Role of Toll-like Receptors Nine and Ten Polymorphisms in Childhood Bronchial Asthma Control and Their Relation to Cardiac Function
Abstract
:1. Introduction
2. Patients and Method
2.1. Sample Size
2.2. Participant Groups Involved in the Study
- The asthma group:
- Well-controlled group, including 20 children
- Partially controlled group, including 20 children
- Uncontrolled group, including 20 children
2.3. Inclusion Criteria
2.4. Exclusion Criteria
- The control group:
2.5. Operational Design
2.6. Pulmonary Function Testing
2.7. Conventional Echocardiography and Two-Dimensional Speckle Tracking Analysis (Transthoracic)
2.8. Study Outcome
2.9. Statistical Analysis
3. Results
- Primary outcome
- Secondary outcome
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Gewely, M.S.; El-Hosseiny, M.; Abou Elezz, N.F.; El-Ghoneimy, D.H.; Hassan, A.M. Health-related quality of life in childhood bronchial asthma. Egypt. J. Pediatr. Allergy Immunol. 2013, 11, 83–93. [Google Scholar]
- Global Asthma Network Study Group. The Global Asthma Report 2014; Global Asthma Network Study Group: Auckland, New Zealand, 2014; Available online: http://www.globalasthmanetwork.org/publications/Global_Asthma_Report_2014.pdf (accessed on 1 December 2022).
- Rahimian, N.; Aghajanpour, M.; Jouybari, L.; Ataee, P.; Fathollahpour, A.; LamuchDeli, N.; Kalmarzi, R.N. The Prevalence of Asthma among Iranian Children and Adolescent: A Systematic Review and Meta-Analysis. Oxidative Med. Cell. Longev. 2021, 2021, 6671870. [Google Scholar]
- Masoli, M.; Fabian, D.; Holt, S.; Beasley, R. Global Initiative for Asthma (GINA) Program. The global burden of asthma: Executive summary of the GINA Dissemination Committee report. Allergy 2004, 59, 469–478. [Google Scholar]
- Nakayasu, H.; Araga, S.; Takahashi, K.; Otsuki, K.; Murata, M. Two cases of adult Down’s syndrome presenting parietal low uptake in 123I-IMP-SPECT. Rinsho Shinkeigaku 1991, 31, 557–560. [Google Scholar]
- Asher, I.; Pearce, N. Global burden of asthma among children. Int. J. Tuberc. Lung Dis. 2014, 18, 1269–1278. [Google Scholar]
- Vos, T.; Flaxman, A.D.; Naghavi, M.; Lozano, R.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; Aboyans, V.; et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2163–2196. [Google Scholar]
- Dharmage, S.C.; Perret, J.L.; Custovic, A. Epidemiology of asthma in children and adults. Front. Pediatr. 2019, 7, 246. [Google Scholar]
- Gans, M.D.; Gavrilova, T. Understanding the immunology of asthma: Pathophysiology, biomarkers, and treatments for asthma endotypes. Paediatr. Respir. Rev. 2020, 36, 118–127. [Google Scholar]
- Behzadi, P.; García-Perdomo, H.A.; Karpiński, T.M. Toll-like receptors: General molecular and structural biology. J. Immunol. Res. 2021, 2021, 9914854. [Google Scholar]
- Bezemer, G.F.; Sagar, S.; Van Bergenhenegouwen, J.; Georgiou, N.A.; Garssen, J.; Kraneveld, A.D.; Folkerts, G. Dual role of Toll-like receptors in asthma and chronic obstructive pulmonary disease. Pharmacol. Rev. 2012, 64, 337–358. [Google Scholar]
- Forfia, P.R.; Vaidya, A.; Wiegers, S.E. Pulmonary heart disease: The heart lung interaction and its impact on patient phenotypes. Pulm. Circ. 2013, 3, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2019. Available online: https://ginasthma.org/wp-content/uploads/2019/06/GINA-2019-main-report-June-2019-wms.pdf (accessed on 1 December 2022).
