Could PTH/Ca Ratio Serve as a New Marker for Evaluating Bone Metabolism in Hemophilia Patients?
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Srivastava, A.; Brewer, A.K.; Mauser-Bunschoten, E.P.; Key, N.S.; Kitchen, S.; Llinas, A.; Ludlam, C.A.; Mahlangu, J.N.; Mulder, K.; Poon, M.C.; et al. Guidelines for the management of hemophilia. Haemophilia 2013, 19, e1–e47. [Google Scholar] [CrossRef]
- Berntorp, E.; Shapiro, A.D. Modern haemophilia care. Lancet 2012, 379, 1447–1456. [Google Scholar] [CrossRef] [PubMed]
- White, G.C., 2nd; Rosendaal, F.; Aledort, L.M.; Lusher, J.M.; Rothschild, C.; Ingerslev, J. Definitions in hemophilia. Recommendation of the scientific subcommittee on factor VIII and factor IX of the scientific and standardization committee of the International Society on Thrombosis and Haemostasis. Thromb. Haemost. 2001, 85, 560. [Google Scholar] [PubMed]
- Srivastava, A.; Santagostino, E.; Dougall, A.; Kitchen, S.; Sutherland, M.; Pipe, S.W.; Carcao, M.; Mahlangu, J.; Ragni, M.V.; Windyga, J.; et al. WFH Guidelines for the Management of Hemophilia, 3rd edition. Haemophilia 2020, 26, 1–158. [Google Scholar] [CrossRef] [PubMed]
- Anagnostis, P.; Karras, S.; Paschou, S.A.; Goulis, D.G. Haemophilia A and B as a cause for secondary osteoporosis and increased fracture risk. Blood Coagul. Fibrinolysis 2015, 26, 599–603. [Google Scholar] [CrossRef]
- Lin, X.; Gao, P.; Zhang, Q.; Jiang, Y.; Wang, O.; Xia, W.; Li, M. Pathogenesis and treatment of osteoporosis in patients with hemophilia. Arch. Osteoporos. 2023, 18, 17. [Google Scholar] [CrossRef]
- Posma, J.J.; Posthuma, J.J.; Spronk, H.M. Coagulation and non-coagulation effects of thrombin. J. Thromb. Haemost. 2016, 14, 1908–1916. [Google Scholar] [CrossRef]
- Tuan, S.H.; Hu, L.Y.; Sun, S.F.; Huang, W.Y.; Chen, G.B.; Li, M.H.; Liou, I.H. Risk of osteoporotic fractures as a consequence of haemophilia: A nationwide population-based cohort study. Haemophilia 2019, 25, 876–884. [Google Scholar] [CrossRef]
- Watts, N.B.; Adler, R.A.; Bilezikian, J.P.; Drake, M.T.; Eastell, R.; Orwoll, E.S.; Finkelstein, J.S. Osteoporosis in men: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2012, 97, 1802–1822. [Google Scholar] [CrossRef]
- Lewiecki, E.M.; Gordon, C.M.; Baim, S.; Leonard, M.B.; Bishop, N.J.; Bianchi, M.L.; Kalkwarf, H.J.; Langman, C.B.; Plotkin, H.; Rauch, F.; et al. International Society for Clinical Densitometry 2007 Adult and Pediatric Official Positions. Bone 2008, 43, 1115–1121. [Google Scholar] [CrossRef]
- Ransmann, P.; Hmida, J.; Brühl, M.; Schildberg, F.A.; Goldmann, G.; Oldenburg, J.; Jaenisch, M.; Tomschi, F.; Hilberg, T.; Strauss, A.C. The influence of severity of hemophilia on bone mineral density and fracture risk. Res. Pract. Thromb. Haemost. 2024, 8, 102624. [Google Scholar] [CrossRef] [PubMed]
