Evaluation of AI-Powered Routine Screening of Clinically Acquired cMRIs for Incidental Intracranial Aneurysms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort and Data Acquisition
2.2. Patient Consultation in Case of Additionally Detected Findings
2.3. Artificial Intelligence Algorithm
2.4. Statistical Workup
3. Results
3.1. Cohort Characteristics
3.2. AI Algorithm Performance
3.3. Clinical Benefit of an AI-Based Aneurysm Screening
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACA | anterior cerebral artery |
AchA | anterior choroidal artery |
Acom | anterior communicating artery |
AI | artificial intelligence |
AI-positive | MRIs with AI detections |
AI-negative | MRIs without AI detection |
cMRI | cranial magnetic resonance imaging |
DSA | digital subtraction angiography |
FPR | false positive rate |
FU MRI | follow-up magnetic resonance imaging |
ICA | internal carotid artery |
MCA | middle cerebral artery |
NNS | number needed to screen |
NPV | negative predictive value |
PACS | picture archiving communications system |
PCA | posterior cerebral artery |
Pcom | posterior communicating artery |
PICA | posterior cerebral artery |
PPV | positive predictive value |
RFS | reference standard |
SAH | subarachnoid hemorrhage |
SUCA | superior cerebellar artery |
TOF-MRA | time-of-flight magnetic resonance angiography |
yo | years old |
References
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Son, J.; Shin, J.Y.; Kim, H.D.; Jung, K.-H.; Park, K.H.; Park, S.J. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images. Ophthalmology 2020, 127, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, J.; Huemmer, C.; Preuhs, A.; Buizza, G.; Hoppe, B.F.; Dinkel, J.; Koliogiannis, V.; Fink, N.; Goller, S.S.; Schwarze, V.; et al. Nonradiology Health-Care Professionals Significantly Benefit From AI Assistance in Emergency-Related Chest Radiography Interpretation. Chest 2024, 166, 157–170. [Google Scholar] [CrossRef]
- Rudolph, J.; Huemmer, C.; Ghesu, F.-C.; Mansoor, A.; Preuhs, A.; Fieselmann, A.; Fink, N.; Dinkel, J.; Koliogiannis, V.; Schwarze, V.; et al. Artificial Intelligence in Chest Radiography Reporting Accuracy: Added Clinical Value in the Emergency Unit Setting Without 24/7 Radiology Coverage. Invest. Radiol. 2022, 57, 90–98. [Google Scholar] [CrossRef]
- Milea, D.; Najjar, R.P.; Jiang, Z.; Ting, D.; Vasseneix, C.; Xu, X.; Aghsaei Fard, M.; Fonseca, P.; Vanikieti, K.; Lagrèze, W.A.; et al. Artificial Intelligence to Detect Papilledema from Ocular Fundus Photographs. N. Engl. J. Med. 2020, 382, 1687–1695. [Google Scholar] [CrossRef]
- Davenport, T.; Kalakota, R. The Potential for Artificial Intelligence in Healthcare. Future Healthc. J. 2019, 6, 94–98. [Google Scholar] [CrossRef]
- Pashkov, V.M.; Harkusha, A.O.; Harkusha, Y.O. Artificial intelligence in medical practice: Regulative issues and perspectives. Wiadomosci Lek. Wars. Pol. 1960 2020, 73, 2722–2727. [Google Scholar] [CrossRef]
- Gama, F.; Tyskbo, D.; Nygren, J.; Barlow, J.; Reed, J.; Svedberg, P. Implementation Frameworks for Artificial Intelligence Translation Into Health Care Practice: Scoping Review. J. Med. Internet Res. 2022, 24, e32215. [Google Scholar] [CrossRef]
