysis. Curr. Fungal Infect. Rep. 2023, 17, 54–70. [Google Scholar] [CrossRef]
- Montrucchio, G.; Lupia, T.; Lombardo, D. Risk factors for invasive aspergillosis in ICU patients with COVID-19: Current insights and new key elements. Ann. Intensive Care 2021, 11, 136. [Google Scholar] [CrossRef]
- Murdaca, G.; Negrini, S.; Pellecchio, M. Update upon the infection risk in patients receiving TNF alpha inhibitors. Expert. Opin. Drug Saf. 2019, 18, 219–229. [Google Scholar] [CrossRef]
- Aerts, R.; Cuypers, L.; Meijer, E.F.J. ESCMID-EFISG Survey on Diagnostic and Therapeutic Capacity for Invasive Fungal Infections in Belgium, the Netherlands, and Luxembourg: A Focus on High Azole Resistance. Mycoses 2025, 68, e70092. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Zhou, L. Invasive aspergillosis in critically ill patients with diabetes mellitus: A systematic review and meta-analysis. BMC Infect. Dis. 2025, 25, 141. [Google Scholar] [CrossRef]
- Liu, L.; Gu, Y.; Wang, Y. The Clinical Characteristics of Patients With Nonneutropenic Invasive Pulmonary Aspergillosis. Front. Med. 2021, 8, 631461. [Google Scholar] [CrossRef]
- Jiang, Q.; Xu, L.; Zhou, W. Clinical Characteristics, Prognosis, and Risk Factors for Mortality in Influenza-Associated Pulmonary Aspergillosis and COVID-19-Associated Pulmonary Aspergillosis: A Multicenter Retrospective Study. Infect. Drug Resist. 2025, 18, 4621–4631. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Yang, L.; Fang, H. Non-invasive monitoring of Aspergillus infections in chronic lung disease patients: A combined serology and HRCT imaging approach. Front. Cell. Infect. Microbiol. 2025, 15, 1494522. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.M.; Kim, M.Y.; Lim, S.Y. CT Findings for Differentiating Pulmonary Mucormycosis From Invasive Pulmonary Aspergillosis, Prior to Invasive Procedure Such as a Biopsy or Surgery: A 22-Year Single-Center Experience. Mycoses 2025, 68, e70115. [Google Scholar] [CrossRef] [PubMed]
- Lass-Flörl, C. Beyond guidelines: What do I need to know when dealing with fungal diagnostics? Clin. Microbiol. Infect. 2025, 31, 1980–1984. [Google Scholar] [CrossRef]
- Pant, M.B.; Singh, R.; Mittal, G. Invasive pulmonary aspergillosis (IPA)—A study of risk factors, diagnostic modalities and role of galactomannan antigen detection. Indian J. Med. Microbiol. 2025, 58, 100982. [Google Scholar] [CrossRef]
- Takazono, T.; Machida, K.; Le Mauff, F. Evaluating the Potential of Galactosaminogalactan as a Diagnostic Target for Invasive Aspergillosis. Mycoses 2025, 68, e70125. [Google Scholar] [CrossRef]
- Wu, T.C.-W.; Lin, C.C.; Chen, Y.-H. Validation of serum galactomannan antigen assay for invasive pulmonary aspergillosis mortality outcome prediction. Microbiol. Spectr. 2025, 13, e0065125. [Google Scholar] [CrossRef]
- Wei, Z.; Li, S.; Zhu, J. Assessment of the 1,3-β-D-glucan test and the galactomannan antigen test in the detection of invasive fungal infections in patients with hematological diseases. Microbiol. Spectr. 2025, 13, e0120925. [Google Scholar] [CrossRef]
- He, S.; Hang, J.-P.; Zhang, L. A systematic review and meta-analysis of diagnostic accuracy of serum 1,3-β-d-glucan for invasive fungal infection: Focus on cutoff levels. J. Microbiol. Immunol. Infect. 2015, 48, 351–361. [Google Scholar] [CrossRef]