- Sharifi, A.; Ghadiri, A.; Salimi, A.; Ghandil, P.; Esmaeili, S.A. Evaluating the distribution of (+2044G/A, R130Q) rs20541 and (−1112 C/T) rs1800925 polymorphism in IL-13 gene: An association-based study with asthma in Ahvaz, Iran. Int. J. Med. Lab. 2021, 8, 62–69. [Google Scholar] [CrossRef]
- Chacon-Cortes, D.; Griffiths, L. Methods for extracting genomic DNA from whole blood samples: Current perspectives. J. Biorepos. Sci. Appl. Med. 2014, 2, 1–9. [Google Scholar]
- Miller, M.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. Standardization of Spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef]
- Ober, C.; Yao, T.C. The genetics of asthma and allergic disease: A 21st century perspective. Immunol. Rev. 2011, 242, 10–30. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Lucas, R.M.; Liu, L.; Stow, J.L. SCIMP is a universal Toll-like receptor adaptor in macrophages. J. Cell Sci. 2020, 133, jcs239194. [Google Scholar] [CrossRef]
- Hernández, C.D.; Casanello, P.; Harris, P.R.; Castro-Rodríguez, J.A.; Iturriaga, C.; Perez-Mateluna, G.; Farías, M.; Urzúa, M.; Hernandez, C.; Serrano, C.; et al. Early origins of allergy and asthma (ARIES): Study protocol for a prospective prenatal birth cohort in Chile. BMC Pediatr. 2020, 20, 164. [Google Scholar] [CrossRef]
- Yu, H.; Su, F.; Wang, L.B.; Hemminki, K.; Dharmage, S.C.; Bowatte, G.; Bui, D.; Qian, Z.; Vaughn, M.G.; Aaron, H.E.; et al. The Asthma Family Tree: Evaluating Associations between Childhood, Parental, and Grandparental Asthma in Seven Chinese Cities. Front. Pediatr. 2021, 9, 720273. [Google Scholar] [CrossRef]
- Guo, S.L.; Liu, F.; Ren, C.J.; Xing, C.H.; Wang, Y.J. Correlations of LTα and NQO1 gene polymorphisms with childhood asthma. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 7557–7562. [Google Scholar]
- Yalçın, S.S.; Emiralioğlu, N.; Yalçın, S. Evaluation of blood and tooth element status in asthma cases: A preliminary case–control study. BMC Pulm. Med. 2021, 21, 201. [Google Scholar] [CrossRef]
- Ardura-Garcia, C.; Vaca, M.; Oviedo, G.; Sandoval, C.; Workman, L.; Schuyler, A.J.; Perzanowski, M.S.; Platts-Mills, T.A.; Cooper, P.J. Risk factors for acute asthma in tropical America: A case–control study in the City of Esmeraldas, Ecuador. Pediatr. Allergy Immunol. 2015, 26, 423–430. [Google Scholar]
- Al-Qerem, W.; Ling, J. Pulmonary function tests in Egyptian schoolchildren in rural and urban areas. East. Mediterr. Health J. 2018, 24, 325–332. [Google Scholar]
- Nahhas, M.; Bhopal, R.; Anandan, C.; Elton, R.; Sheikh, A. Investigating the association between obesity and asthma in 6-to 8-year-old Saudi children: A matched case–control study. npj Prim. Care Respir. Med. 2014, 24, 14004. [Google Scholar]