- Ekinci, O.; Demircioglu, S.; Dogan, A.; Merter, M.; Yildiz, S.; Demir, C. Decreased bone mineral density and associated factors in severe haemophilia A patients: A case-control study. Haemophilia 2019, 25, e315–e321. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Shen, S. Osteoporosis and associated risk factors in patients with severe hemophilia A: A case-control study from China. BMC Musculoskelet. Disord. 2023, 24, 657. [Google Scholar] [CrossRef]
- Gerstner, G.; Damiano, M.L.; Tom, A.; Worman, C.; Schultz, W.; Recht, M.; Stopeck, A.T. Prevalence and risk factors associated with decreased bone mineral density in patients with haemophilia. Haemophilia 2009, 15, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Liel, M.S.; Greenberg, D.L.; Recht, M.; Vanek, C.; Klein, R.F.; Taylor, J.A. Decreased bone density and bone strength in a mouse model of severe factor VIII deficiency. Br. J. Haematol. 2012, 158, 140–143. [Google Scholar] [CrossRef]
- Recht, M.; Liel, M.S.; Turner, R.T.; Klein, R.F.; Taylor, J.A. The bone disease associated with factor VIII deficiency in mice is secondary to increased bone resorption. Haemophilia 2013, 19, 908–912. [Google Scholar] [CrossRef]
- Gay, N.D.; Lee, S.C.; Liel, M.S.; Sochacki, P.; Recht, M.; Taylor, J.A. Increased fracture rates in people with haemophilia: A 10-year single institution retrospective analysis. Br. J. Haematol. 2015, 170, 584–586. [Google Scholar] [CrossRef]
- Gebetsberger, J.; Schirmer, M.; Wurzer, W.J.; Streif, W. Low Bone Mineral Density in Hemophiliacs. Front. Med. 2022, 9, 794456. [Google Scholar] [CrossRef]
- Barnes, C.; Wong, P.; Egan, B.; Speller, T.; Cameron, F.; Jones, G.; Ekert, H.; Monagle, P. Reduced bone density among children with severe hemophilia. Pediatrics 2004, 114, e177–e181. [Google Scholar] [CrossRef]
- Wang, H.; Bai, X. Mechanisms of Bone Remodeling Disorder in Hemophilia. Semin. Thromb. Hemost. 2021, 47, 43–52. [Google Scholar] [CrossRef]
- Anagnostis, P.; Vakalopoulou, S.; Christoulas, D.; Paschou, S.A.; Papatheodorou, A.; Garipidou, V.; Kokkoris, P.; Terpos, E. The role of sclerostin/dickkopf-1 and receptor activator of nuclear factor kB ligand/osteoprotegerin signalling pathways in the development of osteoporosis in patients with haemophilia A and B: A cross-sectional study. Haemophilia 2018, 24, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-López, N.; Martínez-Arias, L.; Fernández-Villabrille, S.; Ruiz-Torres, M.P.; Dusso, A.; Cannata-Andía, J.B.; Naves-Díaz, M.; Panizo, S. Role of the RANK/RANKL/OPG and Wnt/β-Catenin Systems in CKD Bone and Cardiovascular Disorders. Calcif. Tissue Int. 2021, 108, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, H. Discovery of the RANKL/RANK/OPG system. J. Bone Miner. Metab. 2021, 39, 2–11. [Google Scholar] [CrossRef]
- Baud’huin, M.; Duplomb, L.; Téletchéa, S.; Charrier, C.; Maillasson, M.; Fouassier, M.; Heymann, D. Factor VIII-von Willebrand factor complex inhibits osteoclastogenesis and controls cell survival. J. Biol. Chem. 2009, 284, 31704–31713. [Google Scholar] [CrossRef] [PubMed]