- Hoppe, B.F.; Rueckel, J.; Dikhtyar, Y.; Heimer, M.; Fink, N.; Sabel, B.O.; Ricke, J.; Rudolph, J.; Cyran, C.C. Implementing Artificial Intelligence for Emergency Radiology Impacts Physicians’ Knowledge and Perception: A Prospective Pre- and Post-Analysis. Invest. Radiol. 2024, 59, 404–412. [Google Scholar] [CrossRef]
- Oser, D.G.; Henson, B.R.; Shiang, E.Y.; Finkelman, M.D.; Amato, R.B. Incidental Findings in Small Field of View Cone-Beam Computed Tomography Scans. J. Endod. 2017, 43, 901–904. [Google Scholar] [CrossRef]
- Vernooij, M.W.; Ikram, M.A.; Tanghe, H.L.; Vincent, A.J.P.E.; Hofman, A.; Krestin, G.P.; Niessen, W.J.; Breteler, M.M.B.; Van Der Lugt, A. Incidental Findings on Brain MRI in the General Population. N. Engl. J. Med. 2007, 357, 1821–1828. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.D.; Broderick, J.P. Unruptured Intracranial Aneurysms: Epidemiology, Natural History, Management Options, and Familial Screening. Lancet Neurol. 2014, 13, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-H.; Chen, S.-W.; Li, Y.-D.; Chen, Y.-C.; Cheng, Y.-S.; Hu, D.-J.; Tan, H.-Q.; Wu, Q.; Wang, W.; Sun, Z.-K.; et al. Prevalence of Unruptured Cerebral Aneurysms in Chinese Adults Aged 35 to 75 Years: A Cross-Sectional Study. Ann. Intern. Med. 2013, 159, 514. [Google Scholar] [CrossRef] [PubMed]
- Vlak, M.H.; Algra, A.; Brandenburg, R.; Rinkel, G.J. Prevalence of Unruptured Intracranial Aneurysms, with Emphasis on Sex, Age, Comorbidity, Country, and Time Period: A Systematic Review and Meta-Analysis. Lancet Neurol. 2011, 10, 626–636. [Google Scholar] [CrossRef]
- Ajiboye, N.; Chalouhi, N.; Starke, R.M.; Zanaty, M.; Bell, R. Unruptured Cerebral Aneurysms: Evaluation and Management. Sci. World J. 2015, 2015, 954954. [Google Scholar] [CrossRef]
- Nieuwkamp, D.J.; Setz, L.E.; Algra, A.; Linn, F.H.; De Rooij, N.K.; Rinkel, G.J. Changes in Case Fatality of Aneurysmal Subarachnoid Haemorrhage over Time, According to Age, Sex, and Region: A Meta-Analysis. Lancet Neurol. 2009, 8, 635–642. [Google Scholar] [CrossRef]
- International Study of Unruptured Intracranial Aneurysms Investigators. Unruptured Intracranial Aneurysms—Risk of Rupture and Risks of Surgical Intervention. N. Engl. J. Med. 1998, 339, 1725–1733. [Google Scholar] [CrossRef]
- Molyneux, A.J.; Birks, J.; Clarke, A.; Sneade, M.; Kerr, R.S.C. The Durability of Endovascular Coiling versus Neurosurgical Clipping of Ruptured Cerebral Aneurysms: 18 Year Follow-up of the UK Cohort of the International Subarachnoid Aneurysm Trial (ISAT). Lancet 2015, 385, 691–697. [Google Scholar] [CrossRef]
- Dashti, R.; Rinne, J.; Hernesniemi, J.; Niemelä, M.; Kivipelto, L.; Lehecka, M.; Karatas, A.; Avci, E.; Ishii, K.; Shen, H.; et al. Microneurosurgical Management of Proximal Middle Cerebral Artery Aneurysms. Surg. Neurol. 2007, 67, 6–14. [Google Scholar] [CrossRef]