- Hassane, F.M.; Khatab, A.A.; Saliem, S.S.; Fahmy, M.S. Low magnesium concentration in erythrocytes of children with acute asthma. Menoufia Med. J. 2015, 28, 477. [Google Scholar]
- Betül, B.K.; Ayhan, H. Early Impairment of Right Ventricular Functions in Patients with Moderate Asthma and the Role of Isovolumic Acceleration. Koşuyolu Heart 2022, 25, 157–164. [Google Scholar]
- Özkan, E.; Khosroshahi, H. Evaluation of the Left and Right Ventricular Systolic and Diastolic Function in Asthmatic Children. BMC Cardiovasc. Disord. 2016, 16, 145. [Google Scholar]
- Abdelmohsen, G.; Mohamed, H.; Mohsen, M.; Abdelaziz, O.; Ahmed, D.; Abdelsalam, M.; Dohain, A. Evaluation of cardiac function in pediatric patients with mild to moderate bronchial asthma in the era of cardiac strain imaging. Pediatr. Pulmonol. 2019, 54, 1905–1913. [Google Scholar] [CrossRef] [PubMed]
- Ozde, C.; Dogru, M.; Ozde, Ş.; Kayapinar, O.; Kaya, A.; Korkmaz, A. Subclinical right ventricular dysfunction in intermittent and persistent mildly asthmatic children on tissue Doppler echocardiography and serum NT-pro BNP: Observational study. Pediatr. Int. 2018, 60, 1024–1032. [Google Scholar] [CrossRef]
- Karasu, B.B.; Aydıncak, H.T. Right ventricular-pulmonary arterial uncoupling in mild-to-moderate asthma. J. Asthma 2023, 60, 543–552. [Google Scholar]
- Manti, S.; Parisi, G.F.; Giacchi, V.; Sciacca, P.; Tardino, L.; Cuppari, C.; Salpietro, C.; Chikermane, A.; Leonardi, S. Pilot study shows right ventricular diastolic function impairment in young children with obstructive respiratory disease. Acta Paediatr. 2019, 108, 740–744. [Google Scholar]
- De-Paula, C.R.; Magalhães, G.S.; Jentzsch, N.S.; Botelho, C.F.; Mota, C.D.C.C.; Murça, T.M.; Ramalho, L.F.C.; Tan, T.C.; Capuruço, C.A.B.; Rodrigues-Machado, M.D.G. Echocardiographic assessment of ventricular function in young patients with asthma. Arq. Bras. Cardiol. 2018, 110, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Tuleta, I.; Eckstein, N.; Aurich, F.; Nickenig, G.; Schaefer, C.; Skowasch, D.; Schueler, R. Reduced longitudinal cardiac strain in asthma patients. J. Asthma 2019, 56, 350–359. [Google Scholar] [CrossRef]
- Baysal, S.S.; Has, M. Assessment of biventricular function with speckle tracking echocardiography in newly-diagnosed adult-onset asthma. J. Asthma 2022, 59, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, R.; Karadeniz, C.; Döğer, F.K.; Poyrazoglu, H.G. Right ventricular function in children with asthma: Evaluation using two-dimensional speckle-tracking echocardiograph. J. Pediatr. 2021, 230, 166–172. [Google Scholar]
