Factors Predicting CT Pulmonary Angiography Results in the Emergency Department
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barco, S.; Valerio, L.; Gallo, A.; Turatti, G.; Mahmoudpour, S.H.; Ageno, W.; Castellucci, L.A.; Cesarman-Maus, G.; Ddungu, H.; De Paula, E.V.; et al. Global Reporting of Pulmonary Embolism–Related Deaths in the World Health Organization Mortality Database: Vital Registration Data from 123 Countries. Res. Pract. Thromb. Haemost. 2021, 5, e12520. [Google Scholar] [CrossRef]
- Keller, K.; Hobohm, L.; Ebner, M.; Kresoja, K.-P.; Münzel, T.; Konstantinides, S.V.; Lankeit, M. Trends in Thrombolytic Treatment and Outcomes of Acute Pulmonary Embolism in Germany. Eur. Heart J. 2020, 41, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Wendelboe, A.M.; Raskob, G.E. Global Burden of Thrombosis. Circ. Res. 2016, 118, 1340–1347. [Google Scholar] [CrossRef]
- Guijarro, R.; Trujillo-Santos, J.; Bernal-Lopez, M.R.; de Miguel-Díez, J.; Villalobos, A.; Salazar, C.; Fernandez-Fernandez, R.; Guijarro-Contreras, A.; Gómez-Huelgas, R.; Monreal, M. Trend and Seasonality in Hospitalizations for Pulmonary Embolism: A Time-series Analysis. J. Thromb. Haemost. 2015, 13, 23–30. [Google Scholar] [CrossRef]
- Huang, W.; Goldberg, R.J.; Anderson, F.A.; Kiefe, C.I.; Spencer, F.A. Secular Trends in Occurrence of Acute Venous Thromboembolism: The Worcester VTE Study (1985–2009). Am. J. Med. 2014, 127, 829–839.e5. [Google Scholar] [CrossRef] [PubMed]
- Lutsey, P.L.; Zakai, N.A. Epidemiology and Prevention of Venous Thromboembolism. Nat. Rev. Cardiol. 2023, 20, 248–262. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.T.; Marinari, L.A.; Barbosa, E.; Litt, H.I.; Schmitt, J.E.; Mahne, A.; Lee, V.; Akers, S.R. Small Pulmonary Artery Defects Are Not Reliable Indicators of Pulmonary Embolism. Ann. Am. Thorac. Soc. 2015, 12, 1022–1029. [Google Scholar] [CrossRef]
- Nopp, S.; Moik, F.; Jilma, B.; Pabinger, I.; Ay, C. Risk of Venous Thromboembolism in Patients with COVID-19: A Systematic Review and Meta-analysis. Res. Pract. Thromb. Haemost. 2020, 4, 1178–1191. [Google Scholar] [CrossRef]
- Sertić, Z.; Keranović, A.; Franić, I.K.; Raguž, A.; Hrkač, S.; Jellin, E.; Rubinić, B.; Miklić, L. Diagnostic Yield of CT Pulmonary Angiography for Suspected Pulmonary Embolism in the Emergency Department before and during the COVID-19 Pandemic. In Proceedings of the 6th Emergency Medicine Congress with International Participation, Vodice, Croatia, 9–11 May 2022; Croatian Medical Association, Croatian Society of Emergency Medicine: Zagreb, Croatia, 2022; p. 47. [Google Scholar]
- de Boer, H.C.; Rajaram, S.; Chopra, A.; Hurdman, J.A.; Maclean, R.M. 10,589 CT Pulmonary Angiograms: Evaluating the Yield of Acute Pulmonary Embolism. Br. J. Radiol. 2022, 95, 20220254. [Google Scholar] [CrossRef]
- Schissler, A.J.; Rozenshtein, A.; Kulon, M.E.; Pearson, G.D.N.; Green, R.A.; Stetson, P.D.; Brenner, D.J.; D’Souza, B.; Tsai, W.-Y.; Schluger, N.W.; et al. CT Pulmonary Angiography: Increasingly Diagnosing Less Severe Pulmonary Emboli. PLoS ONE 2013, 8, e65669. [Google Scholar] [CrossRef]
- Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.-J.; Harjola, V.-P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jiménez, D.; et al. 2019 ESC Guidelines for the Diagnosis and Management of Acute Pulmonary Embolism Developed in Collaboration with the European Respiratory Society (ERS). Eur. Heart. J. 2020, 41, 543–603. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Lebron, B.; McDaniel, M.; Ahrar, K.; Alrifai, A.; Dudzinski, D.M.; Fanola, C.; Blais, D.; Janicke, D.; Melamed, R.; Mohrien, K.; et al. Diagnosis, Treatment and Follow Up of Acute Pulmonary Embolism: Consensus Practice from the PERT Consortium. Clin. Appl. Thromb. Hemost. 2019, 25, 1076029619853037. [Google Scholar] [CrossRef] [PubMed]
- Jaff, M.R.; McMurtry, M.S.; Archer, S.L.; Cushman, M.; Goldenberg, N.; Goldhaber, S.Z.; Jenkins, J.S.; Kline, J.A.; Michaels, A.D.; Thistlethwaite, P.; et al. Management of Massive and Submassive Pulmonary Embolism, Iliofemoral Deep Vein Thrombosis, and Chronic Thromboembolic Pulmonary Hypertension. Circulation 2011, 123, 1788–1830. [Google Scholar] [CrossRef]
- Le Gal, G.; Righini, M.; Roy, P.-M.; Sanchez, O.; Aujesky, D.; Bounameaux, H.; Perrier, A. Prediction of Pulmonary Embolism in the Emergency Department: The Revised Geneva Score. Ann. Intern. Med. 2006, 144, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Wells, P.S.; Anderson, D.R.; Rodger, M.; Stiell, I.; Dreyer, J.F.; Barnes, D.; Forgie, M.; Kovacs, G.; Ward, J.; Kovacs, M.J. Excluding Pulmonary Embolism at the Bedside without Diagnostic Imaging: Management of Patients with Suspected Pulmonary Embolism Presenting to the Emergency Department by Using a Simple Clinical Model and D-Dimer. Ann. Intern. Med. 2001, 135, 98–107. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence Venous Thromboembolic Diseases: Diagnosis, Management and Thrombophilia Testing [NICE Guideline No. 158]. Available online: https://www.nice.org.uk/guidance/ng158/ (accessed on 6 February 2025).
- Celli, B.R.; Fabbri, L.M.; Aaron, S.D.; Agusti, A.; Brook, R.; Criner, G.J.; Franssen, F.M.E.; Humbert, M.; Hurst, J.R.; O’Donnell, D.; et al. An Updated Definition and Severity Classification of Chronic Obstructive Pulmonary Disease Exacerbations: The Rome Proposal. Am. J. Respir. Crit. Care Med. 2021, 204, 1251–1258. [Google Scholar] [CrossRef]
- Agustí, A.; Celli, B.R.; Criner, G.J.; Halpin, D.; Anzueto, A.; Barnes, P.; Bourbeau, J.; Han, M.K.; Martinez, F.J.; Montes de Oca, M.; et al. Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD Executive Summary. Am. J. Respir. Crit. Care. Med. 2023, 207, 819–837. [Google Scholar] [CrossRef]
- Mueller, C.; McDonald, K.; de Boer, R.A.; Maisel, A.; Cleland, J.G.F.; Kozhuharov, N.; Coats, A.J.S.; Metra, M.; Mebazaa, A.; Ruschitzka, F.; et al. Heart Failure Association of the European Society of Cardiology Practical Guidance on the Use of Natriuretic Peptide Concentrations. Eur. J. Heart Fail. 2019, 21, 715–731. [Google Scholar] [CrossRef]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics 1988, 44, 837. [Google Scholar] [CrossRef]
- Kline, J.A.; Garrett, J.S.; Sarmiento, E.J.; Strachan, C.C.; Courtney, D.M. Over-Testing for Suspected Pulmonary Embolism in American Emergency Departments. Circ. Cardiovasc. Qual. Outcomes 2020, 13, E005753. [Google Scholar] [CrossRef]