- Lamoth, F.; Cruciani, M.; Mengoli, C. β-Glucan Antigenemia Assay for the Diagnosis of Invasive Fungal Infections in Patients With Hematological Malignancies: A Systematic Review and Meta-Analysis of Cohort Studies From the Third European Conference on Infections in Leukemia (ECIL-3). Clin. Infect. Dis. 2012, 54, 633–643. [Google Scholar] [CrossRef]
- Xu, C.-H.; Zhang, L.-N.; Liu, T.; Zhu, G.-Q.; Fan, Y.-P.; Chen, X.; Shen, Y.-Y.; Yu, Y.-T.; Shi, Y.-Y.; Jiang, E.-L.; et al. Performance of Galactomannan, Aspergillus-PCR, and Metagenomic sequencing for the diagnosis of invasive pulmonary aspergillosis in hematological patients. J. Microbiol. Immunol. Infect. 2025, 58, 743–750. [Google Scholar]
- Liu, F.; Chen, W.; Qi, H. Clinical characteristics and prognosis of patients treated as invasive pulmonary aspergillosis outside of severe immunosuppression. Sci. Rep. 2025, 15, 3379. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Righi, E.; De Pascale, G. How to manage aspergillosis in non-neutropenic intensive care unit patients. Crit. Care 2014, 18, 458. [Google Scholar] [CrossRef] [PubMed]
- Märtson, A.-G.; Alffenaar, J.-W.C.; Brüggemann, R.J. Precision Therapy for Invasive Fungal Diseases. J. Fungi 2021, 8, 18. [Google Scholar] [CrossRef]
- Patterson, T.F.; Thompson, G.R.; Denning, D.W. Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 63, e1–e60. [Google Scholar] [CrossRef]
- Jiang, L.; Lin, Z. Voriconazole: A review of adjustment programs guided by therapeutic drug monitoring. Front. Pharmacol. 2024, 15, 1439586. [Google Scholar] [CrossRef]
- Giacobbe, D.R.; Bartalucci, C.; Bavastro, M. Use of isavuconazole in critically ill patients in intensive care units: A prospective, observational, multicentre, cohort study. JAC Antimicrob. Resist. 2025, 7, dlaf177. [Google Scholar] [CrossRef]
- Ellsworth, M.; Ostrosky-Zeichner, L. Isavuconazole: Mechanism of Action, Clinical Efficacy, and Resistance. J. Fungi 2020, 6, 324. [Google Scholar] [CrossRef]
- Cheng, J.; Han, H.; Kang, W. Comparison of antifungal drugs in the treatment of invasive pulmonary aspergillosis: A systematic review and network meta-analysis. Front. Microbiol. 2024, 15, 1504826. [Google Scholar] [CrossRef]
- Batista, M.V.; Ussetti, M.P.; Jiang, Y. Comparing the Real-World Use of Isavuconazole to Other Anti-Fungal Therapy for Invasive Fungal Infections in Patients with and without Underlying Disparities: A Multi-Center Retrospective Study. J. Fungi 2023, 9, 166. [Google Scholar] [CrossRef]
- Martín-Cerezuela, M.; Maya Gallegos, C.; Marqués-Miñana, M.R. Isavuconazole Pharmacokinetics in Critically Ill Patients: Relationship with Clinical Effectiveness and Patient Safety. Antibiotics 2024, 13, 706. [Google Scholar] [CrossRef]
- Candel, F.J.; Matesanz, M.; Mensa, J. Pharmacokinetic novelties of isavuconazole. Use in special situations. Rev. Iberoam. Micol. 2025, 42, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Horn, D.; Goff, D.; Khandelwal, N. Hospital resource use of patients receiving isavuconazole vs voriconazole for invasive mold infections in the phase III SECURE trial. J. Med. Econ. 2016, 19, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Azanza Perea, J.R. Pharmacological interactions of isavuconazole. Rev. Iberoam. Micol. 2025, 42, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Dagher, H.; Hachem, R.; Chaftari, A.-M. Real-World Use of Isavuconazole as Primary Therapy for Invasive Fungal Infections in High-Risk Patients with Hematologic Malignancy or Stem Cell Transplant. J. Fungi 2022, 8, 74. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Carvalhaes, C.G.; Rhomberg, P.R. Evaluation of the Activity of Triazoles Against Non-fumigatus Aspergillus and Cryptic Aspergillus Species Causing Invasive Infections Tested in the SENTRY Program. Open Forum Infect. Dis. 2024, 11, ofae532. [Google Scholar] [CrossRef]