- Ozdemir, O.; Ceylan, Y.; Razi, C.H.; Ceylan, O.; Andiran, N. Assessment of ventricular functions by tissue Doppler echocardiography in children with asthma. Pediatr. Cardiol. 2013, 34, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Tesse, R.; Pandey, R.C.; Kabesch, M. Genetic variations in toll-like receptor pathway genes influence asthma and atopy. Allergy 2011, 66, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Kormann, M.S.; Depner, M.; Hartl, D.; Klopp, N.; Illig, T.; Adamski, J.; Vogelberg, C.; Weiland, S.K.; von Mutius, E.; Kabesch, M. Toll-like receptor heterodimer variants protect from childhood asthma. J. Allergy Clin. Immunol. 2008, 122, 86–92. [Google Scholar] [CrossRef]
- Klaassen, E.M.; Thönissen, B.E.; van Eys, G.; Dompeling, E.; Jöbsis, Q. A systematic review of CD14 and toll-like receptors in relation to asthma in Caucasian children. Allergy Asthma Clin. Immunol. 2013, 9, 1–10. [Google Scholar] [CrossRef]
- Puthothu, B.; Heinzmann, A. Is toll-like receptor 6 or toll-like receptor 10 involved in asthma genetics--or both? Allergy 2006, 61, 649–650. [Google Scholar] [CrossRef]
Variable | Uncontrolled | Partially Controlled | Well-Controlled | Control | Tests | |
---|---|---|---|---|---|---|
Group | Group | Group | Group | F | p-Value | |
(n = 20) | (n = 20) | (n = 20) | (n = 20) | |||
Age (years) | ||||||
Mean ± SD | 8.15 ± 2.78 | 9.40 ± 4.08 | 7.75 ± 2.73 | 9.05 ± 2.82 | 1.184 | 0.321 |
Range | (5–13) | (5–15) | (5–14) | (5–14) | ||
Height (cm) | ||||||
Mean ± SD | 133.55 ± 20.27 | 132.05 ± 18.96 | 126.25 ± 14.74 | 134.7 ± 17.67 | 0.867 | 0.462 |
Range | (106–168) | (105–165) | (106–155) | (106–165) | ||
Weight (kg) | ||||||
Mean ± SD | 35.65 ± 14.12 | 34.30 ± 13.76 | 28.75 ± 10.43 | 32.50 ± 12.55 | 1.094 | 0.357 |
Range | (21–63) | (18–66) | (17–50) | (19–66) | ||
BMI (kg/m2) | ||||||
Mean ± SD | 19.41 ± 4.27 | 19.12 ± 4.43 | 17.53 ± 3.19 | 17.34 ± 2.92 | 1.59 | 1.79 |
Range | (14.8–24) | (11.03–29.33) | (13.43–24.45) | (12.77 ± 24.4) | ||
Variable | N (%) | N (%) | N (%) | N (%) | χ2 | p-value |
Sex | ||||||
| 11 (55) | 9 (45) | 7 (35) | 9 (45) | 1.616 | 0.656 (ns) |
| 9 (45) | 11 (55) | 13 (65) | 11 (55) | ||
Family history | ||||||
Negative | 5 (25) | 1 (5) | 3 (15) | 20 (100) | 48.627 | <0.001 ** |
Positive | 15 (75) | 19 (95) | 17 (85) | 0 |
Variable | Uncontrolled Group (n = 20) | Partially Controlled (n = 20) | Well-Controlled (n = 20) | Control Group (n = 20) | Tests | ||
---|---|---|---|---|---|---|---|
F | p-Value | Post Hoc | |||||
Ejection Fraction EF% Mean ± SD Range | 70.43 ± 3.95 (62–75.1) | 70.08 ± 2.74 (64.3–74.3) | 71.40 ± 3.67 (63–78.1) | 71.54 ± 2.51 (66.6–77) | 0.961 | 0.416 | P1 = 0.740 P2 = 0.349 P3 = 0.287 P4 = 0.206 P5 = 0.164 P6 = 0.897 |