- Dhakal, P.; Iftikhar, M.H.; Wang, L.; Atti, V.; Panthi, S.; Ling, X.; Mujer, M.T.P.; Dawani, O.; Rai, M.P.; Tatineni, S.; et al. Overutilisation of Imaging Studies for Diagnosis of Pulmonary Embolism: Are We Following the Guidelines? Postgrad. Med. J. 2019, 95, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Mountain, D.; Keijzers, G.; Chu, K.; Joseph, A.; Read, C.; Blecher, G.; Furyk, J.; Bharat, C.; Velusamy, K.; Munro, A.; et al. RESPECT-ED: Rates of Pulmonary Emboli (PE) and Sub-Segmental PE with Modern Computed Tomographic Pulmonary Angiograms in Emergency Departments: A Multi-Center Observational Study Finds Significant Yield Variation, Uncorrelated with Use or Small PE Rates. PLoS ONE 2016, 11, e0166483. [Google Scholar] [CrossRef] [PubMed]
- Saini, S.K.; Khan, Z.S.; Do, V.; Keijzers, G. Computed Tomography Pulmonary Angiogram Ordering, Adherence to Decision Rules and Yield in the Emergency Department: An Observational Study. Emerg. Med. Australas. 2024, 36, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Germini, F.; Zarabi, S.; Eventov, M.; Turcotte, M.; Li, M.; de Wit, K. Pulmonary Embolism Prevalence among Emergency Department Cohorts: A Systematic Review and Meta-analysis by Country of Study. J. Thromb. Haemost. 2021, 19, 173–185. [Google Scholar] [CrossRef]
- Lin, A.Y.; Dinatolo, E.; Metra, M.; Sbolli, M.; Dasseni, N.; Butler, J.; Greenberg, B.H. Thromboembolism in Heart Failure Patients in Sinus Rhythm. JACC Heart Fail. 2021, 9, 243–253. [Google Scholar] [CrossRef]
- Turetz, M.; Sideris, A.; Friedman, O.; Triphathi, N.; Horowitz, J. Epidemiology, Pathophysiology, and Natural History of Pulmonary Embolism. Semin. Interv. Radiol. 2018, 35, 92–98. [Google Scholar] [CrossRef]
- Fu, X.; Zhong, Y.; Xu, W.; Ju, J.; Yu, M.; Ge, M.; Gu, X.; Chen, Q.; Sun, Y.; Huang, H.; et al. The Prevalence and Clinical Features of Pulmonary Embolism in Patients with AE-COPD: A Meta-Analysis and Systematic Review. PLoS ONE 2021, 16, e0256480. [Google Scholar] [CrossRef]
- Sato, R.; Hasegawa, D.; Nishida, K.; Takahashi, K.; Schleicher, M.; Chaisson, N. Prevalence of Pulmonary Embolism in Patients with Acute Exacerbations of COPD: A Systematic Review and Meta-Analysis. Am. J. Emerg. Med. 2021, 50, 606–617. [Google Scholar] [CrossRef]
- Aleva, F.E.; Voets, L.W.L.M.; Simons, S.O.; de Mast, Q.; van der Ven, A.J.A.M.; Heijdra, Y.F. Prevalence and Localization of Pulmonary Embolism in Unexplained Acute Exacerbations of COPD: A Systematic Review and Meta-Analysis. Chest 2017, 151, 544–554. [Google Scholar] [CrossRef]
- Katsoularis, I.; Fonseca-Rodríguez, O.; Farrington, P.; Jerndal, H.; Lundevaller, E.H.; Sund, M.; Lindmark, K.; Fors Connolly, A.-M. Risks of Deep Vein Thrombosis, Pulmonary Embolism, and Bleeding after COVID-19: Nationwide Self-Controlled Cases Series and Matched Cohort Study. BMJ 2022, 377, e069590. [Google Scholar] [CrossRef]
- Wretborn, J.; Jörg, M.; Benjaminsson Nyberg, P.; Wilhelms, D.B. Risk of Venous Thromboembolism in Patients with COVID-19 during 2020; a Retrospective Cross-Sectional Study in a Swedish Health Care System. Sci. Rep. 2023, 13, 5469. [Google Scholar] [CrossRef]
