Radiofrequency Echographic Multi Spectrometry—A Novel Tool in the Diagnosis of Osteoporosis and Prediction of Fragility Fractures: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Question and Search Strategy
2.2. Inclusion, Exclusion Criteria and Selection of Studies
2.3. Data Extraction
2.4. Risk of Bias Assessment
2.5. Strategy for Data Synthesis
3. Results
3.1. Study Characteristics
3.2. Comparative Diagnostic Performance of REMS and DXA in Bone Health Assessment
3.2.1. Sensitivity and Specificity in Detecting Osteoporosis
3.2.2. Reliability and Reproducibility of Results (REMS Intra- and Inter-Operator Repeatability)
3.2.3. The Impact of Demographic Variations on REMS Diagnostic Accuracy
- Osteoporosis in Males
- Age
- Body Mass Index
3.2.4. Exploring Errors in REMS and DXA Reports
3.3. Evaluating Bone Quality and Structural Integrity: The Role of Fragility Score in Predicting Fragility Fractures
Fracture Risk Assessment in Osteoporosis: Insights from REMS, DXA, TBS, and FRAX Scores
3.4. Clinical Applicability of REMS Across Diverse Patient Populations
3.4.1. Radiation-Free Bone Assessment: Advantages of REMS for Pregnant Women, Breastfeeding Women, Children, and Longitudinal Monitoring of Patients at High Risk of Fracture
3.4.2. REMS: A Breakthrough Technique for Overcoming DXA-Artifacts in the Lumbar Spine?
3.4.3. Expanding the Applicability of REMS to Patients with Chronic Kidney Disease, Type 2 Diabetes Mellitus, and Other Conditions Involving Altered Bone Metabolism
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AN | Anorexia nervosa |
AUC | Area under the curve |
BMD | Bone mineral density |
BMI | Body mass index |
CASP | Critical Appraisal Checklists |
CKD | Chronic kidney disease |
DALYs | Disability-adjusted life-years |
DeFra | FRAX- Derived Fracture Risk Assessment |
DXA | Dual X-ray absorptiometry |
ESCEO | European Society for Clinical and Economic Aspects of Osteoporosis and Musculoskeletal Diseases |
FDA | Food and Drug Administration |
FEA | Finite Element Analysis |
FN | Femoral neck |
FRAX | Fracture Risk Assessment |
FS | Fragility Score |
GRADE | Grading of Recommendations, Assessment, Development, and Evaluations |
HR-pQCT | High-resolution peripheral quantitative computed tomography |
IOF | International Osteoporosis Foundation |
k | Cohen’s kappa coefficient |
K-L | Kellgren-Lawrence grading system |
LS | Lumbar spine |
LSC | Least significant change |
MHz | Mega Hertz |
MRI | Magnetic Resonance Imaging |
OA | Osteoarthritis |
OI | Osteogenesis imperfecta |
PICO | Population, Intervention, Comparison and Outcome |
pQCT | Peripheral quantitative computed tomography |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analysis Checklist |
QALY | Quality-adjusted life year |
QCT | Quantitative computed tomography |
QUS | Quantitative Ultrasonography |
REMS | Radiofrequency echographic multispectrometry |
RMS-CV | Root-mean-square coefficient of variation |
ROIs | Regions of interest |
SCI | Science Citation Index |
SDs | Standard deviations |
T2DM | Type-2 diabetes mellitus |
TBS | Trabecular bone score |
TH | Total hip |
US | Ultrasound |
USA | United States of America |
WHO | World Health Organization |
Appendix A
First Author, Publication Year | 1. Clearly Focused Issue | 2. Appropriate Method to Answer the Question | 3. Subjects Recruitment | 4. Measurements Accurately Performed | 5. Appropriate Data Collection | 6. Sample Size | 7. Results Presentation | 8. Data Analysis | 9. Statement of Findings | 10. Applica-bility of the Results to Local Population | 11. Value of Research | Positive Appraisal | Negative Appraisal | Unknowns |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Adami et al., 2024 [27] | + | + | + | + | + | + | Sensitivity and specificity of REMS in diagnosis of osteoporosis are above 90%. | + | + | + | + | Multi-center design, rigorous adherence to guidelines. | Only Caucasian males, no patients with secondary osteoporosis. | DXA was performed at only one site in each patient. |
Amorim et al., 2021 [23] | + | + | + | + | + | / | The REMS approach had high accuracy for the diagnosis of osteoporosis in comparison with DXA in adult women. | + | + | + | + | First study on REMS in a Latin American population. | High number of REMS scans excluded; | Real-life experience (multiracial, broad age range, osteo-degenerative processes were maintained in DXA) |
Caffarelli et al., 2022 [19] | + | + | - | + | + | + | REMS-BMD values were lower in women with T2DM than in controls. | + | + | + | + | Clear research focus; well-defined inclusion/exclusion criteria. | No power calculation for sample size; cross-sectional; findings limited to elderly PM women with longstanding T2DM. | Limited discussion on potential confounding factors. |
Caffarelli et al., 2022 [37] | + | + | + | + | + | + | In OA subjects, more women were classified as “osteoporotic” on the basis of BMD by REMS with respect to those classified by DXA. | + | + | + | + | Well-defined cohort, strict inclusion/exclusion criteria, subgroup analysis | Relatively small sample size, lack of third reference technique. | Grade of OA in the hip, exclusion of severely obese patients. |