Fractional Shortening FS% Mean ± SD Range | 36.3 ± 8.84 (2–44.1) | 37.71 ± 2.93 (32.3–44.3) | 39.06 ± 2.67 (32.6–43.2) | 39.36 ± 2.58 (34.1–43.5) | 1.570 | 0.204 | P1 = 0.375 P2 = 0.085 P3 = 0.057 P4 = 0.397 P5 = 0.301 P6 = 0.850 |
Pulmonary Artery Systolic Pressure PASP (mm Hg) Mean ± SD Range | 28.8 ± 7.35 (2–35) | 27.5 ± 2.84 (24–33) | 26 ± 3.76 (20–33) | 25 ± 2.25 (22–29) | 2.745 | 0.049 * | P1 = 0.365 P2 = 0.053 P3 = 0.009 * P4 = 0.296 P5 = 0.083 P6 = 0.485 |
TAPSE (cm) Mean ± SD Range | 2.18 ± 0.34 (1.5–3.06) | 2.39 ± 0.36 (2.02–3.11) | 2.49 ± 0.38 (1.98–3.1) | 2.74 ± 0.64 (2.02–3.07) | 5.480 | 0.002 * | P1 = 0.133 P2 = 0.031 * P3 < 0.001 ** P4 = 0.449 P5 = 0.016 * P6 = 0.077 |
RV4CSL Mean ± SD Range | −22.94 ± 2.62 (−28.1)–(−18.6) | −23.26 ± 1.95 (−27.1)–(−20.2) | −25.33 ± 2.86 (−34.5)–(−20.8) | −25.49 ± 1.36 (−27.6)–(−2.4) | 6.95 | <0.001 * | P1 = 0.658 P2 = 0.001 * P3 = 0.001 * P4 = 0.005 * P5 = 0.003 * P6 = 0.825 |
RVFWSL Mean ± SD Range | −24.89 ± 4.32 (−35.3)–(−19.4) | −27.28 ± 3.02 (−31.8)–(−21.4) | −30.71 ± 3.47 (−42)–(−24.2) | −30.2 ± 2.05 (−33.3)–(−26.3) | 13.36 | <0.001 * | P1 = 0.025 * P2 < 0.001 ** P3 < 0.001 ** P4 = 0.002 * P5 = 0.007 * P6 = 0.628 |
GLS A4C Mean ± SD Range | −18.95 ± 9.79 (−25.9)–(−21.3) | −22.08 ± 1.68 (−25.1)–(−18.5) | −23.78 ± 2.62 (−29.5)–(−26.5) | −24.31 ± 1.19 (−26.5)–(−22.2) | 4.360 | 0.007 * | P1 = 0.059 P2 = 0.0048 * P3 = 0.002 * P4 = 0.302 P5 = 0.178 P6 = 0.749 |
GLS A2C Mean ± SD Range | −18.12 ± 1.88 (−22.5)–(−16.2) | −20.29 ± 1.98 (−24.1)–(−16.5) | −22.31 ± 2.14 (−29.4)–(−19.6) | −22.69 ± 1.85 (−26.7)–(−19.1) | 22.8 | <0.001 * | P1 = 0.001 * P2 < 0.001 * P3 < 0.001 * P4 = 0.002 * P5 < 0.001 * P6 = 0.548 |
GLS A3C Mean ± SD Range | −18.37 ± 1.42 (−21.3)–(-16.2) | −19.5 ± 1.91 (−22.8)–(-16.1) | −19.83 ± 1.6 (−24.1)–(−16.9) | −20.83 ± 1.35 (−22.9)–(−18.6) | 8.14 | <0.001 * | P1 = 0.027 * P2 = 0.005 * P3 < 0.001 ** P4 = 0.519 P5 = 0.010 * P6 = 0.050 |
GLS AVG Mean ± SD Range | −16.98 ± 9.24 (−24.1)–20 | 20.12 ± 2.53 (−24)–(−16.3) | 21.35 ± 1.99 (−25.8)–(−17) | 22.61 ± 1.67 (−28.2)–(−20) | 4.72 | <0.001 * | P1 = 0.049 * P2 = 0.007 * P3 = 0.001 * P4 = 0.436 P5 = 0.117 P6 = 0.425 |
Variable | Cases | Control | p | χ2 | OR | ||
---|---|---|---|---|---|---|---|
(n = 60) | (n = 20) | ||||||
N | % | N | % | ||||
TLR9: | |||||||
CC | 11 | 18.3 | 12 | 60 | -- | -- | Reference |
CT | 25 | 41.7 | 3 | 15 | 10.45 | 0.001 * | 9.09 (2.13–38.77) |
TT | 24 | 40 | 5 | 25 | 7.11 | 0.008 * | 5.24 (1.48–18.53) |
Allele: | |||||||
C | 47 | 39.2 | 27 | 67.5 | 9.69 | 0.002 * | 3.23 (1.51–6.87) |
T | 73 | 60.8 | 13 | 32.5 | |||