- Righini, M.; Van Es, J.; Den Exter, P.L.; Roy, P.-M.; Verschuren, F.; Ghuysen, A.; Rutschmann, O.T.; Sanchez, O.; Jaffrelot, M.; Trinh-Duc, A.; et al. Age-Adjusted D-Dimer Cutoff Levels to Rule Out Pulmonary Embolism. JAMA 2014, 311, 1117. [Google Scholar] [CrossRef] [PubMed]
- van der Hulle, T.; Cheung, W.Y.; Kooij, S.; Beenen, L.F.M.; van Bemmel, T.; van Es, J.; Faber, L.M.; Hazelaar, G.M.; Heringhaus, C.; Hofstee, H.; et al. Simplified Diagnostic Management of Suspected Pulmonary Embolism (the YEARS Study): A Prospective, Multicentre, Cohort Study. Lancet 2017, 390, 289–297. [Google Scholar] [CrossRef]
- Kabrhel, C.; Van Hylckama Vlieg, A.; Muzikanski, A.; Singer, A.; Fermann, G.J.; Francis, S.; Limkakeng, A.; Chang, A.M.; Giordano, N.; Parry, B. Multicenter Evaluation of the YEARS Criteria in Emergency Department Patients Evaluated for Pulmonary Embolism. Acad. Emerg. Med. 2018, 25, 987–994. [Google Scholar] [CrossRef]
- Freund, Y.; Chauvin, A.; Jimenez, S.; Philippon, A.-L.; Curac, S.; Fémy, F.; Gorlicki, J.; Chouihed, T.; Goulet, H.; Montassier, E.; et al. Effect of a Diagnostic Strategy Using an Elevated and Age-Adjusted D-Dimer Threshold on Thromboembolic Events in Emergency Department Patients With Suspected Pulmonary Embolism: A Randomized Clinical Trial. JAMA 2021, 326, 2141–2149. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kwon, D.; Kim, K.; Lee, S.H.; Lee, S.-B.; Kim, K.; Kim, D.; Lee, M.W.; Park, N.; Choi, J.H.; et al. Machine Learning-Based Prediction of Pulmonary Embolism to Reduce Unnecessary Computed Tomography Scans in Gastrointestinal Cancer Patients: A Retrospective Multicenter Study. Sci. Rep. 2024, 14, 25359. [Google Scholar] [CrossRef]
- Chiasakul, T.; Lam, B.D.; McNichol, M.; Robertson, W.; Rosovsky, R.P.; Lake, L.; Vlachos, I.S.; Adamski, A.; Reyes, N.; Abe, K.; et al. Artificial Intelligence in the Prediction of Venous Thromboembolism: A Systematic Review and Pooled Analysis. Eur. J. Haematol. 2023, 111, 951–962. [Google Scholar] [CrossRef]
- Harun, H.H.; Abdul Karim, M.K.; Abbas, Z.; Abdul Rahman, M.A.; Sabarudin, A.; Ng, K.H. Association of Radiation Doses and Cancer Risks from CT Pulmonary Angiography Examinations in Relation to Body Diameter. Diagnostics 2020, 10, 681. [Google Scholar] [CrossRef]
- Nagpal, P.; Priya, S.; Eskandari, A.; Mullan, A.; Aggarwal, T.; Narayanasamy, S.; Parashar, K.; Bhat, A.P.; Sieren, J.C. Factors Affecting Radiation Dose in Computed Tomography Angiograms for Pulmonary Embolism: A Retrospective Cohort Study. J. Clin. Imaging. Sci. 2020, 10, 74. [Google Scholar] [CrossRef]
- Mitchell, A.M.; Jones, A.E.; Tumlin, J.A.; Kline, J.A. Prospective Study of the Incidence of Contrast-induced Nephropathy Among Patients Evaluated for Pulmonary Embolism by Contrast-enhanced Computed Tomography. Acad. Emerg. Med. 2012, 19, 618–625. [Google Scholar] [CrossRef]
- Turedi, S.; Erdem, E.; Karaca, Y.; Tatli, O.; Sahin, A.; Turkmen, S.; Gunduz, A. The High Risk of Contrast-induced Nephropathy in Patients with Suspected Pulmonary Embolism Despite Three Different Prophylaxis: A Randomized Controlled Trial. Acad. Emerg. Med. 2016, 23, 1136–1145. [Google Scholar] [CrossRef]
