Factors Predicting CT Pulmonary Angiography Results in the Emergency Department
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barco, S.; Valerio, L.; Gallo, A.; Turatti, G.; Mahmoudpour, S.H.; Ageno, W.; Castellucci, L.A.; Cesarman-Maus, G.; Ddungu, H.; De Paula, E.V.; et al. Global Reporting of Pulmonary Embolism–Related Deaths in the World Health Organization Mortality Database: Vital Registration Data from 123 Countries. Res. Pract. Thromb. Haemost. 2021, 5, e12520. [Google Scholar] [CrossRef]
- Keller, K.; Hobohm, L.; Ebner, M.; Kresoja, K.-P.; Münzel, T.; Konstantinides, S.V.; Lankeit, M. Trends in Thrombolytic Treatment and Outcomes of Acute Pulmonary Embolism in Germany. Eur. Heart J. 2020, 41, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Wendelboe, A.M.; Raskob, G.E. Global Burden of Thrombosis. Circ. Res. 2016, 118, 1340–1347. [Google Scholar] [CrossRef]
- Guijarro, R.; Trujillo-Santos, J.; Bernal-Lopez, M.R.; de Miguel-Díez, J.; Villalobos, A.; Salazar, C.; Fernandez-Fernandez, R.; Guijarro-Contreras, A.; Gómez-Huelgas, R.; Monreal, M. Trend and Seasonality in Hospitalizations for Pulmonary Embolism: A Time-series Analysis. J. Thromb. Haemost. 2015, 13, 23–30. [Google Scholar] [CrossRef]
- Huang, W.; Goldberg, R.J.; Anderson, F.A.; Kiefe, C.I.; Spencer, F.A. Secular Trends in Occurrence of Acute Venous Thromboembolism: The Worcester VTE Study (1985–2009). Am. J. Med. 2014, 127, 829–839.e5. [Google Scholar] [CrossRef] [PubMed]
- Lutsey, P.L.; Zakai, N.A. Epidemiology and Prevention of Venous Thromboembolism. Nat. Rev. Cardiol. 2023, 20, 248–262. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.T.; Marinari, L.A.; Barbosa, E.; Litt, H.I.; Schmitt, J.E.; Mahne, A.; Lee, V.; Akers, S.R. Small Pulmonary Artery Defects Are Not Reliable Indicators of Pulmonary Embolism. Ann. Am. Thorac. Soc. 2015, 12, 1022–1029. [Google Scholar] [CrossRef]
- Nopp, S.; Moik, F.; Jilma, B.; Pabinger, I.; Ay, C. Risk of Venous Thromboembolism in Patients with COVID-19: A Systematic Review and Meta-analysis. Res. Pract. Thromb. Haemost. 2020, 4, 1178–1191. [Google Scholar] [CrossRef]
- Sertić, Z.; Keranović, A.; Franić, I.K.; Raguž, A.; Hrkač, S.; Jellin, E.; Rubinić, B.; Miklić, L. Diagnostic Yield of CT Pulmonary Angiography for Suspected Pulmonary Embolism in the Emergency Department before and during the COVID-19 Pandemic. In Proceedings of the 6th Emergency Medicine Congress with International Participation, Vodice, Croatia, 9–11 May 2022; Croatian Medical Association, Croatian Society of Emergency Medicine: Zagreb, Croatia, 2022; p. 47. [Google Scholar]
- de Boer, H.C.; Rajaram, S.; Chopra, A.; Hurdman, J.A.; Maclean, R.M. 10,589 CT Pulmonary Angiograms: Evaluating the Yield of Acute Pulmonary Embolism. Br. J. Radiol. 2022, 95, 20220254. [Google Scholar] [CrossRef]
- Schissler, A.J.; Rozenshtein, A.; Kulon, M.E.; Pearson, G.D.N.; Green, R.A.; Stetson, P.D.; Brenner, D.J.; D’Souza, B.; Tsai, W.-Y.; Schluger, N.W.; et al. CT Pulmonary Angiography: Increasingly Diagnosing Less Severe Pulmonary Emboli. PLoS ONE 2013, 8, e65669. [Google Scholar] [CrossRef]
- Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.-J.; Harjola, V.-P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jiménez, D.; et al. 2019 ESC Guidelines for the Diagnosis and Management of Acute Pulmonary Embolism Developed in Collaboration with the European Respiratory Society (ERS). Eur. Heart. J. 2020, 41, 543–603. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Lebron, B.; McDaniel, M.; Ahrar, K.; Alrifai, A.; Dudzinski, D.M.; Fanola, C.; Blais, D.; Janicke, D.; Melamed, R.; Mohrien, K.; et al. Diagnosis, Treatment and Follow Up of Acute Pulmonary Embolism: Consensus Practice from the PERT Consortium. Clin. Appl. Thromb. Hemost. 2019, 25, 1076029619853037. [Google Scholar] [CrossRef] [PubMed]
- Jaff, M.R.; McMurtry, M.S.; Archer, S.L.; Cushman, M.; Goldenberg, N.; Goldhaber, S.Z.; Jenkins, J.S.; Kline, J.A.; Michaels, A.D.; Thistlethwaite, P.; et al. Management of Massive and Submassive Pulmonary Embolism, Iliofemoral Deep Vein Thrombosis, and Chronic Thromboembolic Pulmonary Hypertension. Circulation 2011, 123, 1788–1830. [Google Scholar] [CrossRef]
- Le Gal, G.; Righini, M.; Roy, P.-M.; Sanchez, O.; Aujesky, D.; Bounameaux, H.; Perrier, A. Prediction of Pulmonary Embolism in the Emergency Department: The Revised Geneva Score. Ann. Intern. Med. 2006, 144, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Wells, P.S.; Anderson, D.R.; Rodger, M.; Stiell, I.; Dreyer, J.F.; Barnes, D.; Forgie, M.; Kovacs, G.; Ward, J.; Kovacs, M.J. Excluding Pulmonary Embolism at the Bedside without Diagnostic Imaging: Management of Patients with Suspected Pulmonary Embolism Presenting to the Emergency Department by Using a Simple Clinical Model and D-Dimer. Ann. Intern. Med. 2001, 135, 98–107. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence Venous Thromboembolic Diseases: Diagnosis, Management and Thrombophilia Testing [NICE Guideline No. 158]. Available online: https://www.nice.org.uk/guidance/ng158/ (accessed on 6 February 2025).
- Celli, B.R.; Fabbri, L.M.; Aaron, S.D.; Agusti, A.; Brook, R.; Criner, G.J.; Franssen, F.M.E.; Humbert, M.; Hurst, J.R.; O’Donnell, D.; et al. An Updated Definition and Severity Classification of Chronic Obstructive Pulmonary Disease Exacerbations: The Rome Proposal. Am. J. Respir. Crit. Care Med. 2021, 204, 1251–1258. [Google Scholar] [CrossRef]
- Agustí, A.; Celli, B.R.; Criner, G.J.; Halpin, D.; Anzueto, A.; Barnes, P.; Bourbeau, J.; Han, M.K.; Martinez, F.J.; Montes de Oca, M.; et al. Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD Executive Summary. Am. J. Respir. Crit. Care. Med. 2023, 207, 819–837. [Google Scholar] [CrossRef]
- Mueller, C.; McDonald, K.; de Boer, R.A.; Maisel, A.; Cleland, J.G.F.; Kozhuharov, N.; Coats, A.J.S.; Metra, M.; Mebazaa, A.; Ruschitzka, F.; et al. Heart Failure Association of the European Society of Cardiology Practical Guidance on the Use of Natriuretic Peptide Concentrations. Eur. J. Heart Fail. 2019, 21, 715–731. [Google Scholar] [CrossRef]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics 1988, 44, 837. [Google Scholar] [CrossRef]
- Kline, J.A.; Garrett, J.S.; Sarmiento, E.J.; Strachan, C.C.; Courtney, D.M. Over-Testing for Suspected Pulmonary Embolism in American Emergency Departments. Circ. Cardiovasc. Qual. Outcomes 2020, 13, E005753. [Google Scholar] [CrossRef]