TLR10: | |||||||
GG | 21 | 35 | 15 | 75 | -- | --- | Reference |
GT | 24 | 40 | 4 | 20 | 5.66 | 0.02 * | 4.29 (1.23–14.94) |
TT | 15 | 25 | 1 | 5 | 6.52 | 0.01 * | 10.71 (1.27–90.14) |
Allele: | |||||||
G | 66 | 55 | 34 | 85 | 11.52 | <0.001 | 4.64 (1.81–11.86) |
T | 54 | 45 | 6 | 15 | ** |
Variable | Uncontrolled Group (n = 20) | Partially Controlled Group (n = 20) | Well-Controlled Group (n = 20) | Control Group (n = 20) | Tests | Multi Comparison Analysis | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
χ2 | p-Value | ||||||||||
N | % | N | % | N | % | N | % | ||||
TLR9 polymorphism | |||||||||||
CC (n = 23) | 0 | 0 | 3 | 15 | 8 | 40 | 12 | 60 | 21.887 | 0.001 * | P1 = 0.139 P2 = 0.007 * P3 < 0.001 ** P4 = 0.187 P5 = 0.009 * P6 = 0.389 |
TC (n = 28) | 9 | 45 | 10 | 50 | 6 | 30 | 3 | 15 | |||
TT (n = 29) | 11 | 55 | 7 | 35 | 6 | 30 | 5 | 25 | |||
TLR9 Allele | |||||||||||
C (n = 74) | 9 | 22.5 | 16 | 40.0 | 22 | 55.0 | 27 | 67.5 | 18.2 | 0.001 * | P1 = 0.09 P2 = 0.002 * P3 < 0.001 ** P4 = 0.178 P5 = 0.013 * P6 = 0.251 |
T (n = 86) | 31 | 77.5 | 24 | 60.0 | 18 | 45.0 | 13 | 32.5 | |||
TLR10 polymorphism | |||||||||||
GG (n = 36) | 4 | 20 | 7 | 35 | 10 | 50 | 15 | 75 | 18.8 | 0.004 * | P1 = 0.557 P2 = 0.018 * P3 = 0.001 ** P4 = 0.114 P5 = 0.026 * P6 = 0.232 |
GT (n = 28) | 8 | 40 | 7 | 35 | 9 | 45 | 4 | 20 | |||
TT (n = 16) | 8 | 40 | 6 | 30 | 1 | 5 | 1 | 5 | |||
TLR10 Allele | |||||||||||
G (n = 100) | 16 | 40 | 21 | 52.5 | 29 | 72.5 | 34 | 85 | 20.6 | 0.001 ** | P1 = 0.262 P2 = 0.003 * P3 = 0.001 ** P4 = 0.06 P5 = 0.001 ** P6 = 0.171 |
T (n = 60) | 24 | 60 | 19 | 47.5 | 11 | 27.5 | 6 | 15 |
Variable | TLR9 | Tests | ||||
---|---|---|---|---|---|---|
CC | CT | TT | F | p-Value | Post Hoc | |
Respiratory function | ||||||
FEV1% | P1 = 0.006 * | |||||
Mean ± SD | 85.72 ± 6.42 | 67.32 ± 19.62 | 67.59 ± 19.29 | 4.694 | 0.013 * | P2 = 0.007 * |
Range | (71–94.3) | (35–97.1) | (35–99.5) | P3 = 0.958 | ||
FVC% | P1 = 0.244 | |||||
Mean ± SD | 83.02 ± 11.99 | 76.5 ± 14.62 | 71.18 ± 17.19 | 2.337 | P2 = 0.038 * | |
Range | (60.2–97.4) | (52–104) | (29.5–96) | 0.0.04 * | P3 = 0.229 | |
Cardiac function | ||||||
Ejection Fraction EF% | P1 = 0.083 | |||||
Mean ± SD | 72.41 ± 2.87 | 70.22 ± 3 | 70.26 ± 4.03 | 1.801 | 0.174 | P2 = 0.091 |
Range | (69.1–78.1) | (63–75.1) | (62–77.4) | P3 = 0.966 | ||
Fractional Shortening FS% | P1 = 0.424 | |||||
Mean ± SD | 37.59 ± 3.06 | 39.2 ± 2.73 | 36.15 ± 8 | 1.861 | 0.165 | P2 = 0.479 |
Range | (32.6–42.7) | (32.3–44.3) | (2–44.1) | P3 = 0.059 | ||
Pulmonary Artery Systolic Pressure PASP (mm Hg) | P1 = 0.496 | |||||
Mean ± SD | 26.36 ± 3.8 | 27.64 ± 3.76 | 27.71 ± 2 | 0.292 | 0.748 | P2 = 0.476 |