- Bordbar, M.; Olyaeinezhad, S.; Saki, F.; Haghpanah, S. Prevalence of Low Bone Mass in Patients with Hemophilia and Its Related Ractors in Southern Iran. J. Compr. Pediatr. 2020, 11, e97291. [Google Scholar] [CrossRef]
- Bouillon, R.; Carmeliet, G. Vitamin D insufficiency: Definition, diagnosis and management. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 669–684. [Google Scholar] [CrossRef]
- Sahin, S.; Sadri, S.; Baslar, Z.; Ar, M.C. Osteoporosis in Patients with Hemophilia: Single-Center Results from a Middle-Income Country. Clin. Appl. Thromb. Hemost. 2019, 25, 1076029619861689. [Google Scholar] [CrossRef]
- Chen, F.-P.; Lin, Y.-C.; Lin, Y., Jr.; Huang, M.-H.; Chen, J.-F.; Lai, P.-L.; Chang, C.-W.; Yin, T.-C. Relationship Between Serum 25-Hydroxyvitamin D and Bone Mineral Density, Fracture Risk, and Bone Metabolism in Adults with Osteoporosis/Fractures. Endocr. Pract. 2024, 30, 616–623. [Google Scholar] [CrossRef]
- De Laet, C.; Kanis, J.A.; Odén, A.; Johanson, H.; Johnell, O.; Delmas, P.; Eisman, J.A.; Kroger, H.; Fujiwara, S.; Garnero, P.; et al. Body mass index as a predictor of fracture risk: A meta-analysis. Osteoporos. Int. 2005, 16, 1330–1338. [Google Scholar] [CrossRef]
- Masaki, K.; Shiomi, S.; Kuroki, T.; Tanaka, T.; Monna, T.; Ochi, H. Longitudinal changes of bone mineral content with age in patients with cirrhosis of the liver. J. Gastroenterol. 1998, 33, 236–240. [Google Scholar] [CrossRef]
- Katsarou, O.; Terpos, E.; Chatzismalis, P.; Provelengios, S.; Adraktas, T.; Hadjidakis, D.; Kouramba, A.; Karafoulidou, A. Increased bone resorption is implicated in the pathogenesis of bone loss in hemophiliacs: Correlations with hemophilic arthropathy and HIV infection. Ann. Hematol. 2010, 89, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Linari, S.; Montorzi, G.; Bartolozzi, D.; Borderi, M.; Melchiorre, D.; Benelli, M.; Morfini, M. Hypovitaminosis D and osteopenia/osteoporosis in a haemophilia population: A study in HCV/HIV or HCV infected patients. Haemophilia 2013, 19, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Gualtierotti, R.; Solimeno, L.P.; Peyvandi, F. Hemophilic arthropathy: Current knowledge and future perspectives. J. Thromb. Haemost. 2021, 19, 2112–2121. [Google Scholar] [CrossRef] [PubMed]
Variable (Median, Min–Max) | Hemophilia A n = 54 (87.1%) | Hemophilia B n = 8 (12.9%) | All Patients n = 62 (100%) |
---|---|---|---|
Age, years | 37 (21–66) | 36 (23–62) | 37 (21–66) |
Weight, kg | 80 (53–135) | 75 (54–120) | 79 (53–135) |
Height, cm | 170 (150–190) | 170 (167–187) | 170 (150–190) |
Factor levels, % | 0.25 (0.02–12.3) | 2.31 (0.9–19.7) | 0.3 (0.02–19.7) |
Disease severity | |||
Severe (<1%) | 41 (75.9%) | 1 (12.5%) | 42 (67.7%) |
Moderate (1–5%) | 8 (14.8%) | 5 (62.5%) | 13 (21%) |
Mild (>6–40%) | 5 (9.3%) | 2 (25%) | 7 (11.3%) |
Inhibitor | |||
Yes | 1 (1.9%) | 0 (0%) | 1 (1.6%) |