- Bezemer, I.D.; van der Meer, F.J.M.; Eikenboom, J.C.J.; Rosendaal, F.R.; Doggen, C.J.M. The Value of Family History as a Risk Indicator for Venous Thrombosis. Arch. Intern. Med. 2009, 169, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Faruqi, S.; Kishore, N.; Bodington, R.; Meghjee, S.; Thirumaran, M. The Diagnostic Yield of CTPA: Pulmonary Embolism, Alternative Diagnoses and Incidental Findings. Acute Med. J. 2016, 15, 130–133. [Google Scholar] [CrossRef]
- Richardson, S.; Lucas, E.; Cohen, S.L.; Zhang, M.; Qiu, G.; Khan, S.; McGinn, T. Predictors of Overtesting in Pulmonary Embolism Diagnosis. Acad. Radiol. 2020, 27, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Tannous, P.; Mukadam, Z.; Kammari, C.; Banavasi, H.; Soubani, A.O. Yield of Computed Tomography Pulmonary Angiogram in the Emergency Department in Cancer Patients Suspected to Have Pulmonary Embolism. Hematol. Oncol. Stem. Cell. Ther. 2016, 9, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Deblois, S.; Toporowicz, K.; Boldeanu, I.; Francoeur, M.-O.; Sadouni, M.; Lepanto, L.; Chartrand-Lefebvre, C. Yield of CT Pulmonary Angiography in the Diagnosis of Acute Pulmonary Embolism: Short Report. BMC Res. Notes 2019, 12, 41. [Google Scholar] [CrossRef]
- Low, C.L.; Kow, R.Y.; Abd Aziz, A.; Mohd Yusof, M.; Lim, B.C.; Kamarudin, N.A.; Md Ralib Md Raghib, A.R. Diagnostic Yield of CT Pulmonary Angiogram in the Diagnosis of Pulmonary Embolism and Its Predictive Factors. Cureus 2023, 15, e40484. [Google Scholar] [CrossRef]
- Costantino, G.; Norsa, A.H.; Amadori, R.; Ippolito, S.; Resta, F.; Bianco, R.; Casazza, G.; Biagiotti, S.; Rusconi, A.M.; Montano, N. Interobserver Agreement in the Interpretation of Computed Tomography in Acute Pulmonary Embolism. Am. J. Emerg. Med. 2009, 27, 1109–1111. [Google Scholar] [CrossRef]
Characteristic | With PE | Without PE | OR (95% CI) | p-Value |
---|---|---|---|---|
Male gender (N = 782) | 16.9% | 18.8% | 1.135 (0.875–1.471) | 0.341 |
Cancer | ||||
- All cancer patients (N = 435) | 24.2% | 15.4% | 1.739 (1.324–2.286) | <0.001 |
- No other obvious cause (N = 301) | 28.5% | 18.2% | 1.802 (1.309–2.479) | <0.001 |
- On OAC treatment (N = 47) | 20.5% | 19.7% | 0.834 (0.425–1.969) | 0.679 |
DVT (N = 51) | 88.2% | 15.5% | 40.91 (17.26–96.9) | <0.001 |
Pneumonia (N = 385) | 15.8% | 18.6% | 0.853 (0.658–1.107) | 0.228 |
AcHF | ||||
- All patients (N = 207) | 3.5% | 20.1% | 0.141 (0.065–0.302) | <0.001 |
- No cancer (N = 165) | 2.5% | 21.5% | 0.117 (0.043–0.320) | <0.001 |
- On OAC treatment (N = 46) | 2.2% | 24.1% | 0.089 (0.013–0.523) | 0.016 |
- No cancer and on OAC (N = 37) | 0% | 26.1% | 0.037 (0.002–0.627) | 0.022 |
eCOPD | ||||
- All patients (96) | 5.2% | 18.7% | 0.238 (0.096–0.592) | 0.002 |
- Hypercapnia (PaCO2 > 5.6 kPa) (N = 39) | 0% | 16.7% | 0.062 (0.005–1.192) | 0.054 |
Dyspnea | ||||
- All patients (N = 850) | 20.6% | 17.1% | 1.513 (1.158–1.976) | 0.002 |
- No other obvious cause (N = 460) | 27.8% | 15.5% | 2.098 (1.527–2.881) | <0.001 |
Cough (N = 532) | 19.2% | 17.2% | 1.140 (0.870–1.494) | 0.341 |
- No other obvious cause (N = 276) | 25.7% | 19.7 | 1.411 (1.015–1.961) | 0.038 |