- Edjlali, M.; Rodriguez-Régent, C.; Hodel, J.; Aboukais, R.; Trystram, D.; Pruvo, J.-P.; Meder, J.-F.; Oppenheim, C.; Lejeune, J.-P.; Leclerc, X.; et al. Subarachnoid Hemorrhage in Ten Questions. Diagn. Interv. Imaging 2015, 96, 657–666. [Google Scholar] [CrossRef]
- Pontes, F.G.D.B.; Da Silva, E.M.; Baptista-Silva, J.C.; Vasconcelos, V. Treatments for Unruptured Intracranial Aneurysms. Cochrane Database Syst. Rev. 2021, 2021. [Google Scholar] [CrossRef]
- Wiebers, D.O. Unruptured Intracranial Aneurysms: Natural History, Clinical Outcome, and Risks of Surgical and Endovascular Treatment. Lancet 2003, 362, 103–110. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, J.Y.; Xing, H.S.; Ma, J.Y.; Li, A.J. Microsurgical Clipping and Endovascular Intervention for Middle Cerebral Artery Aneurysm: A Meta-Analysis. Medicine 2023, 102, e34956. [Google Scholar] [CrossRef] [PubMed]
- White, P.M.; Teasdale, E.M.; Wardlaw, J.M.; Easton, V. Intracranial Aneurysms: CT Angiography and MR Angiography for Detection Prospective Blinded Comparison in a Large Patient Cohort. Radiology 2001, 219, 739–749. [Google Scholar] [CrossRef] [PubMed]
- HaiFeng, L.; YongSheng, X.; YangQin, X.; Yu, D.; ShuaiWen, W.; XingRu, L.; JunQiang, L. Diagnostic Value of 3D Time-of-Flight Magnetic Resonance Angiography for Detecting Intracranial Aneurysm: A Meta-Analysis. Neuroradiology 2017, 59, 1083–1092. [Google Scholar] [CrossRef]
- Chen, G.; Wei, X.; Lei, H.; Liqin, Y.; Yuxin, L.; Yakang, D.; Daoying, G. Automated Computer-Assisted Detection System for Cerebral Aneurysms in Time-of-Flight Magnetic Resonance Angiography Using Fully Convolutional Network. Biomed. Eng. OnLine 2020, 19, 38. [Google Scholar] [CrossRef]
- Lehnen, N.C.; Haase, R.; Schmeel, F.C.; Vatter, H.; Dorn, F.; Radbruch, A.; Paech, D. Automated Detection of Cerebral Aneurysms on TOF-MRA Using a Deep Learning Approach: An External Validation Study. Am. J. Neuroradiol. 2022, 43, 1700–1705. [Google Scholar] [CrossRef]
- Nakao, T.; Hanaoka, S.; Nomura, Y.; Sato, I.; Nemoto, M.; Miki, S.; Maeda, E.; Yoshikawa, T.; Hayashi, N.; Abe, O. Deep Neural Network-based Computer-assisted Detection of Cerebral Aneurysms in MR Angiography. J. Magn. Reson. Imaging 2018, 47, 948–953. [Google Scholar] [CrossRef]
- Sichtermann, T.; Faron, A.; Sijben, R.; Teichert, N.; Freiherr, J.; Wiesmann, M. Deep Learning–Based Detection of Intracranial Aneurysms in 3D TOF-MRA. Am. J. Neuroradiol. 2019, 40, 25–32. [Google Scholar] [CrossRef]
- Stember, J.N.; Chang, P.; Stember, D.M.; Liu, M.; Grinband, J.; Filippi, C.G.; Meyers, P.; Jambawalikar, S. Convolutional Neural Networks for the Detection and Measurement of Cerebral Aneurysms on Magnetic Resonance Angiography. J. Digit. Imaging 2019, 32, 808–815. [Google Scholar] [CrossRef]