No | 53 (98.1%) | 8 (100%) | 61 (98.4%) |
Current treatment | |||
Prophylaxis | 48 (88.9%) | 5 (62.5%) | 53 (85.5%) |
When bleeding occurs | 6 (11.1%) | 3 (37.5%) | 9 (14.5%) |
Target joint | |||
Yes | 41 (75.9%) | 5 (62.5%) | 46 (75.4%) |
No | 13 (24.1%) | 3 (37.5%) | 15 (24.6%) |
25-OH-D3, µg/L | 14.3 (4.6–51.6) | 9.4 (4.4–19.9) | 13.4 (4.4–51.6) |
Total protein, g/L | 74 (66–80) | 76 (71–79) | 74 (66–80) |
Ca, mg/dL (mean, SD) | 9.0 (8.3–10.2) | 9.1 (8.1–9.5) | 9.1 (8.1–10.2) |
P, mg/dL (mean, SD) | 3.25 (1.8–4.8) | 2.65 (2.1–4.1) | 3.2 (1.8–4.8) |
ALP, U/L | 96 (38–167) | 85 (56–139) | 90 (38–167) |
PTH, ng/L | 59.7 (10.1–140) | 47.7 (22.2–117.4) | 59.1 (10.1–140) |
AST, U/L | 20 (11–57) | 18.5 (14–53) | 20 (11–57) |
ALT, U/L | 19 (6–108) | 15.5 (12–89) | 19 (6–108) |
Creatinine, mg/dL | 0.81 (0.57–1.54) | 0.77 (0.62–1.06) | 0.8 (0.57–1.54) |
Anti-HCV positivity | 7 (14.3%) | 1 (12.5%) | 8 (14%) |
Variable (Median, Min–Max) | Hemophilia A n = 54 | Hemophilia B n = 8 | All Patients n = 62 |
---|---|---|---|
Femoral neck T score a | −1.25 (−4.4 to 1.6) | 0.65 (−2.4 to 2.6) | −1.1 (−4.4 to 2.6) |
Femoral neck Z score b | −0.95 (−3.9 to 2) | 0.65 (−2.3 to 3.1) | −0.80 (−3.9 to 3.1) |
Femur total T score a | −1.0 (−4.5 to 1.2) | 1.05 (−2.5 to 2.1) | −1.0 (−4.5 to 2.1) |
Femur total Z score b | −0.85 (−4.3 to 1.6) | 1.15 (−2.4 to 2.2) | −0.8 (−4.3 to 2.1) |
Total vertebral T score a | −0.75 (−2.8 to 2.6) | −0.15 (−3 to 1.6) | −0.70 (−3 to 2.6) |
Total vertebral Z score b | −0.70 (−2.8 to 2.6) | −0.15 (−3 to 2.1) | −0.70 (−3 to 2.6) |
DEXA | |||
Normal | 18 (33.3%) | 5 (62.5%) | 23 (37.1%) |
Low | 36 (66.7%) | 3 (37.5%) | 39 (62.9%) |
Variable (Median, Min–Max) | Normal BMD n = 23, % | Low BMD n = 39, % | p |
---|---|---|---|
Age, years | 28 (21–62) | 38 (22–66) | 0.089 c |
Weight, kg | 88 ± 17.6 | 77 ± 12.1 | 0.006 b |
Height, cm | 175 (160–190) | 170 (150–189) | 0.024 c |
BMI, g/cm2 | 27.5 (22–47) | 26.3 (17–37) | 0.265 c |
Factor level, % | 0.80 (0.18–19.7) | 0.24 (0.02–6.15) | 0.004 c |
Disease severity | |||
Severe | 12 (52.2%) | 30 (76.9%) | 0.015 a |
Moderate | 5 (21.7%) | 8 (20.5%) | |
Mild | 6 (26.1) | 1 (2.6%) | |
Current treatment | |||
Prophylaxis | 16 (69.6%) | 37 (94.9%) | 0.006 a |
When bleeding occurs | 7 (30.4%) | 2 (5.1%) | |
Anti-HCV positivity | |||
Yes | 2 (9.1%) | 6 (15.4%) | 0.439 a |
No | 20 (90.9%) | 31 (79.5%) | |
Presence of the target joint | |||
Yes | 15 (65.2%) | 31 (79.5%) | 0.215 a |
No | 8 (34.8%) | 8 (20.5%) | |
Number of target joints | |||
One | 6 (26.1%) | 5 (12.8%) | 0.104 a |
Multiple | 9 (39.1%) | 26 (66.7%) | |
Presence of the target joint in the lower extremity | |||
Yes | 12 (52.2%) | 29 (76.3%) | 0.052 a |
No | 11 (47.8%) | 9 (23.7%) | |
25-OH-D3, µg/L | 10.8 (4.4–51.6) | 14.8 (4.6–41.5) | 0.785 c |
Ca, mg/dL (mean, SD) | 9.05 ± 0.44 | 9.1 ± 0.27 | 0.300 b |
P, mg/dL (mean, SD) | 3.3 ± 0.63 | 3.2 ± 0.62 | 0.167 b |