Range | (20–31) | (23–35) | (2–34) | P3 = 0.963 | ||
TAPSE (cm) | P1 = 0.853 | |||||
Mean ± SD | 2.39 ± 0.35 | 2.36 ± 0.4 | 2.33 ± 0.38 | 0.091 | 0.913 | P2 = 0.686 |
Range | (1.98–2.88) | (1.8–3.11) | (1.5–3.1) | P3 = 0.778 | ||
RV4CSL | P1 = 0.328 | |||||
Mean ± SD | −24.59 ± 2.37 | −23.62 ± 1.92 | −23.73 ± 3.45 | 0.523 | 0.596 | P2 = 0.386 |
Range | (−27.3)–(−20.8) | (−27.6)–(−20.8) | (−34.5)–(−18.6) | P3 = 0.892 | ||
RVFWSL | P1 = 0.230 | |||||
Mean ± SD | −30.01 ± 2.5 | −28.21 ± 3.25 | −25.92 ± 5.29 | 4.183 | 0.02 * | P2 = 0.008* |
Range | (−33.1)–(−25.6) | (−35.3)–(−22.2) | (−42)–(−19.4) | P3 = 0.056 | ||
GLS A4C | P1 = 0.456 | |||||
Mean ± SD | −23.7 ± 2.72 | −22.04 ± 2.06 | −20.19 ± 9.25 | 1.341 | 0.270 | P2 = 0.122 |
Range | (−28.8)–(−20.3) | (−25.1)–(−16.2) | (−29.5)–(−21.3) | P3 = 0.297 | ||
GLS A2C | P1 = 0.271 | |||||
Mean ± SD | −21.62 ± 1.91 | −20.62 ± 1.68 | −19.22 ± 3.3 | 3.983 | 0.024 * | P2 = 0.011 * |
Range | (−26.2)–(-19.5) | (−22.8)–(−16.8) | (−29.4)–(−16.2) | P3 = 0.055 | ||
GLS A3C | −19.15 ± 1.39 | P1 = 0.337 | ||||
Mean ± SD | −19.76 ± 1.94 | (−22.5)–(-17.1) | −19.08 ± 2 | 0.629 | 0.537 | P2 = 0.286 |
Range | (−24.1)–(−16.9) | (−22.8)–(−16.1) | P3 = 0.885 | |||
GLS AVG | P1 = 0.256 | |||||
Mean ± SD | −21.46 ± 1.79 | −19.02 ± 8.58 | −19.05 ± 2.71 | 0.768 | 0.469 | P2 = 0.263 |
Range | (−23.6)–(−17.6) | (−25.8)–(−20.5) | (−24)–(−16.3) | P3 = 0.990 |
Variable | TLR10 | Tests | ||||
---|---|---|---|---|---|---|
CC | CT | TT | F | p-Value | Post Hoc | |
Respiratory function | ||||||
FEV1% | P1 = 0.220 | |||||
Mean ± SD | 77.05 ± 16.57 | 70.2 ± 19.73 | 63.01 ± 18.94 | 2.544 | 0.047 * | P2 = 0.029 * |
Range | (41.8–97.1) | (35–99.5) | (35–90.2) | P3 = 0.242 | ||
FVC% | P1 = 0.361 | |||||
Mean ± SD | 80.38 ± 15.14 | 76.22 ± 13.46 | 67.77 ± 17.52 | 3.076 | 0.04 * | P2 = 0.017 * |
Range | (43–104) | (52–97.4) | (29.5–86.8) | P3 = 0.095 | ||
Cardiac function | ||||||
Ejection Fraction EF% | P1 = 0.368 | |||||
Mean ± SD | 70.37 ± 3.34 | 71.31 ± 3.09 | 69.93 ± 4.23 | 0.824 | 0.444 | P2 = 0.710 |
Range | (63–78.1) | (64.3–75.5) | (62–77.4) | P3 = 0.232 | ||
Fractional Shortening FS% | P1 = 0.498 | |||||
Mean ± SD | 37.98 ± 3.26 | 39.09 ± 2.6 | 35.04 ± 9.77 | 2.576 | 0.085 | P2 = 0.118 |
Range | (32.3–43.2) | (34.9–44.3) | (2–42.1) | P3 = 0.498 | ||
Pulmonary Artery Systolic Pressure PASP (mm Hg) | P1 = 0.982 | |||||
Mean ± SD | 27.29 ± 3.74 | 27.25 ± 4.11 | 27.93 ± 7.81 | 0.094 | 0.911 | P2 = 0.712 |
Range | (21–35) | (20–34) | (2–34) | P3 = 0.689 | ||
TAPSE (cm) | P1 = 0.148 | |||||
Mean ± SD | 2.45 ± 0.38 | 2.29 ± 0.36 | 2.31 ± 0.39 | 1.198 | 0.309 | P2 = 0.265 |
Range | (2.01–3.11) | (1.86–3.06) | (1.5–3.1) | P3 = 0.861 | ||