- Thompson, G.; Donnelley, M.; Zhu, E. Isavuconazole in the treatment of invasive aspergillosis and mucormycosis infections. Infect. Drug Resist. 2016, 79, 79–86. [Google Scholar] [CrossRef]
- Maertens, J.; Pagano, L.; Azoulay, E. Liposomal amphotericin B—The present. J. Antimicrob. Chemother. 2022, 77, ii11–ii20. [Google Scholar] [CrossRef]
- Soo Hoo, L. Fungal fatal attraction: A mechanistic review on targeting liposomal amphotericin B (AmBisome®) to the fungal membrane. J. Liposome Res. 2017, 27, 180–185. [Google Scholar] [CrossRef]
- Stone, N.R.H.; Bicanic, T.; Salim, R. Liposomal Amphotericin B (AmBisome®): A Review of the Pharmacokinetics, Pharmacodynamics, Clinical Experience and Future Directions. Drugs 2016, 76, 485–500. [Google Scholar] [CrossRef]
- Burnett, Y.J.; Spec, A.; Ahmed, M.M. Experience with Liposomal Amphotericin B in Outpatient Parenteral Antimicrobial Therapy. Antimicrob. Agents Chemother 2021, 65, e01876-20. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, E.; Alzahrani, M.; Loutfi, S. Comparing Invasive Pulmonary Aspergillosis Mortality Between Liposomal Amphotericin B and Voriconazole in Patients With Hematological Malignancy or Hematopoietic Stem Cell Transplantation. Cureus 2022, 14, e31762. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.J.; Anaissie, E.J.; Denning, D.W. Treatment of Aspergillosis: Clinical Practice Guidelines of the Infectious Diseases Society of America. Clin. Infect. Dis. 2008, 46, 327–360. [Google Scholar] [CrossRef] [PubMed]
- Nath, P.; Basher, A.; Harada, M. Immediate hypersensitivity reaction following liposomal amphotericin-B (AmBisome) infusion. Trop. Doct 2014, 44, 241–242. [Google Scholar] [CrossRef]
- Scardina, T.; Fawcett, A.J.; Patel, S.J. Amphotericin-Associated Infusion-Related Reactions: A Narrative Review of Pre-Medications. Clin. Ther. 2021, 43, 1689–1704. [Google Scholar] [CrossRef]
- Boyer, J.; Feys, S.; Zsifkovits, I. Treatment of Invasive Aspergillosis: How It’s Going, Where It’s Heading. Mycopathologia 2023, 188, 667–681. [Google Scholar] [CrossRef]
- Garbati, M.A.; Alasmari, F.A.; Al-Tannir, M.A. The role of combination antifungal therapy in the treatment of invasive aspergillosis: A systematic review. Int. J. Infect. Dis. 2012, 16, e76–e81. [Google Scholar] [CrossRef]
- Marr, K.A.; Schlamm, H.T.; Herbrecht, R. Combination Antifungal Therapy for Invasive Aspergillosis. Ann. Intern. Med. 2015, 162, 81–89. [Google Scholar] [CrossRef]
- Suen, H.C.; Wright, C.D.; Mathisen, D.J. Surgical Management Of Pulmonary Aspergillosis. Chest Surg. Clin. N. Am. 1993, 3, 671–681. [Google Scholar] [CrossRef]
- Curtis, L.T. Better hospital nutrition needed to prevent and treat Aspergillus infections. Med. Mycol. 2013, 51, 336. [Google Scholar] [CrossRef]
- Kousha, M.; Tadi, R.; Soubani, A.O. Pulmonary aspergillosis: A clinical review. Eur. Respir. Rev. 2011, 20, 156–174. [Google Scholar] [CrossRef] [PubMed]