- Dhakal, P.; Iftikhar, M.H.; Wang, L.; Atti, V.; Panthi, S.; Ling, X.; Mujer, M.T.P.; Dawani, O.; Rai, M.P.; Tatineni, S.; et al. Overutilisation of Imaging Studies for Diagnosis of Pulmonary Embolism: Are We Following the Guidelines? Postgrad. Med. J. 2019, 95, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Mountain, D.; Keijzers, G.; Chu, K.; Joseph, A.; Read, C.; Blecher, G.; Furyk, J.; Bharat, C.; Velusamy, K.; Munro, A.; et al. RESPECT-ED: Rates of Pulmonary Emboli (PE) and Sub-Segmental PE with Modern Computed Tomographic Pulmonary Angiograms in Emergency Departments: A Multi-Center Observational Study Finds Significant Yield Variation, Uncorrelated with Use or Small PE Rates. PLoS ONE 2016, 11, e0166483. [Google Scholar] [CrossRef] [PubMed]
- Saini, S.K.; Khan, Z.S.; Do, V.; Keijzers, G. Computed Tomography Pulmonary Angiogram Ordering, Adherence to Decision Rules and Yield in the Emergency Department: An Observational Study. Emerg. Med. Australas. 2024, 36, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Germini, F.; Zarabi, S.; Eventov, M.; Turcotte, M.; Li, M.; de Wit, K. Pulmonary Embolism Prevalence among Emergency Department Cohorts: A Systematic Review and Meta-analysis by Country of Study. J. Thromb. Haemost. 2021, 19, 173–185. [Google Scholar] [CrossRef]
- Lin, A.Y.; Dinatolo, E.; Metra, M.; Sbolli, M.; Dasseni, N.; Butler, J.; Greenberg, B.H. Thromboembolism in Heart Failure Patients in Sinus Rhythm. JACC Heart Fail. 2021, 9, 243–253. [Google Scholar] [CrossRef]
- Turetz, M.; Sideris, A.; Friedman, O.; Triphathi, N.; Horowitz, J. Epidemiology, Pathophysiology, and Natural History of Pulmonary Embolism. Semin. Interv. Radiol. 2018, 35, 92–98. [Google Scholar] [CrossRef]
- Fu, X.; Zhong, Y.; Xu, W.; Ju, J.; Yu, M.; Ge, M.; Gu, X.; Chen, Q.; Sun, Y.; Huang, H.; et al. The Prevalence and Clinical Features of Pulmonary Embolism in Patients with AE-COPD: A Meta-Analysis and Systematic Review. PLoS ONE 2021, 16, e0256480. [Google Scholar] [CrossRef]
- Sato, R.; Hasegawa, D.; Nishida, K.; Takahashi, K.; Schleicher, M.; Chaisson, N. Prevalence of Pulmonary Embolism in Patients with Acute Exacerbations of COPD: A Systematic Review and Meta-Analysis. Am. J. Emerg. Med. 2021, 50, 606–617. [Google Scholar] [CrossRef]
- Aleva, F.E.; Voets, L.W.L.M.; Simons, S.O.; de Mast, Q.; van der Ven, A.J.A.M.; Heijdra, Y.F. Prevalence and Localization of Pulmonary Embolism in Unexplained Acute Exacerbations of COPD: A Systematic Review and Meta-Analysis. Chest 2017, 151, 544–554. [Google Scholar] [CrossRef]
- Katsoularis, I.; Fonseca-Rodríguez, O.; Farrington, P.; Jerndal, H.; Lundevaller, E.H.; Sund, M.; Lindmark, K.; Fors Connolly, A.-M. Risks of Deep Vein Thrombosis, Pulmonary Embolism, and Bleeding after COVID-19: Nationwide Self-Controlled Cases Series and Matched Cohort Study. BMJ 2022, 377, e069590. [Google Scholar] [CrossRef]
- Wretborn, J.; Jörg, M.; Benjaminsson Nyberg, P.; Wilhelms, D.B. Risk of Venous Thromboembolism in Patients with COVID-19 during 2020; a Retrospective Cross-Sectional Study in a Swedish Health Care System. Sci. Rep. 2023, 13, 5469. [Google Scholar] [CrossRef]