RV4CSL | P1 = 0.726 | |||||
Mean ± SD | −23.82 ± 2.24 | 23.53 ± 2.36 | −24.37 ± 3.69 | 0.444 | 0.643 | P2 = 0.548 |
Range | (−27.2)–(−19.2) | (−28.1)–(−19.2) | (−34.5)–(−18.6) | P3 = 0.351 | ||
RVFWSL | P1 = 0.775 | |||||
Mean ± SD | −28.24 ± 3.33 | −27.87 ± 3.85 | −26.37 ± 6 | 0.876 | 0.422 | P2 = 0.207 |
Range | (−33.2)–(−21.2) | (−35.3)–(−21.3) | (−42)–(−19.4) | P3 = 0.299 | ||
GLS A4C | P1 = 0.159 | |||||
Mean ± SD | −22.82 ± 2.06 | −20.2 ± 9.14 | −22.15 ± 3.34 | 1.096 | 0.341 | P2 = 0.750 |
Range | (−28.8)–(−19.1) | (27.3-)–(−21.3) | (−29.5)–(−16.2) | P3 = 0.338 | ||
GLS A2C | P1 = 0.358 | |||||
Mean ± SD | −20.86 ± 1.67 | −20.13 ± 2.52 | −19.55 ± 3.65 | 1.135 | 0.328 | P2 = 0.143 |
Range | (−23.1)–(−16.3) | (−26.2)–(−16.3) | (−29.4)–(−16.2) | P3 = 0.498 | ||
GLS A3C | −19.21 ± 1.1 | −19.58 ± 1.9 | −18.71 ± 2.16 | P1 = 0.485 | ||
Mean ± SD | (−21.6)–(−16.9) | (−24.1)–(−17.1) | (−22.8)–(−16.1) | 1.133 | 0.329 | P2 = 0.403 |
Range | P3 = 0.138 | |||||
GLS AVG | −21.98 ± 1.82 | −18.55 ± 8.53 | −17.47 ± 2.22 | P1 = 0.047 * | ||
Mean ± SD | (−25.8)–(−17.6) | (−23.5)–(−20.5) | (−24)–(−16.2) | 3.344 | 0.042(S) | P2 = 0.021 * |
Range | P3 = 0.560 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabie, R.A.; Hussien, A.E.; Abdelhameed, H.S.; Shedeed, S.A.; Almadani, N.; Nofal, H.A.; El-Rafey, D.S.; Ali, H.T.; Naguib, M.S. Role of Toll-like Receptors Nine and Ten Polymorphisms in Childhood Bronchial Asthma Control and Their Relation to Cardiac Function. Diagnostics 2025, 15, 817. https://doi.org/10.3390/diagnostics15070817
Rabie RA, Hussien AE, Abdelhameed HS, Shedeed SA, Almadani N, Nofal HA, El-Rafey DS, Ali HT, Naguib MS. Role of Toll-like Receptors Nine and Ten Polymorphisms in Childhood Bronchial Asthma Control and Their Relation to Cardiac Function. Diagnostics. 2025; 15(7):817. https://doi.org/10.3390/diagnostics15070817
Chicago/Turabian StyleRabie, Rehab Ahmed, Asmaa Elsharkawy Hussien, Hesham Samy Abdelhameed, Soad Abdelsalam Shedeed, Noura Almadani, Hanaa A. Nofal, Dina S. El-Rafey, Hossam T. Ali, and Mohammed Sanad Naguib. 2025. "Role of Toll-like Receptors Nine and Ten Polymorphisms in Childhood Bronchial Asthma Control and Their Relation to Cardiac Function" Diagnostics 15, no. 7: 817. https://doi.org/10.3390/diagnostics15070817
APA StyleRabie, R. A., Hussien, A. E., Abdelhameed, H. S., Shedeed, S. A., Almadani, N., Nofal, H. A., El-Rafey, D. S., Ali, H. T., & Naguib, M. S. (2025). Role of Toll-like Receptors Nine and Ten Polymorphisms in Childhood Bronchial Asthma Control and Their Relation to Cardiac Function. Diagnostics, 15(7), 817. https://doi.org/10.3390/diagnostics15070817