Caffarelli et al., 2024 [29] | + | + | + | + | + | + | REMS proved a higher capability to diagnose OP compared to DXA in a population with varying severity levels of OA. | + | + | + | + | Large sample, 2 radiologists evaluating the OA grade, DXA and REMS performed by 2 experienced operators. | Exclusively Caucasian patients with a BMI 18.5–39.9 kg/m2. | Joint space narrowing and osteophytes not separately assessed. |
Caffarelli et al., 2022 [41] | + | + | + | + | + | - | A good correlation was detected between BMD obtained by DXA and REMS at LS, FN, TH. | + | + | + | + | Control group; all instrumental investigations performed by 2 operators. | Small sample, cross-sectional. | Comorbidities; therapies |
Caffarelli et al., 2023 [24] | + | + | + | + | + | - | BMD-DXA and REMS had good correlation at all sites; significant association between REMS and TBS. | + | + | + | + | Control group; all DXA and REMS scans carried out by a single operator. | Small sample size. | Lack of evaluation using HR-pQCT. |
Cortet et al., 2021 [21] | + | + | + | + | + | + | The diagnostic effectiveness of REMS was confirmed in a large series of female patients of all ages. | + | + | + | + | Multicentric, broad age range for subgroup analysis, detailed statistics. | Female patients only. | Lack of a follow-up and analysis of the occurrence of incident fragility fractures. |
Di Paola et al., 2019 [15] | + | + | + | + | + | + | REMS- BMD showed a good agreement with DXA-BMD in both LS and hip. | + | + | + | + | Large sample size; first study evaluating the performance of REMS compared to DXA. | The number of REMS reports excluded; population entirely of Caucasian women. | BMD by the Lunar Prodigy densitometers were converted in Hologic equivalent values. |
Fassio et al., 2024 [46] | + | + | + | + | + | - | DXA provided higher BMD values at the lumbar spine than REMS. | + | + | + | + | Addressed the gap represented by CKD patients. | Limited sample, absence of a control group. | Lack of evaluation using HR-pQCT. |
Fassio et al., 2022 [25] | + | + | + | + | - | - | Diagnostic agreement between DXA and REMS was low for LS, moderate for FN and significant for TH. | + | + | + | + | Real-life explorative study; Aortic calcifications studied on DXA images. | Limited sample, absence of a control group. | Only a minority of the patients showed increased serum levels of PTH. |
Ishizu et al., 2024 [35] | + | + | + | + | + | - | REMS may overcome the overestimation of BMD by DXA due to vertebral deformities, abdominal aortic calcification, and DM | + | + | + | + | Homogeneous cohort; | Single-center study, no separation of p-OP/s-OP, only unilateral femoral BMD scans; pattern for prescription of medications | Ossification of the spinal ligaments and presence of osteophytes were not assessed. |
Lalli et al., 2022 [26] | + | + | + | + | + | - | Statistically significantdifferences in the fragility score were obtained between the fractured and non-fractured patients for both populations. | + | - | + | + | Presence of a control group with p-OP, extensive statistical analysis. | Cross-sectional, number of patients with disuse-related OP relatively small. | BMD by the Lunar Prodigy densitometers were converted in Hologic equivalent values. |
Nowakowska-Plaza et al., 2021 [7] | + | + | + | + | + | / | Strong correlations between REMS and DXA results were found in both groups, regardless of the sex, age, and BMI. | + | + | + | + | Rigorous statistical analysis; Sex, age, BMI- subgroup analysis | Relatively small sample size; | Limited discussion on potential confounding factors, such as other comorbidities or lifestyle factors. |
Rolla et al., 2020 [36] | + | + | + | + | + | - | Weak positive correlations between LS, FN DXA and REMS T-scores were observed in the SG. | - | - | + | + | Control group; Subgroup analysis for SG. | Small sample size; lack of patients with active disease in SG; no DXA scans in the CG; no objective assessment of fractures. | Various durations of the disease; time span of therapy; Calcium and vitamin D supplementation not recorded. |
First Author, Publication Year | 1. Focused Issue | 2. Subjects Recruitment | 3. Measurement of Exposure | 4. Measurement of Outcome | 5a. Identification of All Important Confounding Factors | 5b. Assessment of All Confounding Factors Specified | 6a. Complete Follow-Up | 6b. Length of Follow-Up | 7. Results | 8. Precision of Results | 9. Credibility of the Results | 10. Application of Results to Local Population | 11. Compatibility with Other Studies | 12. Implication for Study Practice | Positive Appraisal | Negative Appraisal |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Adami et al., 2020 [22] | + | + | + | + | + | - | + | + | REMS T-score resulted an effective predictor for the risk of incident fragility fractures in a female cohort. | + | + | + | + | + | Age-matched groups; prospective cohort. | Non-specific enrolment criteria, the main risk factors for fragile fractures not considered, other parameters of bone strength except for BMD not considered. |
Pisani et al., 2023 [68] | + | + | + | + | + | - | + | + | FS showed the highest prediction ability for any fracture type in both genders. | + | + | + | + | + | Prospective study, large sample. | Clinical factors predicting risk of fractures not considered. |