Chest pain (N = 339) | 21,8% | 16.5% | 1.379 (1.025–1.863) | 0.033 |
- No other obvious cause (N = 238) | 23.9% | 20.6% | 1.212 (0.856–1.718) | 0.272 |
Hemoptysis (N = 121) | 16.5% | 21.9% | 0.902 (0.548–1.484) | 0.684 |
- No other obvious cause (N = 86) | 17.4% | 21.8% | 0.756 (0.423–1.250) | 0.245 |
Fever (N = 244) | 16.8% | 18.1% | 0.914 (0.635–1.132) | 0.629 |
Tachycardia (>100/min) | ||||
- All patients (N = 758) | 14.6% | 21.6% | 1.479 (1.237–2.101) | <0.001 |
- No other obvious cause (N = 409) | 27.6% | 16.9% | 1.828 (1.311–2.547) | <0.001 |
Hypercapnia (PaCO2 > 5.6 kPa) | 13.3% | 21.8% | 0.548 (0.341–0.881) | 0.013 |
Hypoxemia (SpO2 < 94%) | ||||
- All patients (N = 158) | 20.9% | 22.7% | 1.161 (0.707–1.905) | 0.556 |
- No other obvious cause (N = 56) | 37.5% | 18.9% | 1.261 (1.335–4.971) | 0.005 |
No other obvious cause of symptoms (N = 599) | 21.2% | 16.1% | 1.675 (1.278–2.195) | <0.001 |
- Patients aged 65 years or older (N = 554) | 22.2% | 13.6% | 1.801 (1.226–2.148) | <0.001 |
- Patients aged 75 years or older (N = 288) | 23.9% | 14.1% | 1.913 (1.248–2.932) | <0.001 |
OAC treatment | ||||
- All patients (N = 199) | 19.1% | 17.7% | 1.097 (0.749–1.603) | 0.635 |
- No cancer (N = 152) | 19.7% | 14.7% | 1.417 (0.915–2.193) | 0.118 |
COVID-19 infection (N = 80) | 21.3% | 17.7% | 1.254 (0.722–2.178) | 0.421 |
Characteristic | OR (95% CI) | p-Value |
---|---|---|
AcHF | 0.132 (0.026–0.663) | 0.014 |
eCOPD | 0.057 (0.064–0.511) | 0.011 |
Pneumonia | 0.353 (0.126–0.511) | 0.048 |
Dyspnea | 4.768 (1.390–16.357) | 0.013 |
Hypercapnia (PaCO2 > 5.6 kPa) | 1.406 (0.456–4.338) | 0.552 |
Hypoxemia (SpO2 < 94%) | 1.725 (0.642–4.637) | 0.279 |
Pain | 0.502 (0.150–1.680) | 0.264 |
Cancer | 1.289 (0.462–3.599) | 0.6326 |
D-dimer | 1.109 (1.948–1.173) | <0.001 |
Pulse rate | 1.026 (1.008–1.044) | <0.001 |
Characteristic | AUC (95%CI) | D-Dimer Cut-Off | Sensitivity | Specificity |
---|---|---|---|---|
Whole population | 0.768 (0.743–0.792) | 0.59 mg/L | 100% | 2.7% |
AcHF | 0.900 (0.843–0.942) | 3.68 mg/L | 100% | 56.6% |
Pneumonia | 0.771 (0.717–0.818) | 1.34 mg/L | 100% | 24.3% |
eCOPD | 0.741 (0.635–0.829) | 1.26 mg/L | 100% | 26.8% |
Any other cause identified | 0.793 (0.753–0.829) | 1.28 mg/L | 100% | 22.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rakuša, N.; Sertić, Z.; Prutki, M.; Alduk, A.M.; Gornik, I. Factors Predicting CT Pulmonary Angiography Results in the Emergency Department. Diagnostics 2025, 15, 827. https://doi.org/10.3390/diagnostics15070827
Rakuša N, Sertić Z, Prutki M, Alduk AM, Gornik I. Factors Predicting CT Pulmonary Angiography Results in the Emergency Department. Diagnostics. 2025; 15(7):827. https://doi.org/10.3390/diagnostics15070827
Chicago/Turabian StyleRakuša, Nika, Zrinka Sertić, Maja Prutki, Ana Marija Alduk, and Ivan Gornik. 2025. "Factors Predicting CT Pulmonary Angiography Results in the Emergency Department" Diagnostics 15, no. 7: 827. https://doi.org/10.3390/diagnostics15070827
APA StyleRakuša, N., Sertić, Z., Prutki, M., Alduk, A. M., & Gornik, I. (2025). Factors Predicting CT Pulmonary Angiography Results in the Emergency Department. Diagnostics, 15(7), 827. https://doi.org/10.3390/diagnostics15070827