Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Sweep Imaging with Fourier Transformation (SWIFT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 683 KiB  
Review
Beyond X-Rays: Unveiling the Future of Dental Diagnosis with Dental Magnetic Resonance Imaging
by Anusha Vaddi, Pranav Parasher and Sonam Khurana
Diagnostics 2025, 15(9), 1153; https://doi.org/10.3390/diagnostics15091153 - 1 May 2025
Cited by 1 | Viewed by 1211
Abstract
Diagnostic imaging is fundamental in dentistry for disease detection, treatment planning, and outcome assessment. Traditional radiographic methods, such as periapical and panoramic radiographs, along with cone beam computed tomography (CBCT), utilize ionizing radiation and primarily focus on visualizing bony structures. Magnetic resonance imaging [...] Read more.
Diagnostic imaging is fundamental in dentistry for disease detection, treatment planning, and outcome assessment. Traditional radiographic methods, such as periapical and panoramic radiographs, along with cone beam computed tomography (CBCT), utilize ionizing radiation and primarily focus on visualizing bony structures. Magnetic resonance imaging (MRI) is emerging as a non-ionizing alternative that offers superior soft tissue contrast. However, standard MRI sequences face challenges visualizing mineralized tissues due to their short transverse relaxation times (T2), which results in rapid signal decay. Recent advancements exploring short T2 sequences, including Ultrashort Echo Time (UTE), Zero Echo Time (ZTE), and Sweep Imaging with Fourier Transformation (SWIFT), allow direct visualization of dental hard tissues. UTE captures signals from short T2 tissues using rapid pulse sequences, while ZTE employs encoding gradients before radiofrequency pulses to reduce signal loss. SWIFT enables near-simultaneous excitation and acquisition, improving ultrashort T2 detection. Additionally, customized intraoral and extraoral surface coils enhance the image resolution and signal-to-noise ratio (SNR), increasing MRI’s relevance in dentistry. Research highlights the potential of these short T2 sequences for early caries detection, pulp vitality assessment, and diagnosing jaw osseous pathology. While high-field MRI (3 T–7 T) improves resolution and increases susceptibility artifacts, low-field systems with specialized coils and short sequences offer promising alternatives. Despite obstacles such as cost and hardware constraints, ongoing studies refine protocols to enhance clinical applicability. Incorporating MRI in dentistry promises a safer, more comprehensive imaging methodology, potentially transforming diagnostics. This review emphasizes three types of short T2 sequences that have potential applications in the maxillofacial region. Full article
(This article belongs to the Special Issue Advances in Dental Imaging)
Show Figures

Figure 1

Back to TopTop