Appendix B
First author, Publication Year, Country | Study Design | Sample Size | Participant Description | Mean Age | Gender | Race/Ethnicity | DXA Machine Type; Evaluated Site | REMS/DXA Diagnosis Accuracy LS; FN | p-Value | Confounding Factors | |
---|---|---|---|---|---|---|---|---|---|---|---|
Adami et al., 2020, Italy [22] | Prospective cohort | 1370 (192 SG; 1178 CG) | Women between 30–90 years | Subgroup analysis | F | Caucasians | Hologic;LS; FN | Sensitivity LS; FN | 65.1%; 40.2% for fragility fractures | <0.001 | Vertebral fractures |
Specificity LS; FN | 57.1%;79.9% for fragility fractures | <0.001 | |||||||||
Diagnostic concordance (k=) LS; FN | 0.8; NR (OP dg agreement 84.8%, 84.2%) | <0.001 | |||||||||
Correlation (r=) LS; FN | 0.92 | <0.001 | |||||||||
Adami et al., 2024, Italy [27] | Cross-sectional | 508 LS; 512 FN | Men with a medical prescription for DXA | 58.3 ± 14.5 LS; 58.9 ± 14.4 FN | M | Caucasians | NR; LS, FN | Sensitivity LS; FN | 90.1%; 90.9% | <0.05 | Age, BMI |
Specificity LS; FN | 93.6%; 94.6% | <0.05 | |||||||||
Diagnostic concordance (k=) LS; FN | 0.71; 0.71 | <0.001 | |||||||||
Correlation (r=) LS; FN | 0.91; 0.90 | <0.0001 | |||||||||
Amorim et al., 2021, Brazil [23] | Cross-sectional | 343 | Women 30–80 years old | 59.9 ± 10.2 | F | Asians 8.4%, Caucasians 69.6%, Miscigenated 7.1% | Hologic; LS; FN | Sensitivity LS; FN | 80%; 85% | NR | Age, ethnicity. BMI, comorbidities |
Specificity LS; FN | 94%; 93% | NR | |||||||||
Diagnostic concordance (k=) LS; FN | 0.47; 0.53 | <0.001 | |||||||||
Correlation (r=) LS; FN | 0.75; 0.78 | <0.001 | |||||||||
Caffarelli et al., 2022, Italy [37] | Cross-sectional | 159 (113 OA; 46 VF) | Postmenopausal women with vertebral OA/fractures. | 63.2 ± 11.3 OA; 73.6 ± 18.5 VF | F | Caucasians | Hologic; LS, FN, TH | Sensitivity LS; FN | NR | NR | Age, BMI, menopause |
Specificity LS; FN | NR | NR | |||||||||
Diagnostic concordance (k=) LS; FN | NR (total REMS/DXA OP dg: 35.1%, 9.3%) | <0.05 | |||||||||
Correlation (r=) LS; FN | NR | NR | |||||||||
Caffarelli et al., 2022, Italy [41] | Cross-sectional | 77 (47 SG; 30 CG) | Adolescent and young women, BMI < 18 kg/m2 | 31.7 ± 10.3 (SG); 32.9 ± 9.5 (CG) | F | Caucasians | Hologic; LS, FN, TH | Sensitivity LS; FN | NR | NR | Disease duration |
Specificity LS; FN | NR | NR | |||||||||
Diagnostic concordance (k=) LS; FN | NR | NR | |||||||||
Correlation (r=) LS; FN | 0.64; 0.86 | <0.01 | |||||||||
Caffarelli et al., 2024, Italy [29] | Cross-sectional | 431 | Patients with OA at the LS. | 63.9 ± 11.2 | F, M | Caucasians | Hologic; LS; FN | Sensitivity LS; FN | NR | NR | Osteophytes, space narrowing |
Specificity LS; FN | NR | NR | |||||||||
Diagnostic concordance (k=) LS; FN | NR; (REMS/DXA dg OP: 52%, 34.5%) | p < 0.001 | |||||||||
Correlation (r=) LS; FN | 0.98, 0.85, 0.45 for LS with K-L score of 0/1, 2, 3 | <0.0001 | |||||||||
Caffarelli et al., 2022, Italy [19] | Cross-sectional | 175 (88 SG; 87 CG) | Postmeno-pausal | 70.5 ± 7.6 (SG); 69.2 ± 7.5 (CG) | F | Caucasians | Hologic; LS, FN, TH | Sensitivity LS; FN | NR | NR | T2DM, age, BMI, smoking, postmenopausal status |
Specificity LS; FN | NR | NR | |||||||||
Diagnostic concordance (k=) LS; FN | NR; (total REMS/DXA dg OP: 47%, 28%) | <0.05 | |||||||||
Correlation (r=) LS; FN | NR | NR | |||||||||
Caffarelli et al., 2023, Italy [24] | Cross-sectional | 77 (41 SG; 36 CG) | Subjects with clinical or genetic diagnosis of OI type I, III or IV. | 40.5 ± 18.7 SG, 41.7 ± 16.3 CG | F, M | Caucasians | Hologic; LS; FN | Sensitivity LS; FN | NR | NR | Calcium, vitamin D supplementation |
Specificity LS; FN | NR | NR | |||||||||
Diagnostic concordance (k=) LS; FN | NR | NR | |||||||||
Correlation (r=) LS; FN | 0.35; 0.54 | <0.01 | |||||||||
Cortet et al., 2021, Spain, Belgium, UK, Italy [21] | Cross-sectional | 4307 | Female patients between 30–90 years | Subgroup analysis | F | Caucasians | Hologic; LS; FN | Sensitivity LS; FN | 90.4% overall | <0.05 | Menopause, age |
Specificity LS; FN | 95.5% overall | <0.05 | |||||||||
Diagnostic concordance (k=) LS; FN | 0.83 overall | <0.05 | |||||||||
Correlation (r=) LS; FN | 0.95; 0.93 | <0.05 | |||||||||
Di Paola et al., 2019 [15] | Cross-sectional | 1914 (1553 LS; 1637 FN) | Postmenopausal women | 60.7 ± 5.4 LS; 60.9 ± 5.5 FN | F | Caucasians | Hologic or Lunar GE; LS; FN | Sensitivity LS; FN | 91.7%; 91.5% | <0.05 | Menopause, age |
Specificity LS; FN | 92%; 91.8% | <0.05 | |||||||||
Diagnostic concordance (k=) LS; FN | 0.824; 0.794 | <0.001 | |||||||||
Correlation (r=) LS; FN | 0.94; 0.93 | <0.001 | |||||||||
Fassio et al., 2024 [46] | Cross-sectional | 40 | Subjects underwent kidney transplantation | 60.43 ± 9.8 | F, M | Caucasians | GEN Lunar; LS; FN | Sensitivity LS; FN | NR | NR | Fractures were not objectively assessed |
Specificity LS; FN | NR | NR | |||||||||
Diagnostic concordance (k=) LS; FN | NR | NR | |||||||||
Correlation (r=) LS; FN | 0.4; 0.7 | <0.01; <0.0001 | |||||||||
Fassio et al., 2022, Italy [25] | Cross-sectional | 41 | Patients undergoing peritoneal dialysis | 61.1 ± 13.7 | F, M | Caucasians | GE Lunar; LS; FN | Sensitivity LS; FN | NR | NR | Aortic calcifications |