- Righini, M.; Van Es, J.; Den Exter, P.L.; Roy, P.-M.; Verschuren, F.; Ghuysen, A.; Rutschmann, O.T.; Sanchez, O.; Jaffrelot, M.; Trinh-Duc, A.; et al. Age-Adjusted D-Dimer Cutoff Levels to Rule Out Pulmonary Embolism. JAMA 2014, 311, 1117. [Google Scholar] [CrossRef] [PubMed]
- van der Hulle, T.; Cheung, W.Y.; Kooij, S.; Beenen, L.F.M.; van Bemmel, T.; van Es, J.; Faber, L.M.; Hazelaar, G.M.; Heringhaus, C.; Hofstee, H.; et al. Simplified Diagnostic Management of Suspected Pulmonary Embolism (the YEARS Study): A Prospective, Multicentre, Cohort Study. Lancet 2017, 390, 289–297. [Google Scholar] [CrossRef]
- Kabrhel, C.; Van Hylckama Vlieg, A.; Muzikanski, A.; Singer, A.; Fermann, G.J.; Francis, S.; Limkakeng, A.; Chang, A.M.; Giordano, N.; Parry, B. Multicenter Evaluation of the YEARS Criteria in Emergency Department Patients Evaluated for Pulmonary Embolism. Acad. Emerg. Med. 2018, 25, 987–994. [Google Scholar] [CrossRef]
- Freund, Y.; Chauvin, A.; Jimenez, S.; Philippon, A.-L.; Curac, S.; Fémy, F.; Gorlicki, J.; Chouihed, T.; Goulet, H.; Montassier, E.; et al. Effect of a Diagnostic Strategy Using an Elevated and Age-Adjusted D-Dimer Threshold on Thromboembolic Events in Emergency Department Patients With Suspected Pulmonary Embolism: A Randomized Clinical Trial. JAMA 2021, 326, 2141–2149. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kwon, D.; Kim, K.; Lee, S.H.; Lee, S.-B.; Kim, K.; Kim, D.; Lee, M.W.; Park, N.; Choi, J.H.; et al. Machine Learning-Based Prediction of Pulmonary Embolism to Reduce Unnecessary Computed Tomography Scans in Gastrointestinal Cancer Patients: A Retrospective Multicenter Study. Sci. Rep. 2024, 14, 25359. [Google Scholar] [CrossRef]
- Chiasakul, T.; Lam, B.D.; McNichol, M.; Robertson, W.; Rosovsky, R.P.; Lake, L.; Vlachos, I.S.; Adamski, A.; Reyes, N.; Abe, K.; et al. Artificial Intelligence in the Prediction of Venous Thromboembolism: A Systematic Review and Pooled Analysis. Eur. J. Haematol. 2023, 111, 951–962. [Google Scholar] [CrossRef]
- Harun, H.H.; Abdul Karim, M.K.; Abbas, Z.; Abdul Rahman, M.A.; Sabarudin, A.; Ng, K.H. Association of Radiation Doses and Cancer Risks from CT Pulmonary Angiography Examinations in Relation to Body Diameter. Diagnostics 2020, 10, 681. [Google Scholar] [CrossRef]
- Nagpal, P.; Priya, S.; Eskandari, A.; Mullan, A.; Aggarwal, T.; Narayanasamy, S.; Parashar, K.; Bhat, A.P.; Sieren, J.C. Factors Affecting Radiation Dose in Computed Tomography Angiograms for Pulmonary Embolism: A Retrospective Cohort Study. J. Clin. Imaging. Sci. 2020, 10, 74. [Google Scholar] [CrossRef]
- Mitchell, A.M.; Jones, A.E.; Tumlin, J.A.; Kline, J.A. Prospective Study of the Incidence of Contrast-induced Nephropathy Among Patients Evaluated for Pulmonary Embolism by Contrast-enhanced Computed Tomography. Acad. Emerg. Med. 2012, 19, 618–625. [Google Scholar] [CrossRef]
- Turedi, S.; Erdem, E.; Karaca, Y.; Tatli, O.; Sahin, A.; Turkmen, S.; Gunduz, A. The High Risk of Contrast-induced Nephropathy in Patients with Suspected Pulmonary Embolism Despite Three Different Prophylaxis: A Randomized Controlled Trial. Acad. Emerg. Med. 2016, 23, 1136–1145. [Google Scholar] [CrossRef]