- Henao-Martínez, A.F.; Corbisiero, M.F.; Salter, I. Invasive pulmonary aspergillosis real-world outcomes: Clinical features and risk factors associated with increased mortality. Med. Mycol. 2023, 61, myad074. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-C.; Chen, I.-C.; Chen, J.-P. Prognostic factors and outcomes of invasive pulmonary aspergillosis, a retrospective hospital-based study. PeerJ 2024, 12, e17066. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Ha, X.; Song, Y. Evaluation of the clinical characteristics and survival outcomes of invasive pulmonary aspergillosis patients. Front. Microbiol. 2025, 16, 1587227. [Google Scholar] [CrossRef]
- Swain, S.; Ajayababu, A.; Chowdhury, S. Epidemiology of Triazole Resistant Aspergillus fumigatus in Asia: A Systematic Review and Meta-Analysis. Mycoses 2025, 68, e70099. [Google Scholar] [CrossRef]
- Rivelli Zea, S.M.; Toyotome, T. Azole-resistant Aspergillus fumigatus as an emerging worldwide pathogen. Microbiol. Immunol. 2022, 66, 135–144. [Google Scholar] [CrossRef]
- Verweij, P.E.; Snelders, E.; Kema, G.H. Azole resistance in Aspergillus fumigatus: A side-effect of environmental fungicide use? Lancet Infect. Dis. 2009, 9, 789–795. [Google Scholar] [CrossRef]
- Song, Y.; Buil, J.B.; Rhodes, J. Triazole-resistant Aspergillus fumigatus in the Netherlands between 1994 and 2022: A genomic and phenotypic study. Lancet Microbe 2025, 6, 101114. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC); European Chemicals Agency (ECHA); European Environment Agency (EEA); European Medicines Agency (EMA); European Commission’s Joint Research Centre (JRC). Impact of the use of azole fungicides, other than as human medicines, on the development of azole-resistant Aspergillus spp. EFSA J. 2025, 23, e9200. [Google Scholar] [CrossRef]
- Miceli, M.H.; Kauffman, C.A. Isavuconazole: A New Broad-Spectrum Triazole Antifungal Agent. Clin. Infect. Dis. 2015, 61, 1558–1565. [Google Scholar] [CrossRef]
- Pascual, A.; Calandra, T.; Bolay, S. Voriconazole Therapeutic Drug Monitoring in Patients with Invasive Mycoses Improves Efficacy and Safety Outcomes. Clin. Infect. Dis. 2008, 46, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Perez, L.; Corne, P.; Pasquier, G. Population Pharmacokinetics of Isavuconazole in Critical Care Patients with COVID-19-Associated Pulmonary Aspergillosis and Monte Carlo Simulations of High Off-Label Doses. J. Fungi 2023, 9, 211. [Google Scholar] [CrossRef] [PubMed]
- Kosmidis, C.; Otu, A.; Moore, C.B. Isavuconazole Therapeutic Drug Monitoring during Long-Term Treatment for Chronic Pulmonary Aspergillosis. Antimicrob. Agents Chemother. 2020, 65, e01511-20. [Google Scholar] [CrossRef] [PubMed]
- Bolcato, L.; Thiebaut-Bertrand, A.; Stanke-Labesque, F. Variability of Isavuconazole Trough Concentrations during Longitudinal Therapeutic Drug Monitoring. J. Clin. Med. 2022, 11, 5756. [Google Scholar] [CrossRef]
- Keirns, J.; Desai, A.; Kowalski, D. QT Interval Shortening With Isavuconazole: In Vitro and In Vivo Effects on Cardiac Repolarization. Clin. Pharmacol. Ther. 2017, 101, 782–790. [Google Scholar] [CrossRef]
- Lewis, J.S.; Wiederhold, N.P.; Hakki, M. New Perspectives on Antimicrobial Agents: Isavuconazole. Antimicrob. Agents Chemother. 2022, 66, e0017722. [Google Scholar] [CrossRef]
- Maertens, J.A.; Raad, I.I.; Marr, K.A. Isavuconazole versus voriconazole for primary treatment of invasive mould disease caused by Aspergillus and other filamentous fungi (SECURE): A phase 3, randomised-controlled, non-inferiority trial. Lancet 2016, 387, 760–769. [Google Scholar] [CrossRef]