Specificity LS; FN | NR | NR | |||||||||
Diagnostic concordance (k=) LS; FN | 0.321; 0.445 | 0.026; <0.01 | |||||||||
Correlation (r=) LS; FN | NR | NR | |||||||||
Ishizu et al., 2023, Japan [35] | Cross-sectional | 70 | Patients whoreceived osteoporosis treatment and BMD assessment byDXA. | 78.39 ± 9.50 | F, M | Asians | GE Lunar; LS, FN | Sensitivity LS; FN | NR | NR | Age, comorbidities vertebral fractures, hip OA, aortic calcifications |
Specificity LS; FN | NR | NR | |||||||||
Diagnostic concordance (k=) LS; FN | NR; NR (total dg OP REMS/DXA: 90%; 72.9%) | NR | |||||||||
Correlation (r=) LS; FN | 0.471; 0.361 | <0.001 | |||||||||
Lalli et al., 2022, Italy [26] | Cross-sectional | 175 (140 p-OP; 35 d-r OP) | Patients recruited from the rehabilitation units of 5 hospitals. | 74 p-OP; 57 d-r OP | F, M | Caucasians | Hologic or GE Lunar; FN, TH | Sensitivity LS; FN | NR | NR | Age, sex, BMI, major osteoporotic fractures |
Specificity LS; FN | NR | NR | |||||||||
Diagnostic concordance (k=) LS; FN | NR; 0.31 for p-OP; −0.04 for d-r OP | 0.0001 | |||||||||
Correlation (r=) LS; FN | NR; NR | NR | |||||||||
Nowakowska-Plaza et al., 2021, Poland [7] | Cross-sectional | 116 | Men and women with medical indication for DXA. | Range 40–87 years | F, M | Caucasians | Hologic; LS; FN | Sensitivity LS; FN | NR | NR | Age, Menopause |
Specificity LS; FN | NR | NR | |||||||||
Diagnostic concordance (k=) LS; FN | 0.611; 0.667 | <0.05 | |||||||||
Correlation (r=) LS; FN | 0.867; 0.871 | <0.001 | |||||||||
Pisani et al., 2023, Italy [68] | Prospective cohort | 1804 LS; 1679 FN | Patients had no significant walking impairments. | Subgroup analysis | F, M | Caucasians | NR; LS, FN | Sensitivity LS; FN | 72.4%; 70% for FS in F; 71.6%, 72.2% for FS in M | <0.001 | Age, BMI, Menopause, comorbidities |
Specificity LS; FN | 77.9%; 73.2% for FS in F; 79%; 76.1% for FS in M | <0.001 | |||||||||
Diagnostic concordance (k=) LS; FN | NR | NR | |||||||||
Correlation (r=) LS; FN | NR | NR | |||||||||
Rolla et al., 2020, Poland [36] | Cross-sectional | 57 (33 SG; 24 CG) | Well-controlled and surgery-cured acromegaly | 59.1 ± 9.8 (SG); 55.5 (CG) | F, M | Caucasians | Hologic; LS, FN | Sensitivity LS; FN | NR | NR | Acromegaly, DM, hypogonadism, age, menopause |
Specificity LS; FN | NR | NR | |||||||||
Diagnostic concordance (k=) LS; FN | NR | NR | |||||||||
Correlation (r=) LS; FN | 0.482; 0.431 | 0.011; 0.018 |
References
- Consensus development conference: Diagnosis, prophylaxis, and treatment of osteoporosis. Am. J. Med. 1993, 94, 646–650. [CrossRef] [PubMed]
- Epidemiology | International Osteoporosis Foundation. Available online: https://www.osteoporosis.foundation/health-professionals/about-osteoporosis/epidemiology (accessed on 20 May 2024).
- Borgström, F.; Karlsson, L.; Ortsäter, G.; Norton, N.; Halbout, P.; Cooper, C.; Lorentzon, M.; McCloskey, E.; Harvey, N.; Javaid, M.; et al. Fragility fractures in Europe: Burden, management and opportunities. Arch. Osteoporos. 2020, 15, 59. [Google Scholar] [CrossRef] [PubMed]
- Carlson, B.C.; Robinson, W.A.; Wanderman, N.R.; Sebastian, A.S.; Nassr, A.; Freedman, B.A.; Anderson, P. A Review and Clinical Perspective of the Impact of Osteoporosis on the Spine. Geriatr. Orthop. Surg. Rehabil. 2019, 10, 1–8. [Google Scholar] [CrossRef]
- Johnell, O.; Kanis, J.A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int. 2006, 17, 1726–1733. [Google Scholar] [CrossRef] [PubMed]
- Potcovaru, C.G.; Salmen, T.; Bîgu, D.; Săndulescu, M.I.; Filip, P.V.; Diaconu, L.S.; Pop, C.; Ciobanu, I.; Cinteză, D.; Berteanu, M. Assessing the Effectiveness of Rehabilitation Interventions through the World Health Organization Disability Assessment Schedule 2.0 on Disability—A Systematic Review. J. Clin. Med. 2024, 13, 1252. [Google Scholar] [CrossRef]
- Nowakowska-Płaza, A.; Wroński, J.; Płaza, M.; Sudoł-Szopińska, I.; Głuszko, P. Diagnostic agreement between radiofrequency echographic multispectrometry and dual-energy X-ray absorptiometry in the assessment of osteoporosis in a Polish group of patients. Pol. Arch. Intern. Med. 2021, 131, 840–847. [Google Scholar] [CrossRef] [PubMed]
- Fardellone, P.; Barnieh, L.; Quignot, N.; Gusto, G.; Khachatryan, A.; Kahangire, D.; Worth, G.; O’Kelly, J.; Desamericq, G. PMS27 Clinical and Economic Burden Following Osteoporosis-Related Fracture(S) in France. Value Health 2020, 23, S597. [Google Scholar] [CrossRef]
- Krugh, M.; Langaker, M.D. Dual-Energy X-Ray Absorptiometry. In Encyclopedia of Sports Medicine; Sage Publications: Thousand Oaks, CA, USA, 2024. [Google Scholar] [CrossRef]
- Fuggle, N.R.; Curtis, E.M.; Ward, K.A.; Harvey, N.C.; Dennison, E.M.; Cooper, C. Fracture prediction, imaging and screening in osteoporosis. Nat. Rev. Endocrinol. 2019, 15, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.A.; Cooper, C.; Rizzoli, R.; Reginster, J.Y. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 2018, 30, 3–44. [Google Scholar] [CrossRef] [PubMed]
- AUDITS. 2001—Osteoporosis in the European Community—A Call to Action | International Osteoporosis Foundation. Available online: https://www.osteoporosis.foundation/educational-hub/files/audits-2001-osteoporosis-european-community-call-action (accessed on 5 January 2025).