- Bezemer, I.D.; van der Meer, F.J.M.; Eikenboom, J.C.J.; Rosendaal, F.R.; Doggen, C.J.M. The Value of Family History as a Risk Indicator for Venous Thrombosis. Arch. Intern. Med. 2009, 169, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Faruqi, S.; Kishore, N.; Bodington, R.; Meghjee, S.; Thirumaran, M. The Diagnostic Yield of CTPA: Pulmonary Embolism, Alternative Diagnoses and Incidental Findings. Acute Med. J. 2016, 15, 130–133. [Google Scholar] [CrossRef]
- Richardson, S.; Lucas, E.; Cohen, S.L.; Zhang, M.; Qiu, G.; Khan, S.; McGinn, T. Predictors of Overtesting in Pulmonary Embolism Diagnosis. Acad. Radiol. 2020, 27, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Tannous, P.; Mukadam, Z.; Kammari, C.; Banavasi, H.; Soubani, A.O. Yield of Computed Tomography Pulmonary Angiogram in the Emergency Department in Cancer Patients Suspected to Have Pulmonary Embolism. Hematol. Oncol. Stem. Cell. Ther. 2016, 9, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Deblois, S.; Toporowicz, K.; Boldeanu, I.; Francoeur, M.-O.; Sadouni, M.; Lepanto, L.; Chartrand-Lefebvre, C. Yield of CT Pulmonary Angiography in the Diagnosis of Acute Pulmonary Embolism: Short Report. BMC Res. Notes 2019, 12, 41. [Google Scholar] [CrossRef]
- Low, C.L.; Kow, R.Y.; Abd Aziz, A.; Mohd Yusof, M.; Lim, B.C.; Kamarudin, N.A.; Md Ralib Md Raghib, A.R. Diagnostic Yield of CT Pulmonary Angiogram in the Diagnosis of Pulmonary Embolism and Its Predictive Factors. Cureus 2023, 15, e40484. [Google Scholar] [CrossRef]
- Costantino, G.; Norsa, A.H.; Amadori, R.; Ippolito, S.; Resta, F.; Bianco, R.; Casazza, G.; Biagiotti, S.; Rusconi, A.M.; Montano, N. Interobserver Agreement in the Interpretation of Computed Tomography in Acute Pulmonary Embolism. Am. J. Emerg. Med. 2009, 27, 1109–1111. [Google Scholar] [CrossRef]
Characteristic | With PE | Without PE | OR (95% CI) | p-Value |
---|---|---|---|---|
Male gender (N = 782) | 16.9% | 18.8% | 1.135 (0.875–1.471) | 0.341 |
Cancer | ||||
- All cancer patients (N = 435) | 24.2% | 15.4% | 1.739 (1.324–2.286) | <0.001 |
- No other obvious cause (N = 301) | 28.5% | 18.2% | 1.802 (1.309–2.479) | <0.001 |
- On OAC treatment (N = 47) | 20.5% | 19.7% | 0.834 (0.425–1.969) | 0.679 |
DVT (N = 51) | 88.2% | 15.5% | 40.91 (17.26–96.9) | <0.001 |
Pneumonia (N = 385) | 15.8% | 18.6% | 0.853 (0.658–1.107) | 0.228 |
AcHF | ||||
- All patients (N = 207) | 3.5% | 20.1% | 0.141 (0.065–0.302) | <0.001 |
- No cancer (N = 165) | 2.5% | 21.5% | 0.117 (0.043–0.320) | <0.001 |
- On OAC treatment (N = 46) | 2.2% | 24.1% | 0.089 (0.013–0.523) | 0.016 |
- No cancer and on OAC (N = 37) | 0% | 26.1% | 0.037 (0.002–0.627) | 0.022 |
eCOPD | ||||
- All patients (96) | 5.2% | 18.7% | 0.238 (0.096–0.592) | 0.002 |
- Hypercapnia (PaCO2 > 5.6 kPa) (N = 39) | 0% | 16.7% | 0.062 (0.005–1.192) | 0.054 |
Dyspnea | ||||
- All patients (N = 850) | 20.6% | 17.1% | 1.513 (1.158–1.976) | 0.002 |
- No other obvious cause (N = 460) | 27.8% | 15.5% | 2.098 (1.527–2.881) | <0.001 |
Cough (N = 532) | 19.2% | 17.2% | 1.140 (0.870–1.494) | 0.341 |
- No other obvious cause (N = 276) | 25.7% | 19.7 | 1.411 (1.015–1.961) | 0.038 |