ALP, U/L | 88.5 (53–126) | 95 (38–167) | 0.706 c |
PTH, ng/L (mean, SD) | 47.5 ± 23.2 | 64.1 ± 25.3 | 0.010 b |
AST, U/L | 21 (13–53) | 19 (11–57) | 0.029 c |
ALT, U/L | 22 (10–89) | 17 (6–108) | 0.072 c |
Creatinine, mg/dL | 0.82 (0.57–1.54) | 0.80 (0.62–1.10) | 0.184 c |
GFR | 118 (48–132) | 115 (86–135) | 0.646 c |
Ca×25-OH-D3/PTH | 2.33 (0.70–21.4) | 2.01 (0.38–10.2) | 0.357 c |
PTH/Ca (mean, SD) | 5.25 ± 2.60 | 7.09 ± 2.83 | 0.011 b |
PTH/25-OH-D3 | 4.04 (0.48–12.9) | 4.67 (0.87–22.7) | 0.348 c |
Variable | AUC | 95% CI | Cut-Off | Sensitivity | Specificity | p Value |
---|---|---|---|---|---|---|
Factor level | 0.719 | 0.585–0.852 | 1.27 | 85 | 48 | 0.004 |
PTH/Ca | 0.731 | 0.583–0.880 | 6.57 | 65 | 82 | 0.009 |
Univariate Logistic Regression | Multivariate Logistic Regression | |||||
---|---|---|---|---|---|---|
Risk Factors | OR | 95% CI | p | OR | 95% CI | p |
Age, yr | 1.036 | 0.988–1.087 | 0.146 | |||
Height, cm | 0.930 | 0.870–0.994 | 0.033 | |||
Weight, kg | 0.948 | 0.910–0.989 | 0.013 | 0.945 | 0.895–0.998 | 0.043 |
BMI, g/cm2 | 0.931 | 0.832–1.041 | 0.210 | |||
Ca, mg/dL | 1.518 | 0.328–7.031 | 0.594 | |||
P, mg/dL | 0.641 | 0.262–1.567 | 0.330 | |||
Creatinine, mg/dL | 0.082 | 0.003–2.536 | 0.153 | |||
GFR | 0.996 | 0.969–1.023 | 0.746 | |||
ALP, U/L | 1.007 | 0.986–1.029 | 0.488 | |||
PTH, ng/L | 1.036 | 1.005–1.068 | 0.023 | |||
25-OH-D3, µg/L | 0.997 | 0.949–1.047 | 0.896 | |||
Factor group (≤1.27, >1.27) | 0.198 | 0.06–0.655 | 0.008 | 0.251 | 0.055–1.140 | 0.073 |
PTH/25-OH-D3 | 1.099 | 0.955–1.265 | 0.339 | |||
Ca×25-OH-D3/PTH | 0.869 | 0.736–1.027 | 0.128 | |||
PTH/Ca group (≤6.57, >6.57) | 7.467 | 1.84–30.27 | 0.005 | 7.045 | 1.485–33.42 | 0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ersal, T.; Hunutlu, F.Ç.; Gürsoy, V.; Elgün, E.; Yavuz, Ş.; Dal Akkuş, İ.; Baş, İ.; Özkocaman, V.; Özkalemkaş, F. Could PTH/Ca Ratio Serve as a New Marker for Evaluating Bone Metabolism in Hemophilia Patients? Diagnostics 2025, 15, 638. https://doi.org/10.3390/diagnostics15050638
Ersal T, Hunutlu FÇ, Gürsoy V, Elgün E, Yavuz Ş, Dal Akkuş İ, Baş İ, Özkocaman V, Özkalemkaş F. Could PTH/Ca Ratio Serve as a New Marker for Evaluating Bone Metabolism in Hemophilia Patients? Diagnostics. 2025; 15(5):638. https://doi.org/10.3390/diagnostics15050638
Chicago/Turabian StyleErsal, Tuba, Fazıl Çağrı Hunutlu, Vildan Gürsoy, Ezel Elgün, Şeyma Yavuz, İpek Dal Akkuş, İlayda Baş, Vildan Özkocaman, and Fahir Özkalemkaş. 2025. "Could PTH/Ca Ratio Serve as a New Marker for Evaluating Bone Metabolism in Hemophilia Patients?" Diagnostics 15, no. 5: 638. https://doi.org/10.3390/diagnostics15050638
APA StyleErsal, T., Hunutlu, F. Ç., Gürsoy, V., Elgün, E., Yavuz, Ş., Dal Akkuş, İ., Baş, İ., Özkocaman, V., & Özkalemkaş, F. (2025). Could PTH/Ca Ratio Serve as a New Marker for Evaluating Bone Metabolism in Hemophilia Patients? Diagnostics, 15(5), 638. https://doi.org/10.3390/diagnostics15050638