- Ueda, D.; Yamamoto, A.; Nishimori, M.; Shimono, T.; Doishita, S.; Shimazaki, A.; Katayama, Y.; Fukumoto, S.; Choppin, A.; Shimahara, Y.; et al. Deep Learning for MR Angiography: Automated Detection of Cerebral Aneurysms. Radiology 2019, 290, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Blezek, D.J.; Cheng, L.T.E.; Ryan, W.J.; Kallmes, D.F.; Erickson, B.J. Computer-Aided Detection of Intracranial Aneurysms in MR Angiography. J. Digit. Imaging 2011, 24, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Niu, H.; Li, Y.; Chen, T.; Peng, F.; Xia, J.; He, X.; Xu, B.; Chen, X.; Li, R.; et al. A Deep Learning Framework for Intracranial Aneurysms Automatic Segmentation and Detection on Magnetic Resonance T1 Images. Eur. Radiol. 2024, 34, 2838–2848. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Shi, Z.; Lu, L.; Miao, Z.; Wang, H.; Zhou, Z.; Zhang, F.; Wang, R.; Luo, X.; Xu, F.; et al. A Deep-Learning Model for Intracranial Aneurysm Detection on CT Angiography Images in China: A Stepwise, Multicentre, Early-Stage Clinical Validation Study. Lancet Digit. Health 2024, 6, e261–e271. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, H.; Wang, S.-H.; Zhang, Y.-D. A Review of Deep Learning on Medical Image Analysis. Mob. Netw. Appl. 2021, 26, 351–380. [Google Scholar] [CrossRef]
- Bo, Z.-H.; Qiao, H.; Tian, C.; Guo, Y.; Li, W.; Liang, T.; Li, D.; Liao, D.; Zeng, X.; Mei, L.; et al. Toward Human Intervention-Free Clinical Diagnosis of Intracranial Aneurysm via Deep Neural Network. Patterns 2021, 2, 100197. [Google Scholar] [CrossRef]
- The UCAS Japan Investigators The Natural Course of Unruptured Cerebral Aneurysms in a Japanese Cohort. N. Engl. J. Med. 2012, 366, 2474–2482. [CrossRef]
- Greving, J.P.; Wermer, M.J.H.; Brown, R.D.; Morita, A.; Juvela, S.; Yonekura, M.; Ishibashi, T.; Torner, J.C.; Nakayama, T.; Rinkel, G.J.E.; et al. Development of the PHASES Score for Prediction of Risk of Rupture of Intracranial Aneurysms: A Pooled Analysis of Six Prospective Cohort Studies. Lancet Neurol. 2014, 13, 59–66. [Google Scholar] [CrossRef]
- Etminan, N.; Dörfler, A.; Steinmetz, H. Unruptured Intracranial Aneurysms. Dtsch. Ärztebl. Int. 2020, 96, 3–42. [Google Scholar] [CrossRef]
- Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016; Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2016; Volume 9901, pp. 424–432. ISBN 978-3-319-46722-1. [Google Scholar]
- Kuwabara, M.; Ikawa, F.; Sakamoto, S.; Okazaki, T.; Ishii, D.; Hosogai, M.; Maeda, Y.; Chiku, M.; Kitamura, N.; Choppin, A.; et al. Effectiveness of Tuning an Artificial Intelligence Algorithm for Cerebral Aneurysm Diagnosis: A Study of 10,000 Consecutive Cases. Sci. Rep. 2023, 13, 16202. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmidt, C.C.; Stahl, R.; Mueller, F.; Fischer, T.D.; Forbrig, R.; Brem, C.; Isik, H.; Seelos, K.; Thon, N.; Stoecklein, S.; et al. Evaluation of AI-Powered Routine Screening of Clinically Acquired cMRIs for Incidental Intracranial Aneurysms. Diagnostics 2025, 15, 254. https://doi.org/10.3390/diagnostics15030254
Schmidt CC, Stahl R, Mueller F, Fischer TD, Forbrig R, Brem C, Isik H, Seelos K, Thon N, Stoecklein S, et al. Evaluation of AI-Powered Routine Screening of Clinically Acquired cMRIs for Incidental Intracranial Aneurysms. Diagnostics. 2025; 15(3):254. https://doi.org/10.3390/diagnostics15030254
Chicago/Turabian StyleSchmidt, Christina Carina, Robert Stahl, Franziska Mueller, Thomas David Fischer, Robert Forbrig, Christian Brem, Hakan Isik, