Beyond X-Rays: Unveiling the Future of Dental Diagnosis with Dental Magnetic Resonance Imaging
Abstract
:1. Introduction
2. Challenges and Limitations of Conventional MRI in Dental Imaging
3. Advances in Short T2 MRI Sequences for Dental Hard Tissue Visualization
3.1. Ultrashort Echo Time (UTE)
3.2. Zero Echo Time (ZTE)
3.3. Sweep Imaging with Fourier Transformation (SWIFT)
4. Dental MRI Coils: Advancements and Challenges in Imaging Quality
4.1. Radiofrequency Coils
- Body Coils:
- 2.
- Surface Coils:
4.2. Innovative Coil Designs for Dental MRI Radiofrequency Intraoral Coils
- Wireless Inductively-Coupled Coils:
- 2.
- Multi-Channel RF Arrays:
- 3.
- SWIFT Coils:
- 4.
- Transverse Loop Coils (tLoop and mtLoop)
- 5.
- Coupled Stack-Up Volume Coils:
4.3. Challenges in Dental MRI Radiofrequency Coils
- Low SNR and Resolution:
- 2.
- Design Limitations:
- 3.
- Material and Miniaturization Challenges:
- 4.
- FOV Limitations:
4.4. Gradient Coils
5. Clinical Applications of Short T2 Sequences in Dentistry
6. Imaging of Teeth
6.1. Detection of Dental Caries
6.2. Dental Restorative Materials
6.3. Dental Pulp and Vitality Status of Tooth
6.4. Periapical Inflammatory Disease
6.5. Periodontal Assessment
6.6. Cracks and Fracture Detection in the Teeth
6.7. Nerve Detection
6.8. Alveolar Bone Evaluation for Implant Treatment Planning
6.9. Jaw Bone Pathology
6.10. Temporomandibular Joint (TMJ)
6.11. Potential Uses in Oral Cancer
6.12. MR-Based Panoramic Reconstruction
6.13. MR-Based Lateral Cephalometric Reconstruction and Cephalometric Analysis
6.14. Assessment of Craniocervical Junction
6.15. Applications in Forensic Dentistry
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CBCT | Cone Beam Computed Tomography |
MRI | Magnetic Resonance Imaging |
UTE | Ultrashort Echo Time |
ZTE | Zero Echo Time |
SWIFT | Sweep Imaging with Fourier Transformation |
TMJ | Temporomandibular Joint |
RF | Radiofrequency |
FID | Free Induction Decay |
SNR | Signal-to-Noise Ratio |
IGM | Imaging -Based Gradient Measurements |
GIRF | Gradient Impulse Response Function |
RHE | Ramped Hybrid Encoding |
TE | Echo Time |
FT | Fourier Transform |
PETRA | Pointwise Encoding Time Reduction with Radial Acquisition |
EPI | Echo Planar Imaging |
DUFIS | Dual Flip Angle Ultra Short Echo Time Imaging with Saturation |
OUFIS | Optimized Ultra- Fast Imaging Sequence |
BURST | Bipolar UTE with Residual Saddle Term |
BLAST | Back-projection Low Angle ShoT |
RUFIS | Rotating Ultra-Fast Imaging Sequence |
SAR | Specific Absorption Rate |
NMR | Nuclear Magnetic Resonance |
PET | Positron Emission Tomography |
CW | continuous wave |
FOV | Field of View |
tLoop | transverse loop coil |
mtLoop | modified transverse loop coil |
FUTE | Fat-Suppressed UTE |
GRE | Gradient Echo Images |
IAN | Inferior Alveolar Nerve |
DESS | Double Echo Steady State |
MPR | Multiplanar Reconstruction |
CT | Computed Tomography |
MRONJ | Medication-Related Osteonecrosis of Jaws |
CCD | Charge-Coupled Device |
LC | Lateral cephalogram |
TR | Repetition Time |
CCJ | Craniocervical Junction |
References
- Sedentexct Radiation Protection N°172—Cone Beam Ct for Dental and Maxillofacial Radiology—Evidence-Based Guidelines|cbct-Xchange. Available online: https://www.cbct-xchange.com/document/sedentexct-radiation-protection-n172-cone-beam-ct-for-dental-and-maxillofacial-radiology-evidence-based-guidelines/ (accessed on 2 April 2025).
- Jacobs, R.; Salmon, B.; Codari, M.; Hassan, B.; Bornstein, M.M. Cone beam computed tomography in implant dentistry: Recommendations for clinical use. BMC Oral. Health 2018, 18, 88. [Google Scholar] [CrossRef]
- Hövener, J.B.; Zwick, S.; Leupold, J.; Eisenbeiβ, A.K.; Scheifele, C.; Schellenberger, F.; Hennig, J.; Elverfeldt, D.V.; Ludwig, U. Dental MRI: Imaging of soft and solid components without ionizing radiation. J. Magn. Reson. Imaging 2012, 36, 841–846. [Google Scholar] [CrossRef]
- Probst, M.; Burian, E.; Robl, T.; Weidlich, D.; Karampinos, D.; Brunner, T.; Zimmer, C.; Probst, F.A.; Folwaczny, M. Magnetic resonance imaging as a diagnostic tool for periodontal disease: A prospective study with correlation to standard clinical findings-Is there added value? J. Clin. Periodontol. 2021, 48, 929–948. [Google Scholar] [CrossRef] [PubMed]
- Patel, S. New dimensions in endodontic imaging: Part 2. Cone beam computed tomography. Int. Endod. J. 2009, 42, 463–475. [Google Scholar] [CrossRef] [PubMed]
- Bromberg, N.; Brizuela, M. Dental Cone Beam Computed Tomography. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK592390/ (accessed on 2 April 2025).
- Nakamura, T. Dental MRI: A road beyond CBCT. Eur. Radiol. 2020, 30, 6389–6391. [Google Scholar] [CrossRef] [PubMed]
- Niraj, L.K.; Patthi, B.; Singla, A.; Gupta, R.; Ali, I.; Dhama, K.; Kumar, J.K.; Prasad, M. MRI in Dentistry—A Future Towards Radiation Free Imaging—Systematic Review. J. Clin. Diagn. Res. 2016, 10, ZE14. [Google Scholar] [CrossRef]
- Stratis, A.; Zhang, G.; Jacobs, R.; Bogaerts, R.; Bosmans, H. The growing concern of radiation dose in paediatric dental and maxillofacial CBCT: An easy guide for daily practice. Eur. Radiol. 2019, 29, 7009–7018. [Google Scholar] [CrossRef]
- Pauwels, R.; Cockmartin, L.; Ivanauskaité, D.; Urbonienė, A.; Gavala, S.; Donta, C.; Tsiklakis, K.; Jacobs, R.; Bosmans, H.; Bogaerts, R.; et al. Estimating cancer risk from dental cone-beam CT exposures based on skin dosimetry. Phys. Med. Biol. 2014, 59, 3877–3891. [Google Scholar] [CrossRef]
- Juerchott, A.; Roser, C.J.; Saleem, M.A.; Nittka, M.; Lux, C.J.; Heiland, S.; Bendszus, M.; Hilgenfeld, T. Diagnostic compatibility of various fixed orthodontic retainers for head/neck MRI and dental MRI. Clin. Oral. Investig. 2023, 27, 2375–2384. [Google Scholar] [CrossRef]
- Pasteris, J.D.; Wopenka, B.; Valsami-Jones, E. Bone and Tooth Mineralization: Why Apatite? Elements 2008, 4, 97–104. [Google Scholar] [CrossRef]
- Schreiner, L.J.; Cameron, I.G.; Funduk, N.; Miljković, L.; Pintar, M.M.; Kydon, D.N. Proton NMR spin grouping and exchange in dentin. Biophys. J. 1991, 59, 629–639. [Google Scholar] [CrossRef]
- Funduk, N.; Kydon, D.W.; Schreiner, L.J.; Peemoeller, H.; Miljković, L.; Pintar, M.M. Composition and relaxation of the proton magnetization of human enamel and its contribution to the tooth NMR image. Magn. Reson. Med. 1984, 1, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Olt, S.; Jakob, P.M. Contrast-enhanced dental MRI for visualization of the teeth and jaw. Magn. Reson. Med. 2004, 52, 174–176. [Google Scholar] [CrossRef]
- Węglarz, W.P.; Tanasiewicz, M.; Kupka, T.; Skórka, T.; Sułek, Z.; Jasiński, A. 3D MR imaging of dental cavities—An in vitro study. Solid State Nucl. Magn. Reson. 2004, 25, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Tymofiyeva, O.; Rottner, K.; Gareis, D.; Boldt, J.; Schmid, F.; Lopez, M.A.; Richter, E.J.; Jakob, P.M. In vivo MRI-based dental impression using an intraoral RF receiver coil. Concepts Magn. Reson. Part B 2008, 33, 244–251. [Google Scholar] [CrossRef]
- Mastrogiacomo, S.; Dou, W.; Jansen, J.A.; Walboomers, X.F. Magnetic Resonance Imaging of Hard Tissues and Hard Tissue Engineered Bio-substitutes. Mol. Imaging Biol. 2019, 21, 1003–1019. [Google Scholar] [CrossRef] [PubMed]
- Robson, M.D.; Bydder, G.M. Clinical ultrashort echo time imaging of bone and other connective tissues. NMR Biomed. 2006, 19, 765–780. [Google Scholar] [CrossRef]
- Bydder, G.M. The Agfa Mayneord lecture: MRI of short and ultrashort T2 and T2* components of tissues, fluids and materials using clinical systems. Br. J. Radiol. 2011, 84, 1067–1082. [Google Scholar] [CrossRef]
- Chang, E.Y.; Du, J.; Chung, C.B. UTE imaging in the musculoskeletal system. J. Magn. Reson. Imaging 2015, 41, 870–883. [Google Scholar] [CrossRef]
- Robson, M.D.; Gatehouse, P.D.; Bydder, M.; Bydder, G.M. Magnetic resonance: An introduction to ultrashort TE (UTE) imaging. J. Comput. Assist. Tomogr. 2003, 27, 825–846. [Google Scholar] [CrossRef]
- Tyler, D.J.; Robson, M.D.; Henkelman, R.M.; Young, I.R.; Bydder, G.M. Magnetic resonance imaging with ultrashort TE (UTE) PULSE sequences: Technical considerations. J. Magn. Reson. Imaging 2007, 25, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Bydder, M.; Rahal, A.; Chung, C.B.; Du, J. Ultra-short echo time imaging techniques in musculoskeletal MRI. Am. J. Roentgenol. 2012, 199, 1410–1416. [Google Scholar]
- Du, J.; Takahashi, A.M.; Bae, W.C.; Chung, C.B.; Bydder, G.M. Dual inversion recovery, ultrashort echo time (DIR UTE) imaging: Creating high contrast for short-T2 species. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 2010, 63, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Bartusek, K.; Kubasek, R.; Fiala, P. Determination of pre-emphasis constants for eddy current reduction. Meas. Sci. Technol. 2010, 21, 105601. [Google Scholar] [CrossRef]
- Addy, N.O.; Wu, H.H.; Nishimura, D.G. Simple method for MR gradient system characterization and k-space trajectory estimation. Magn. Reson. Med. 2012, 68, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Vannesjo, S.J.; Haeberlin, M.; Kasper, L.; Pavan, M.; Wilm, B.J.; Barmet, C.; Pruessmann, K.P. Gradient system characterization by impulse response measurements with a dynamic field camera. Magn. Reson. Med. 2013, 69, 583–593. [Google Scholar] [CrossRef]
- Jang, H.; Wiens, C.N.; McMillan, A.B. Ramped hybrid encoding for improved ultrashort echo time imaging. Magn. Reson. Med. 2016, 76, 814–825. [Google Scholar] [CrossRef]
- Jang, H.; McMillan, A.B. A rapid and robust gradient measurement technique using dynamic single-point imaging. Magn. Reson. Med. 2017, 78, 950–962. [Google Scholar] [CrossRef]
- Weiger, M.; Pruessmann, K.P. MRI with zero echo time. In Encyclopedia of Magnetic Resonance Chichester; Harris, R.K., Wasylishen, R.E., Eds.; John Wiley: Chichester, UK, 2012; pp. 311–321. Available online: https://www.zora.uzh.ch/id/eprint/73614/ (accessed on 2 April 2025).
- Weiger, M.; Pruessmann, K.P.; Hennel, F. MRI with zero echo time: Hard versus sweep pulse excitation. Magn. Reson. Med. 2011, 66, 379–389. [Google Scholar] [CrossRef]
- Hafner, S. Fast imaging in liquids and solids with the Back-projection Low Angle ShoT (BLAST) technique. Magn. Reson. Imaging 1994, 12, 1047–1051. [Google Scholar] [CrossRef]
- Madio, D.P.; Lowe, I.J. Ultra-fast imaging using low flip angles and FIDs. Magn. Reson. Med. 1995, 34, 525–529. [Google Scholar] [CrossRef]
- Grodzki, D.M.; Jakob, P.M.; Heismann, B. Ultrashort echo time imaging using pointwise encoding time reduction with radial acquisition (PETRA). Magn. Reson. Med. 2012, 67, 510–518. [Google Scholar] [CrossRef]
- Li, C.; Magland, J.F.; Seifert, A.C.; Wehrli, F.W. Correction of excitation profile in Zero Echo Time (ZTE) imaging using quadratic phase-modulated RF pulse excitation and iterative reconstruction. IEEE Trans. Med. Imaging 2014, 33, 961–969. [Google Scholar] [PubMed]
- Lee, Y.H.; Suh, J.S.; Grodzki, D. Ultrashort echo (UTE) versus pointwise encoding time reduction with radial acquisition (PETRA) sequences at 3 Tesla for knee meniscus: A comparative study. Magn. Reson. Imaging 2016, 34, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Schieban, K.; Weiger, M.; Hennel, F.; Boss, A.; Pruessmann, K.P. ZTE imaging with enhanced flip angle using modulated excitation. Magn. Reson. Med. 2015, 74, 684–693. [Google Scholar] [CrossRef] [PubMed]
- Weiger, M.; Wu, M.; Wurnig, M.C.; Kenkel, D.; Boss, A.; Andreisek, G.; Pruessmann, K.P. ZTE imaging with long-T2 suppression. NMR Biomed. 2015, 28, 247–254. [Google Scholar] [CrossRef]
- Idiyatullin, D.; Corum, C.; Park, J.Y.; Garwood, M. Fast and quiet MRI using a swept radiofrequency. J. Magn. Reson. 2006, 181, 342–349. [Google Scholar] [CrossRef]
- Idiyatullin, D.; Suddarth, S.; Corum, C.A.; Adriany, G.; Garwood, M. Continuous SWIFT. J. Magn. Reson. 2012, 220, 26–31. [Google Scholar] [CrossRef]
- Zhang, J.; Nissi, M.J.; Idiyatullin, D.; Michaeli, S.; Garwood, M.; Ellermann, J. Capturing fast relaxing spins with SWIFT adiabatic rotating frame spin–lattice relaxation (T1ρ) mapping. NMR Biomed. 2016, 29, 420–430. [Google Scholar] [CrossRef]
- Idiyatullin, D.; Corum, C.A.; Garwood, M. Multi-Band-SWIFT. J. Magn. Reson. 2015, 251, 19–25. [Google Scholar] [CrossRef]
- Zhang, J.; Idiyatullin, D.; Corum, C.A.; Kobayashi, N.; Garwood, M. Gradient-modulated SWIFT. Magn. Reson. Med. 2016, 75, 537–546. [Google Scholar] [CrossRef]
- Prager, M.; Heiland, S.; Gareis, D.; Hilgenfeld, T.; Bendszus, M.; Gaudino, C. Dental MRI using a dedicated RF-coil at 3 Tesla. J. Cranio-Maxillofac. Surg. 2015, 43, 2175–2182. [Google Scholar] [CrossRef] [PubMed]
- Gruber, B.; Froeling, M.; Leiner, T.; Klomp, D.W.J. RF coils: A practical guide for nonphysicists. J. Magn. Reson. Imaging 2018, 48, 590–604. [Google Scholar] [CrossRef] [PubMed]
- Idiyatullin, D.; Corum, C.; Moeller, S.; Prasad, H.S.; Garwood, M.; Nixdorf, D.R. Dental magnetic resonance imaging: Making the invisible visible. J. Endod. 2011, 37, 745–752. [Google Scholar] [CrossRef]
- Ludwig, U.; Eisenbeiss, A.K.; Scheifele, C.; Nelson, K.; Bock, M.; Hennig, J.; Von Elverfeldt, D.; Herdt, O.; Flügge, T.; Hövener, J.B. Dental MRI using wireless intraoral coils. Sci. Rep. 2016, 6, 23301. [Google Scholar] [CrossRef] [PubMed]
- Greiser, A.; Christensen, J.; Fuglsig, J.M.; Johannsen, K.M.; Nixdorf, D.R.; Burzan, K.; Lauer, L.; Krueger, G.; Hayes, C.; Kettless, K.; et al. Dental-dedicated MRI, a novel approach for dentomaxillofacial diagnostic imaging: Technical specifications and feasibility. Dentomaxillofac. Radiol. 2024, 53, 74–85. [Google Scholar] [CrossRef]
- Idiyatullin, D.; Corum, C.A.; Nixdorf, D.R.; Garwood, M. Intraoral approach for imaging teeth using the transverse B1 field components of an occlusally oriented loop coil. Magn. Reson. Med. 2014, 72, 160–165. [Google Scholar] [CrossRef]
- Özen, A.C.; Ilbey, S.; Jia, F.; Idiyatullin, D.; Garwood, M.; Nixdorf, D.R.; Bock, M. An improved intraoral transverse loop coil design for high-resolution dental MRI. Magn. Reson. Med. 2023, 90, 1728–1737. [Google Scholar] [CrossRef]
- Zhao, Y.; Bhosale, A.A.; Zhang, X. Coupled stack-up volume RF coils for low-field open MR imaging. medRxiv 2024. [Google Scholar] [CrossRef]
- Flügge, T.; Gross, C.; Ludwig, U.; Schmitz, J.; Nahles, S.; Heiland, M.; Nelson, K. Dental MRI-only a future vision or standard of care? A literature review on current indications and applications of MRI in dentistry. Dentomaxillofac. Radiol. 2023, 52, 20220333. [Google Scholar] [CrossRef]
- Gatehouse, P.D.; Bydder, G.M. Magnetic resonance imaging of short T2 components in tissue. Clin. Radiol. 2003, 58, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Bracher, A.K.; Hofmann, C.; Bornstedt, A.; Boujraf, S.; Hell, E.; Ulrici, J.; Spahr, A.; Haller, B.; Rasche, V. Feasibility of ultra-short echo time (UTE) magnetic resonance imaging for identification of carious lesions. Magn. Reson. Med. 2011, 66, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Bracher, A.K.; Hofmann, C.; Bornstedt, A.; Hell, E.; Janke, F.; Ulrici, J.; Haller, B.; Geibel, M.A.; Rasche, V. Ultrashort echo time (UTE) MRI for the assessment of caries lesions. Dentomaxillofac. Radiol. 2013, 42, 20120321. [Google Scholar] [CrossRef]
- Grosse, U.; Syha, R.; Papanikolaou, D.; Martirosian, P.; Grözinger, G.; Schabel, C.; Schick, F.; Springer, F. Magnetic resonance imaging of solid dental restoration materials using 3D UTE sequences: Visualization and relaxometry of various compounds. Magma 2013, 26, 555–564. [Google Scholar] [CrossRef]
- Timme, M.; Masthoff, M.; Nagelmann, N.; Masthoff, M.; Faber, C.; Bürklein, S. Imaging of root canal treatment using ultra high field 9.4T UTE-MRI—A preliminary study. Dentomaxillofac. Radiol. 2020, 49, 20190183. [Google Scholar] [CrossRef] [PubMed]
- Kress, B.; Buhl, Y.; Anders, L.; Stippich, C.; Palm, F.; Bahren, W.; Sartor, K. Quantitative analysis of MRI signal intensity as a tool for evaluating tooth pulp vitality. Dentomaxillofac. Radiol. 2004, 33, 241–244. [Google Scholar] [CrossRef]
- Juerchott, A.; Jelinek, C.; Kronsteiner, D.; Jende, J.M.; Kurz, F.T.; Bendszus, M.; Heiland, S.; Hilgenfeld, T. Quantitative assessment of contrast-enhancement patterns of the healthy dental pulp by magnetic resonance imaging: Aprospective in vivo study. Int. Endod. J. 2022, 55, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Assaf, A.T.; Zrnc, T.A.; Remus, C.C.; Khokale, A.; Habermann, C.R.; Schulze, D.; Fiehler, J.; Heiland, M.; Sedlacik, J.; Friedrich, R.E. Early detection of pulp necrosis and dental vitality after traumatic dental injuries in children and adolescents by 3-Tesla magnetic resonance imaging. J. Cranio-Maxillofac. Surg. 2015, 43, 1088–1093. [Google Scholar] [CrossRef]
- Wamasing, N.; Yomtako, S.; Watanabe, H.; Sakamoto, J.; Kayamori, K.; Kurabayashi, T. The magnetic resonance imaging characteristics of radicular cysts and granulomas. Dentomaxillofac. Radiol. 2023, 52, 20220336. [Google Scholar] [CrossRef]
- Juerchott, A.; Pfefferle, T.; Flechtenmacher, C.; Mente, J.; Bendszus, M.; Heiland, S.; Hilgenfeld, T. Differentiation of periapical granulomas and cysts by using dental MRI: A pilot study. Int. J. Oral. Sci. 2018, 10, 17. [Google Scholar] [CrossRef]
- Idiyatullin, D.; Garwood, M.; Gaalaas, L.; Nixdorf, D.R. Role of MRI for detecting micro cracks in teeth. Dentomaxillofac. Radiol. 2016, 45, 20160150. [Google Scholar] [CrossRef] [PubMed]
- Schuurmans, T.J.; Nixdorf, D.R.; Idiyatullin, D.S.; Law, A.S.; Barsness, B.D.; Roach, S.H.; Gaalaas, L. Accuracy and Reliability of Root Crack and Fracture Detection in Teeth Using Magnetic Resonance Imaging. J. Endod. 2019, 45, 750–755.e2. [Google Scholar] [CrossRef] [PubMed]
- Groenke, B.R.; Idiyatullin, D.; Gaalaas, L.; Petersen, A.; Law, A.; Barsness, B.; Royal, M.; Fok, A.; Nixdorf, D.R. Sensitivity and Specificity of MRI versus CBCT to Detect Vertical Root Fractures Using MicroCT as a Reference Standard. J. Endod. 2023, 49, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Groenke, B.R.; Idiyatullin, D.; Gaalaas, L.; Petersen, A.; Chew, H.P.; Law, A.; Barsness, B.; Royal, M.; Ordinola-Zapata, R.; Fok, A.; et al. Minimal Detectable Width of Tooth Fractures Using Magnetic Resonance Imaging and Method to Measure. J. Endod. 2022, 48, 1414–1420.e1. [Google Scholar] [CrossRef]
- Burian, E.; Sollmann, N.; Ritschl, L.M.; Palla, B.; Maier, L.; Zimmer, C.; Probst, F.; Fichter, A.; Miloro, M.; Probst, M. High resolution MRI for quantitative assessment of inferior alveolar nerve impairment in course of mandible fractures: An imaging feasibility study. Sci. Rep. 2020, 10, 11566. [Google Scholar] [CrossRef]
- Al-Haj Husain, A.; Schmidt, V.; Valdec, S.; Stadlinger, B.; Winklhofer, S.; Schönegg, D.; Sommer, S.; Özcan, M.; Al-Haj Husain, N.; Piccirelli, M. MR-orthopantomography in operative dentistry and oral and maxillofacial surgery: A proof of concept study. Sci. Rep. 2023, 13, 6228. [Google Scholar] [CrossRef]
- Fuglsig, J.M.d.C.e.S.; Hansen, B.; Schropp, L.; Nixdorf, D.R.; Wenzel, A.; Spin-Neto, R. Alveolar bone measurements in magnetic resonance imaging compared with cone beam computed tomography: A pilot, ex-vivo study. Acta Odontol. Scand. 2023, 81, 241–248. [Google Scholar] [CrossRef]
- Fuglsig, J.M.d.C.e.S.; Schropp, L.; Hansen, B.; Wenzel, A.; Spin-Neto, R. Jawbone measurements of edentulous sites related to implant planning using magnetic resonance imaging compared to cone beam computed tomography: An ex vivo study. Clin. Oral. Implants Res. 2024, 35, 179–186. [Google Scholar] [CrossRef]
- Smith, M.; Bambach, S.; Selvaraj, B.; Ho, M.L. Zero-TE MRI: Potential Applications in the Oral Cavity and Oropharynx. Top. Magn. Reson. Imaging 2021, 30, 105–115. [Google Scholar] [CrossRef]
- Huber, F.A.; Schumann, P.; Von Spiczak, J.; Wurnig, M.C.; Klarhöfer, M.; Finkenstaedt, T.; Bedogni, A.; Guggenberger, R. Medication-Related Osteonecrosis of the Jaw-Comparison of Bone Imaging Using Ultrashort Echo-Time Magnetic Resonance Imaging and Cone-Beam Computed Tomography. Investig. Radiol. 2020, 55, 160–167. [Google Scholar] [CrossRef]
- Bae, W.C.; Tafur, M.; Chang, E.Y.; Du, J.; Biswas, R.; Kwack, K.S.; Healey, R.; Statum, S.; Chung, C.B. High-resolution morphologic and ultrashort time-to-echo quantitative magnetic resonance imaging of the temporomandibular joint. Skelet. Radiol. 2016, 45, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Jeon, K.J.; Han, S.S.; Kim, Y.H.; Choi, Y.J.; Lee, A.; Choi, J.H. CT-like MRI using the zero-TE technique for osseous changes of the TMJ. CT-like MRI using the zero-TE technique for osseous changes of the TMJ. Dentomaxillofac. Radiol. 2020, 49, 20190272. [Google Scholar] [CrossRef]
- Tsujikawa, T.; Kanno, M.; Ito, Y.; Oikawa, H.; Rahman, M.G.; Narita, N.; Fujieda, S.; Okazawa, H. Zero Echo Time-Based PET/MRI Attenuation Correction in Patients With Oral Cavity Cancer: Initial Experience. Clin. Nucl. Med. 2020, 45, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Ludlow, J.B.; Davies-Ludlow, L.E.; White, S.C. Patient Risk Related to Common Dental Radiographic Examinations: The Impact of 2007 International Commission on Radiological Protection Recommendations Regarding Dose Calculation. J. Am. Dent. Assoc. 2008, 139, 1237–1243. [Google Scholar] [CrossRef]
- Cenda, P.; Cieślak, A.; Pociask, E.; Obuchowicz, R.; Piórkowski, A. Constructing a Panoramic Radiograph Image Based on Magnetic Resonance Imaging Data. In The Latest Developments and Challenges in Biomedical Engineering; Polish Conference on Biocybernetics and Biomedical Engineering; Springer Nature: Cham, Switzerland, 2023; pp. 121–130. [Google Scholar]
- Al-Haj Husain, A.; Oechslin, D.A.; Stadlinger, B.; Winklhofer, S.; Özcan, M.; Schönegg, D.; Al-Haj Husain, N.; Sommer, S.; Piccirelli, M.; Valdec, S. Preoperative imaging in third molar surgery—A prospective comparison of X-ray-based and radiation-free magnetic resonance orthopantomography. J. Cranio-Maxillofac. Surg. 2024, 52, 117–126. [Google Scholar] [CrossRef]
- Eley, K.A.; McIntyre, A.G.; Watt-Smith, S.R.; Golding, S.J. “Black bone” MRI: A partial flip angle technique for radiation reduction in craniofacial imaging. Br. J. Radiol. 2012, 85, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Abkai, C.; Hourfar, J.; Glockengießer, J.; Ulrici, J.; Hell, E.; Rasche, V.; Ludwig, B. Ultra short time to Echo (UTE) MRI for cephalometric analysis-Potential of an x-ray free fast cephalometric projection technique. PLoS ONE 2021, 16, e0257224. [Google Scholar] [CrossRef]
- Deininger-Czermak, E.; Villefort, C.; von Knebel Doeberitz, N.; Franckenberg, S.; Kälin, P.; Kenkel, D.; Gascho, D.; Piccirelli, M.; Finkenstaedt, T.; Thali, M.J.; et al. Comparison of MR Ultrashort Echo Time and Optimized 3D-Multiecho In-Phase Sequence to Computed Tomography for Assessment of the Osseous Craniocervical Junction. J. Magn. Reson. Imaging 2021, 53, 1029–1039. [Google Scholar] [CrossRef]
- Timme, M.; Borkert, J.; Nagelmann, N.; Schmeling, A. Evaluation of secondary dentin formation for forensic age assessment by means of semi-automatic segmented ultrahigh field 9.4 T UTE MRI datasets. Int. J. Leg. Med. 2020, 134, 2283–2288. [Google Scholar] [CrossRef]
- Timme, M.; Borkert, J.; Nagelmann, N.; Streeter, A.; Karch, A.; Schmeling, A. Age-dependent decrease in dental pulp cavity volume as a feature for age assessment: A comparative in vitro study using 9.4-T UTE-MRI and CBCT 3D imaging. Int. J. Leg. Med. 2021, 135, 1599–1609. [Google Scholar] [CrossRef]
- Allison, J.R.; Chary, K.; Ottley, C.; Vuong, Q.C.; German, M.J.; Durham, J.; Thelwall, P. The effect of magnetic resonance imaging on mercury release from dental amalgam at 3T and 7T. J. Dent. 2022, 127, 104322. [Google Scholar] [CrossRef]
- Kotaki, S.; Watanabe, H.; Sakamoto, J.; Kuribayashi, A.; Araragi, M.; Akiyama, H.; Ariji, Y. High-resolution magnetic resonance imaging of teeth and periodontal tissues using a microscopy coil. Imaging Sci. Dent. 2024, 54, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Algarín, J.M.; Díaz-Caballero, E.; Borreguero, J.; Galve, F.; Grau-Ruiz, D.; Rigla, J.P.; Bosch, R.; González, J.M.; Pallás, E.; Corberán, M.; et al. Simultaneous imaging of hard and soft biological tissues in a low-field dental MRI scanner. Sci. Rep. 2020, 10, 21470. [Google Scholar] [CrossRef] [PubMed]
- Spagnuolo, G.; Soltani, P. Magnetic Resonance Imaging in Digital Dentistry: The Start of a New Era. Prosthesis 2024, 6, 798–802. [Google Scholar] [CrossRef]
- Nixdorf, D.R.; Greiser, A.; Hayes, C.; Gaalaas, L.; Groenke, B.R.; e Silva, J.M.; Johannsen, K.M.; Herman, C.R.; Kaimal, S.; Moana-Filho, E.J.; et al. Comparison of a 0.55 T dental-dedicated magnetic resonance imaging system with a 1.5 T system in evaluation of the temporomandibular joint regarding subjective image quality assessment and rater agreement. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. 2025. Epub ahead of print. [Google Scholar] [CrossRef]
- Cankar, K.; Vidmar, J.; Nemeth, L.; Serša, I. T2 Mapping as a Tool for Assessment of Dental Pulp Response to Caries Progression: An in vivo MRI Study. Caries Res. 2020, 54, 24–35. [Google Scholar] [CrossRef]
- Di Nardo, D.; Gambarini, G.; Capuani, S.; Testarelli, L. Nuclear Magnetic Resonance Imaging in Endodontics: A Review. J. Endod. 2018, 44, 536–542. [Google Scholar] [CrossRef]
- Gradl, J.; Höreth, M.; Pfefferle, T.; Prager, M.; Hilgenfeld, T.; Gareis, D.; Bäumer, P.; Heiland, S.; Bendszus, M.; Hähnel, S. Application of a Dedicated Surface Coil in Dental MRI Provides Superior Image Quality in Comparison with a Standard Coil. Clin. Neuroradiol. 2017, 27, 371–378. [Google Scholar] [CrossRef]
- More, S.S.; Zhang, X. Ultrashort Echo Time and Zero Echo Time MRI and Their Applications at High Magnetic Fields: A Literature Survey. Investig. Magn. Reson. Imaging 2024, 28, 153–173. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaddi, A.; Parasher, P.; Khurana, S. Beyond X-Rays: Unveiling the Future of Dental Diagnosis with Dental Magnetic Resonance Imaging. Diagnostics 2025, 15, 1153. https://doi.org/10.3390/diagnostics15091153
Vaddi A, Parasher P, Khurana S. Beyond X-Rays: Unveiling the Future of Dental Diagnosis with Dental Magnetic Resonance Imaging. Diagnostics. 2025; 15(9):1153. https://doi.org/10.3390/diagnostics15091153
Chicago/Turabian StyleVaddi, Anusha, Pranav Parasher, and Sonam Khurana. 2025. "Beyond X-Rays: Unveiling the Future of Dental Diagnosis with Dental Magnetic Resonance Imaging" Diagnostics 15, no. 9: 1153. https://doi.org/10.3390/diagnostics15091153
APA StyleVaddi, A., Parasher, P., & Khurana, S. (2025). Beyond X-Rays: Unveiling the Future of Dental Diagnosis with Dental Magnetic Resonance Imaging. Diagnostics, 15(9), 1153. https://doi.org/10.3390/diagnostics15091153