- D’Elia, G.; Caracchini, G.; Cavalli, L.; Innocenti, P. Bone fragility and imaging techniques. Clin. Cases Miner. Bone Metab. 2009, 6, 234. [Google Scholar] [PubMed]
- Rayudu, N.M.; Subburaj, K.; Mei, K.; Dieckmeyer, M.; Kirschke, J.S.; Noël, P.B.; Baum, T. Finite Element Analysis-Based Vertebral Bone Strength Prediction Using MDCT Data: How Low Can We Go? Front. Endocrinol. 2020, 11, 442. [Google Scholar] [CrossRef] [PubMed]
- Di Paola, M.; Gatti, D.; Viapiana, O.; Cianferotti, L.; Cavalli, L.; Caffarelli, C.; Conversano, F.; Quarta, E.; Pisani, P.; Girasole, G.; et al. Radiofrequency echographic multispectrometry compared with dual X-ray absorptiometry for osteoporosis diagnosis on lumbar spine and femoral neck. Osteoporos. Int. 2019, 30, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Fuggle, N.R.; Reginster, J.Y.; Al-Daghri, N.; Bruyere, O.; Burlet, N.; Campusano, C.; Cooper, C.; Perez, A.; Halbout, P.; Ghi, T.; et al. Radiofrequency echographic multi spectrometry (REMS) in the diagnosis and management of osteoporosis: State of the art. Aging Clin. Exp. Res. 2024, 36, 135. [Google Scholar] [CrossRef] [PubMed]
- Diez-Perez, A.; Brandi, M.L.; Al-Daghri, N.; Branco, J.C.; Bruyère, O.; Cavalli, L.; Cooper, C.; Cortet, B.; Dawson-Hughes, B.; Dimai, H.; et al. Radiofrequency echographic multi-spectrometry for the in-vivo assessment of bone strength: State of the art—Outcomes of an expert consensus meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Aging Clin. Exp. Res. 2019, 31, 1375–1389. [Google Scholar] [CrossRef] [PubMed]
- Al Refaie, A.; Baldassini, L.; Mondillo, C.; Giglio, E.; De Vita, M.; Tomai Pitinca, M.D.; Gonnelli, C.; Caffarelli, C. Radiofrequency Echographic Multi Spectrometry (R.E.M.S.): New Frontiers for Ultrasound Use in the Assessment of Bone Status—A Current Picture. Diagnostics 2023, 13, 1666. [Google Scholar] [CrossRef]
- Caffarelli, C.; Tomai Pitinca, M.D.; Al Refaie, A.; Ceccarelli, E.; Gonnelli, S. Ability of radiofrequency echographic multispectrometry to identify osteoporosis status in elderly women with type 2 diabetes. Aging Clin. Exp. Res. 2021, 34, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Cortet, B.; Dennison, E.; Diez-Perez, A.; Locquet, M.; Muratore, M.; Nogués, X.; Ovejero Crespo, D.; Quarta, E.; Brandi, M. Radiofrequency Echographic Multi Spectrometry (REMS) for the diagnosis of osteoporosis in a European multicenter clinical context. Bone 2020, 143, 115786. [Google Scholar] [CrossRef]
- Adami, G.; Arioli, G.; Bianchi, G.; Brandi, M.L.; Caffarelli, C.; Cianferotti, L.; Gatti, D.; Girasole, G.; Gonnelli, S.; Manfredini, M.; et al. Radiofrequency echographic multi spectrometry for the prediction of incident fragility fractures: A 5-year follow-up study. Bone 2020, 134, 115297. [Google Scholar] [CrossRef]
- Amorim, D.M.R.; Sakane, E.N.; Maeda, S.S.; Lazaretti Castro, M. New technology REMS for bone evaluation compared to DXA in adult women for the osteoporosis diagnosis: A real-life experience. Arch. Osteoporos. 2021, 16, 175. [Google Scholar] [CrossRef] [PubMed]
- Caffarelli, C.; Al Refaie, A.; Mondillo, C.; Versienti, A.; Baldassini, L.; De Vita, M.; Tomai Pitinca, M.; Gonelli, S. Radiofrequency Echographic Multispectrometry (REMS): A New Option in the Assessment Bone Status in Adults with Osteogenesis Imperfecta. J. Imaging 2023, 9, 210. [Google Scholar] [CrossRef]
- Fassio, A.; Andreola, S.; Gatti, D.; Bianco, B.; Gatti, M.; Gambaro, G.; Rossini, M.; Viapiana, O.; Negrelli, R.; Adami, G. Radiofrequency echographic multi-spectrometry and DXA for the evaluation of bone mineral density in a peritoneal dialysis setting. Aging Clin. Exp. Res. 2022, 35, 185–192. [Google Scholar] [CrossRef]
- Lalli, P.; Mautino, C.; Busso, C.; Bardesono, F.; Di Monaco, M.; Lippi, L.; Invernizzi, M.; Minetto, M. Reproducibility and Accuracy of the Radiofrequency Echographic Multi-Spectrometry for Femoral Mineral Density Estimation and Discriminative Power of the Femoral Fragility Score in Patients with Primary and Disuse-Related Osteoporosis. J. Clin. Med. 2022, 11, 3761. [Google Scholar] [CrossRef]
- Adami, G.; Brandi Maria, L.; Caffarelli, C.; Casciaro, E.; Conversano, F.; Di Paola, M.; Fassio, A.; Gatti, D.; Giusti, F.; Gonelli, S.; et al. Bone health status evaluation in men by means of REMS technology. Aging Clin. Exp. Res. 2024, 36, 74. [Google Scholar] [CrossRef]
- El Maghraoui, A.; Do Santos Zounon, A.A.; Jroundi, I.; Nouijai, A.; Ghazi, M.; Achemlal, L.; Bezza, A.; Tazi, M.; Abouqual, R. Reproducibility of bone mineral density measurements using dual X-ray absorptiometry in daily clinical practice. Osteoporos. Int. 2005, 16, 1742–1748. [Google Scholar] [CrossRef]