- Kronig, I.; Masouridi-Levrat, S.; Chalandon, Y. Clinical Considerations of Isavuconazole Administration in High-Risk Hematological Patients: A Single-Center 5-Year Experience. Mycopathologia 2021, 186, 775–788. [Google Scholar] [CrossRef]
- Boutin, C.-A.; Luong, M.-L. Update on therapeutic approaches for invasive fungal infections in adults. Ther. Adv. Infect. Dis. 2024, 11, 20499361231224980. [Google Scholar] [CrossRef]
- Vanbiervliet, Y.; Van Nieuwenhuyse, T.; Aerts, R. Review of the novel antifungal drug olorofim (F901318). BMC Infect. Dis. 2024, 24, 1256. [Google Scholar] [CrossRef] [PubMed]
- El Ayoubi, L.W.; Allaw, F.; Moussa, E. Ibrexafungerp: A narrative overview. Curr. Res. Microb. Sci. 2024, 6, 100245. [Google Scholar] [CrossRef] [PubMed]
- Angulo, D.A.; Alexander, B.; Rautemaa-Richardson, R. Ibrexafungerp, a Novel Triterpenoid Antifungal in Development for the Treatment of Mold Infections. J. Fungi 2022, 8, 1121. [Google Scholar] [CrossRef] [PubMed]
- Shaw, K.J.; Ibrahim, A.S. Fosmanogepix: A Review of the First-in-Class Broad Spectrum Agent for the Treatment of Invasive Fungal Infections. J. Fungi 2020, 6, 239. [Google Scholar] [CrossRef]
- Almajid, A.; Bazroon, A.; Al-awami, H.M. Fosmanogepix: The Novel Anti-Fungal Agent’s Comprehensive Review of in Vitro, in Vivo, and Current Insights From Advancing Clinical Trials. Cureus 2024, 16, e59210. [Google Scholar] [CrossRef]
| Pathophysiological Aspect | Description |
|---|---|
| Host Immune Status | Non-neutropenic patients often have intact neutrophils but may have other immune dysfunctions, such as impaired macrophage or T-cell function (e.g., due to long-term corticosteroid therapy or chronic lung disease) [3]. |
| Epithelial Barrier Disruption | Structural lung damage from conditions like COPD, influenza, or mechanical ventilation can facilitate fungal invasion [38,39]. |
| Inflammatory Response | Unlike neutropenic patients, non-neutropenic individuals may exhibit excessive inflammation due to dysregulated immune activation, leading to tissue damage and worsened outcomes [40]. |
| Role of Alveolar Macrophages | Macrophages play a critical role in Aspergillus clearance. Dysfunction due to long-term corticosteroid therapy or chronic lung disease can impair fungal killing [41]. |
| Angioinvasion vs. Airway Invasion | In non-neutropenic patients, airway-centered invasion (bronchopulmonary aspergillosis) is more common, whereas angioinvasion is more frequent in neutropenic individuals [42]. |
| Corticosteroid Impact | Corticosteroids suppress macrophage and dendritic cell function, leading to impaired fungal clearance and increased risk of invasive disease [43]. |
| Pulmonary Comorbidities | Underlying lung diseases (e.g., COPD, asthma, bronchiectasis) create an environment favoring Aspergillus colonization and invasion [12]. |
| Influenza/Viral Co-Infections | Viral infections (such as influenza or COVID-19) cause alveolar damage and immune dysregulation, increasing susceptibility to IPA [2,37,44]. |
| Immunomodulatory Therapy | Patients receiving TNF inhibitors, anti-IL-6, or other immunosuppressants are at increased risk due to altered immune responses [45]. |
| Delayed Diagnosis | Due to the lack of classical angioinvasive features, diagnosing IPA in non-neutropenic patients is often challenging, leading to delayed treatment and higher mortality [10,46]. |
| Diagnostic Method | Sensitivity | Specificity | Advantages | Limitations |
|---|---|---|---|---|