Chest pain (N = 339) | 21,8% | 16.5% | 1.379 (1.025–1.863) | 0.033 |
- No other obvious cause (N = 238) | 23.9% | 20.6% | 1.212 (0.856–1.718) | 0.272 |
Hemoptysis (N = 121) | 16.5% | 21.9% | 0.902 (0.548–1.484) | 0.684 |
- No other obvious cause (N = 86) | 17.4% | 21.8% | 0.756 (0.423–1.250) | 0.245 |
Fever (N = 244) | 16.8% | 18.1% | 0.914 (0.635–1.132) | 0.629 |
Tachycardia (>100/min) | ||||
- All patients (N = 758) | 14.6% | 21.6% | 1.479 (1.237–2.101) | <0.001 |
- No other obvious cause (N = 409) | 27.6% | 16.9% | 1.828 (1.311–2.547) | <0.001 |
Hypercapnia (PaCO2 > 5.6 kPa) | 13.3% | 21.8% | 0.548 (0.341–0.881) | 0.013 |
Hypoxemia (SpO2 < 94%) | ||||
- All patients (N = 158) | 20.9% | 22.7% | 1.161 (0.707–1.905) | 0.556 |
- No other obvious cause (N = 56) | 37.5% | 18.9% | 1.261 (1.335–4.971) | 0.005 |
No other obvious cause of symptoms (N = 599) | 21.2% | 16.1% | 1.675 (1.278–2.195) | <0.001 |
- Patients aged 65 years or older (N = 554) | 22.2% | 13.6% | 1.801 (1.226–2.148) | <0.001 |
- Patients aged 75 years or older (N = 288) | 23.9% | 14.1% | 1.913 (1.248–2.932) | <0.001 |
OAC treatment | ||||
- All patients (N = 199) | 19.1% | 17.7% | 1.097 (0.749–1.603) | 0.635 |
- No cancer (N = 152) | 19.7% | 14.7% | 1.417 (0.915–2.193) | 0.118 |
COVID-19 infection (N = 80) | 21.3% | 17.7% | 1.254 (0.722–2.178) | 0.421 |
Characteristic | OR (95% CI) | p-Value |
---|---|---|
AcHF | 0.132 (0.026–0.663) | 0.014 |
eCOPD | 0.057 (0.064–0.511) | 0.011 |
Pneumonia | 0.353 (0.126–0.511) | 0.048 |
Dyspnea | 4.768 (1.390–16.357) | 0.013 |
Hypercapnia (PaCO2 > 5.6 kPa) | 1.406 (0.456–4.338) | 0.552 |
Hypoxemia (SpO2 < 94%) | 1.725 (0.642–4.637) | 0.279 |
Pain | 0.502 (0.150–1.680) | 0.264 |
Cancer | 1.289 (0.462–3.599) | 0.6326 |
D-dimer | 1.109 (1.948–1.173) | <0.001 |
Pulse rate | 1.026 (1.008–1.044) | <0.001 |
Characteristic | AUC (95%CI) | D-Dimer Cut-Off | Sensitivity | Specificity |
---|---|---|---|---|
Whole population | 0.768 (0.743–0.792) | 0.59 mg/L | 100% | 2.7% |
AcHF | 0.900 (0.843–0.942) | 3.68 mg/L | 100% | 56.6% |
Pneumonia | 0.771 (0.717–0.818) | 1.34 mg/L | 100% | 24.3% |
eCOPD | 0.741 (0.635–0.829) | 1.26 mg/L | 100% | 26.8% |
Any other cause identified | 0.793 (0.753–0.829) | 1.28 mg/L | 100% | 22.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rakuša, N.; Sertić, Z.; Prutki, M.; Alduk, A.M.; Gornik, I. Factors Predicting CT Pulmonary Angiography Results in the Emergency Department. Diagnostics 2025, 15, 827. https://doi.org/10.3390/diagnostics15070827
Rakuša N, Sertić Z, Prutki M, Alduk AM, Gornik I. Factors Predicting CT Pulmonary Angiography Results in the Emergency Department. Diagnostics. 2025; 15(7):827. https://doi.org/10.3390/diagnostics15070827
Chicago/Turabian StyleRakuša, Nika, Zrinka Sertić, Maja Prutki, Ana Marija Alduk, and Ivan Gornik. 2025. "Factors Predicting CT Pulmonary Angiography Results in the Emergency Department" Diagnostics 15, no. 7: 827. https://doi.org/10.3390/diagnostics15070827
APA StyleRakuša, N., Sertić, Z., Prutki, M., Alduk, A. M., & Gornik, I. (2025). Factors Predicting CT Pulmonary Angiography Results in the Emergency Department. Diagnostics, 15(7), 827. https://doi.org/10.3390/diagnostics15070827