- Caffarelli, C.; Al Refaie, A.; Mondillo, C.; Manasse, G.; Versienti, A.; Tomai Pitinca, M.D.; Conticini, E.; Frediani, B.; Gonelli, S. The Advantages of Radiofrequency Echographic MultiSpectrometry in the Evaluation of Bone Mineral Density in a Population with Osteoarthritis at the Lumbar Spine. Diagnostics 2024, 14, 523. [Google Scholar] [CrossRef] [PubMed]
- Messina, C.; Gitto, S.; Colombo, R.; Fusco, S.; Guagliardo, G.; Piazza, M.; Poji, J.; Albano, D.; Sconfienza, L. Short-Term Precision and Repeatability of Radiofrequency Echographic Multi Spectrometry (REMS) on Lumbar Spine and Proximal Femur: An In Vivo Study. J. Imaging 2023, 9, 118. [Google Scholar] [CrossRef] [PubMed]
- Greco, A.; Pisani, P.; Conversano, F.; Soloperto, G.; Renna, M.D.; Muratore, M.; Casciaro, S. Ultrasound Fragility Score: An innovative approach for the assessment of bone fragility. Measurement 2017, 101, 236–242. [Google Scholar] [CrossRef]
- Salari, N.; Ghasemi, H.; Mohammadi, L.; Behzadi, M.; Rabieenia, E.; Shohaimi, S.; Mohammadi, M. The global prevalence of osteoporosis in the world: A comprehensive systematic review and meta-analysis. J. Orthop. Surg. Res. 2021, 16, 609. [Google Scholar] [CrossRef]
- Vescini, F.; Chiodini, I.; Falchetti, A.; Palermo, A.; Salcuni, A.S.; Bonadonna, S.; De Geronimo, V.; Cesareo, R.; Giovanelli, L.; Brigo, M.; et al. Management of Osteoporosis in Men: A Narrative Review. Int. J. Mol. Sci. 2021, 22, 13640. [Google Scholar] [CrossRef] [PubMed]
- Cortet, B.; Dennison, E.; Diez-Perez, A.; Locquet, M.; Muratore, M.; Ovejero Crespo, D.; Nogués, X.; Brandi, M. POS1111 DIAGNOSIS OF OSTEOPOROSIS USING RADIOFREQUENCY ECHOGRAPHIC MULTI SPECTROMETRY (REMS) AT THE LUMBAR SPINE IN PATIENTS WITH DIFFERENT BODY MASS INDEX. Ann. Rheum. Dis. 2021, 80 (Suppl. S1), 835–836. [Google Scholar] [CrossRef]
- Ishizu, H.; Shimizu, T.; Sakamoto, Y.; Toyama, F.; Kitahara, K.; Takayama, H.; Miyamoto, M.; Iwasaki, N. Radiofrequency Echographic Multispectrometry (REMS) can Overcome the Effects of Structural Internal Artifacts and Evaluate Bone Fragility Accurately. Calcif. Tissue Int. 2023, 114, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Rolla, M.; Halupczok-Zyla, J.; Jawiarczyk-Przybylowska, A.; Bolanowski, M. Bone densitometry by radiofrequency echographic multi-spectrometry (REMS) in acromegaly patients. Endokrynol. Polska 2020, 71, 524–531. [Google Scholar] [CrossRef]
- Caffarelli, C.; Tomai Pitinca, M.D.; Al Refaie, A.; De Vita, M.; Catapano, S.; Gonnelli, S. Could radiofrequency echographic multispectrometry (REMS) overcome the overestimation in BMD by dual-energy X-ray absorptiometry (DXA) at the lumbar spine? BMC Musculoskelet. Disord. 2022, 23, 469. [Google Scholar] [CrossRef] [PubMed]
- Shevroja, E.; Reginster, J.Y.; Lamy, O.; Al-Daghri, N.; Chandran, M.; Demoux-Baiada, A.L.; Kohlmeier, L.; Lecart, M.; Messina, D.; Camargos, B.; et al. Update on the clinical use of trabecular bone score (TBS) in the management of osteoporosis: Results of an expert group meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO), and the International Osteoporosis Foundation (IOF) under the auspices of WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging. Osteoporos. Int. 2023, 34, 1501–1529. [Google Scholar] [CrossRef]
- Bauer, D.C. FRAX, Falls, and Fracture Prediction: Predicting the Future: Comment on “‘Timed Up and Go’ Test and Bone Mineral Density Measurement for Fracture Prediction”. Arch. Intern. Med. 2011, 171, 1661–1662. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Wang, L.; Yu, L.; Huang, W. Pregnancy- and lactation-associated osteoporosis with vertebral fractures: A systematic review. BMC Musculoskelet. Disord. 2021, 22, 926. [Google Scholar] [CrossRef]
- Caffarelli, C.; Al Refaie, A.; De Vita, M.; Tomai Pitinca, M.D.; Goracci, A.; Fagiolini, A.; Gonnelli, S. Radiofrequency echographic multispectrometry (REMS): An innovative technique for the assessment of bone status in young women with anorexia nervosa. Eat. Weight. Disord. 2022, 27, 3207–3213. [Google Scholar] [CrossRef] [PubMed]
- Faje, A.T.; Karim, L.; Taylor, A.; Lee, H.; Miller, K.K.; Mendes, N.; Meenaghan, E.; Goldstein, M.; Bouxsein, M.; Misra, M.; et al. Adolescent Girls With Anorexia Nervosa Have Impaired Cortical and Trabecular Microarchitecture and Lower Estimated Bone Strength at the Distal Radius. J. Clin. Endocrinol. Metab. 2013, 98, 1923–1929. [Google Scholar] [CrossRef] [PubMed]
- Misra, M.; Klibanski, A. Endocrine consequences of anorexia nervosa. Lancet Diabetes Endocrinol. 2014, 2, 581–592. [Google Scholar] [CrossRef]