| HRCT Scan [7] | Moderate | Moderate | Non-invasive, rapid | Nonspecific findings in non-neutropenic patients |
| BAL Culture [7] | Low to Moderate | High | Confirms presence of Aspergillus | Differentiating colonization from infection is difficult |
| Galactomannan (BAL) [53,54,55] | High | Moderate | High diagnostic value in BAL samples | False positives due to diet, antibiotics |
| (1→3)-β-D-Glucan [56,57,58] | High | Low to Moderate | Broad fungal detection | Cross-reactivity with other fungi, bacterial infections |
| Aspergillus PCR [59] | High | High | Rapid, sensitive detection | Lack of standardization across labs |
| Histopathology [7] | High | High | Gold standard | Invasive procedure |
| Drug Class | Agent | Mechanism of Action | Antifungal Spectrum | Key Benefits |
|---|---|---|---|---|
| Current Treatments | ||||
| Triazoles | Voriconazole | Inhibits ergosterol synthesis (CYP51A1 inhibition) | Aspergillus spp., Candida spp. | First-line therapy for IPA, oral & IV forms available |
| Isavuconazole | Inhibits ergosterol synthesis | Aspergillus spp., Mucorales, Candida spp. | Broad spectrum, fewer side effects than voriconazole | |
| Polyenes | Liposomal Amphotericin B | Binds to ergosterol, disrupting fungal cell membrane | Aspergillus spp., Mucorales, Candida spp. | Used in severe cases, broad spectrum, IV only |
| Echinocandins | Caspofungin, Micafungin, Anidulafungin | Inhibits β-glucan synthase (cell wall synthesis) | Candida spp., limited Aspergillus spp. activity | Salvage therapy, low toxicity, IV only |
| Emerging Treatments | ||||
| Orotomides | Olorofim | Inhibits pyrimidine biosynthesis (DHODH inhibition) | Aspergillus spp., Scedosporium spp., Lomentospora spp. | Active against azole-resistant Aspergillus, oral bioavailability |
| Triterpenoids | Ibrexafungerp | Inhibits β-glucan synthase (cell wall synthesis) | Aspergillus spp., Candida spp. | Oral echinocandin, step-down therapy option |
| Gwt1 Inhibitors | Fosmanogepix | Inhibits Gwt1 enzyme, affecting GPI-anchored proteins | Aspergillus spp., Fusarium spp., Scedosporium spp. | Active against difficult-to-treat molds, broad-spectrum potential |
| Long-Acting Echinocandins | Rezafungin | Inhibits β-glucan synthase | Candida spp., Pneumocystis spp. | Once-weekly dosing, improved pharmacokinetics |
| Next-Gen Azoles | New azole compounds | Improved CYP51A1 inhibition, fewer drug interactions | Aspergillus spp., Candida spp. | Better tolerability, possible inhaled formulations |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morena, R.; Morrone, H.L.; Serapide, F.; Russo, A. Invasive Pulmonary Aspergillosis in Non-Neutropenic Patients: An Evolving Clinical Paradigm. Diagnostics 2026, 16, 34. https://doi.org/10.3390/diagnostics16010034
Morena R, Morrone HL, Serapide F, Russo A. Invasive Pulmonary Aspergillosis in Non-Neutropenic Patients: An Evolving Clinical Paradigm. Diagnostics. 2026; 16(1):34. https://doi.org/10.3390/diagnostics16010034
Chicago/Turabian StyleMorena, Rocco, Helen Linda Morrone, Francesca Serapide, and Alessandro Russo. 2026. "Invasive Pulmonary Aspergillosis in Non-Neutropenic Patients: An Evolving Clinical Paradigm" Diagnostics 16, no. 1: 34. https://doi.org/10.3390/diagnostics16010034
APA StyleMorena, R., Morrone, H. L., Serapide, F., & Russo, A. (2026). Invasive Pulmonary Aspergillosis in Non-Neutropenic Patients: An Evolving Clinical Paradigm. Diagnostics, 16(1), 34. https://doi.org/10.3390/diagnostics16010034