- Tentori, F.; McCullough, K.; Kilpatrick, R.D.; Bradbury, B.D.; Robinson, B.M.; Kerr, P.G.; Pisoni, P. High rates of death and hospitalization follow bone fracture among hemodialysis patients. Kidney Int. 2014, 85, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Kauppila, L.I.; Polak, J.F.; Cupples, L.A.; Hannan, M.T.; Kiel, D.P.; Wilson, P.W.F. New indices to classify location, severity and progression of calcific lesions in the abdominal aorta: A 25-year follow-up study. Atherosclerosis 1997, 132, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Fassio, A.; Adami, G.; Andreola, S.; Ferraro, P.M.; Pisani, P.; Lombardi, F.A.; Viapiana, O.; Rossini, M.; Calletti, C.; Gambaro, G.; et al. Radiofrequency Echographic Multi Spectrometry (REMS) Technology for Bone Health Status Evaluation in Kidney Transplant Recipients. Diagnostics 2024, 14, 2106. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Cooper, C.; Reginster, J.Y.; Hochberg, M.; Branco, J.; Bruyère, O.; Chapurlat, R.; Al-Daghri, N.; Dennison, E.; Herrero-Beaumont, G.; et al. Type 2 diabetes mellitus and osteoarthritis. Semin Arthritis Rheum. 2019, 49, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Carbonare, L.D.; Micheletti, V.; Cosaro, E.; Valenti, M.T.; Mottes, M.; Francia, G.; Davi, M. Bone histomorphometry in acromegaly patients with fragility vertebral fractures. Pituitary 2018, 21, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Tuzcu, S.; Durmaz, A.; Carlıoğlu, A.; Demircan, Z.; Tuzcu, A.; Beyaz, C.; Tay, A. The effects of high serum growth hormone and IGF-1 levels on bone mineral density in acromegaly. Z. Rheumatol. 2017, 76, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Gatti, D.; Colapietro, F.; Fracassi, E.; Sartori, E.; Antoniazzi, F.; Braga, V.; Rossini, M.; Adami, S. The Volumetric Bone Density and Cortical Thickness in Adult Patients Affected by Osteogenesis Imperfecta. J. Clin. Densitom. 2003, 6, 173–177. [Google Scholar] [CrossRef]
- Antonescu, O.R.; Silisteanu, S.C.; Venter, A.C.; Racheriu, M.; Antonescu, I.E.; Nemes-Nagy, E. Comparative analysis of paraclinical parameters in the as-sessment of osteoporosis: An integrative approach. Balneo PRM Res. J. 2024, 15, 756. [Google Scholar] [CrossRef]
- Aurelian, S.M.; Oancea, C.; Aurelian, J.; Mihalache, R.; Iulia Vlădulescu-Trandafir, A.; Capisizu, A.; Chirca, A.; Zamfirescu, A. Supplementary Treatment for Alleviating Pain and Enhancing Functional Ability in Geriatric Patients with Osteoarthritis. Healthcare 2025, 13, 127. [Google Scholar] [CrossRef]
- Kasher, M.; Williams, F.M.K.; Freidin, M.B.; Cherny, S.; Livshits, G. An in-depth study of the associations between osteoarthritis- and osteoporosis-related phenotypes at different skeletal locations. Osteoporos. Int. 2020, 31, 2197–2208. [Google Scholar] [CrossRef] [PubMed]
- Khokhar, K.; Conaghan, P.G. Bone in osteoarthritis: Imaging and interventions. Curr. Opin. Rheumatol. 2022, 34, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Tsang, J.F.; Leslie, W.D. Exclusion of Focal Vertebral Artifacts From Spine Bone Densitometry and Fracture Prediction: A Comparison of Expert Physicians, Three Computer Algorithms, and the Minimum Vertebra. J. Bone Miner. Res. 2007, 22, 789–798. [Google Scholar] [CrossRef]
- Hans, D.; Métrailler, A.; Rodriguez, E.G.; Lamy, O.; Shevroja, E. Quantitative Ultrasound (QUS) in the Management of Osteoporosis and Assessment of Fracture Risk: An Update. Adv. Exp. Med. Biol. 2022, 1364, 7–34. [Google Scholar] [CrossRef]
- Salari, P.; Abdollahi, M. The Influence of Pregnancy and Lactation on Maternal Bone Health: A Systematic Review. J. Family Reprod. Health 2014, 8, 135. [Google Scholar]
- Kovalev, V.; Fang, W.H.; Pak, T.; French, M. Pregnancy-Associated Osteoporosis: A Literature Review. Clin. Rev. Bone Miner Metab. 2023, 21, 14–20. [Google Scholar] [CrossRef]
- Ramirez Zegarra, R.; Degennaro, V.; Brandi, M.L.; Cagninelli, G.; Casciaro, S.; Celora, G.; Conversano, F.; Lombardi, F.; Pisani, P.; Ghi, T. Longitudinal changes of the femoral bone mineral density from first to third trimester of pregnancy: Bone health assessment by means of non-ionizing REMS technology. Aging Clin. Exp. Res. 2024, 36, 31. [Google Scholar] [CrossRef] [PubMed]
- Salmen, B.M.; Pietrosel, V.A.; Durdu, C.E.; Salmen, T.; Diaconu, C.T.; Bica, I.C.; Potcovaru, C.; Gherghiceanu, F.; Stocia, R.; Pantea Stoian, A. Evaluating the Adipose Tissue Depth as a Predictor Factor for Gestational Diabetes in Later Pregnancy—A Systematic Review. Biomedicines 2023, 11, 1492. [Google Scholar] [CrossRef] [PubMed]
- Degennaro, V.A.; Brandi, M.L.; Cagninelli, G.; Casciaro, S.; Ciardo, D.; Conversano, F.; Di Pasquo, E.; Gonnelli, S.; Lombardi, F.; Pisani, P.; et al. First assessment of bone mineral density in healthy pregnant women by means of Radiofrequency Echographic Multi Spectrometry (REMS) technology. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 263, 44–49. [Google Scholar] [CrossRef]
- Adami, G.; Fassio, A.; Rossini, M.; Caimmi, C.; Giollo, A.; Orsolini, G.; Viapiana, O.; Gatti, D. Osteoporosis in Rheumatic Diseases. Int. J. Mol. Sci. 2019, 20, 5867. [Google Scholar] [CrossRef] [PubMed]
- Bojincă, V.; Popescu, C.; Decianu, R.; Dobrescu, A.; Bălănescu, Ș.; Bălănescu, A.; Bojincă, M. A novel quantitative method for estimating bone mineral density using B-mode ultrasound and radiofrequency signals-a pilot study on patients with rheumatoid arthritis. Exp. Ther. Med. 2019, 18, 1661–1668. [Google Scholar] [CrossRef]
- Fassio, A.; Pollastri, F.; Benini, C.; Galvagni, I.; Dartizio, C.; Gatti, D.; Rossini, M.; Viapiana, O.; Adami, G. POS0296 RADIOFREQUENCY ECHOGRAPHIC MULTI-SPECTROMETRY (REMS) AND DXA FOR THE EVALUATION OF BONE MINERAL DENSITY IN AXIAL SPONDYLOARTHRITIS. Ann. Rheum. Dis. 2024, 83, 470. [Google Scholar] [CrossRef]
- Coaccioli, S.; Fatati, G.; Di Cato, L.; Marioli, D.; Patucchi, E.; Pizzuti, C.; Ponteggia, M.; Puxeddu, A. Diffuse idiopathic skeletal hyperostosis in diabetes mellitus, impaired glucose tolerance and obesity. Panminerva Medica 2000, 42, 247–251. [Google Scholar]
- Reurean-Pintilei, D.; Potcovaru, C.G.; Salmen, T.; Mititelu-Tartau, L.; Cinteză, D.; Lazăr, S.; Pantea Stoian, A.; Timar, R.; Timar, B. Assessment of Cardiovascular Risk Categories and Achievement of Therapeutic Targets in European Patients with Type 2 Diabetes. J. Clin. Med. 2024, 13, 2196. [Google Scholar] [CrossRef] [PubMed]
- Harper, E.; Forde, H.; Davenport, C.; Rochfort, K.D.; Smith, D.; Cummins, P.M. Vascular calcification in type-2 diabetes and cardiovascular disease: Integrative roles for OPG, RANKL and TRAIL. Vascul. Pharmacol. 2016, 82, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Pisani, P.; Conversano, F.; Muratore, M.; Adami, G.; Brandi, M.L.; Caffarelli, C.; Casciaro, E.; Di Paola, M.; Franchini, R.; Gatti, D.; et al. Fragility Score: A REMS-based indicator for the prediction of incident fragility fractures at 5 years. Aging Clin. Exp. Res. 2023, 35, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Abdula, I.; Ungureanu, A.E.; Vîlcea, L.C.; Stanciu, L.E.; Azis, O.; Iliescu, M.G. Trabecular bone score—The newest diagnostic tool for patients with osteoporosis and osteopenia from different pathologies. Balneo PRM Res. J. 2023, 14, 625. [Google Scholar] [CrossRef]
- Borsoi, L.; Armeni, P.; Brandi, M.L. Cost-minimization analysis to support the HTA of Radiofrequency Echographic Multi Spectrometry (REMS) in the diagnosis of osteoporosis. Glob. Reg. Health Technol. Assess. 2023, 10, 1–11. [Google Scholar] [CrossRef]
- Reginster, J.Y.; Silverman, S.L.; Alokail, M.; Al-Daghri, N.; Hiligsmann, M. Cost-effectiveness of radiofrequency echographic multi-spectrometry for the diagnosis of osteoporosis in the United States. JBMR Plus 2024, 9, ziae138. [Google Scholar] [CrossRef]
- Leib, E. Nomenclature and Decimal Places in Bone Densitometry. J. Clin. Densitom. 2004, 7, 45–49. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Icătoiu, E.; Vlădulescu-Trandafir, A.-I.; Groșeanu, L.-M.; Berghea, F.; Cobilinschi, C.-O.; Potcovaru, C.-G.; Bălănescu, A.-R.; Bojincă, V.-C. Radiofrequency Echographic Multi Spectrometry—A Novel Tool in the Diagnosis of Osteoporosis and Prediction of Fragility Fractures: A Systematic Review. Diagnostics 2025, 15, 555. https://doi.org/10.3390/diagnostics15050555
Icătoiu E, Vlădulescu-Trandafir A-I, Groșeanu L-M, Berghea F, Cobilinschi C-O, Potcovaru C-G, Bălănescu A-R, Bojincă V-C. Radiofrequency Echographic Multi Spectrometry—A Novel Tool in the Diagnosis of Osteoporosis and Prediction of Fragility Fractures: A Systematic Review. Diagnostics. 2025; 15(5):555. https://doi.org/10.3390/diagnostics15050555
Chicago/Turabian StyleIcătoiu, Elena, Andreea-Iulia Vlădulescu-Trandafir, Laura-Maria Groșeanu, Florian Berghea, Claudia-Oana Cobilinschi, Claudia-Gabriela Potcovaru, Andra-Rodica Bălănescu, and Violeta-Claudia Bojincă. 2025. "Radiofrequency Echographic Multi Spectrometry—A Novel Tool in the Diagnosis of Osteoporosis and Prediction of Fragility Fractures: A Systematic Review" Diagnostics 15, no. 5: 555. https://doi.org/10.3390/diagnostics15050555
APA StyleIcătoiu, E., Vlădulescu-Trandafir, A.-I., Groșeanu, L.-M., Berghea, F., Cobilinschi, C.-O., Potcovaru, C.-G., Bălănescu, A.-R., & Bojincă, V.-C. (2025). Radiofrequency Echographic Multi Spectrometry—A Novel Tool in the Diagnosis of Osteoporosis and Prediction of Fragility Fractures: A Systematic Review. Diagnostics, 15(5), 555. https://doi.org/10.3390/diagnostics15050555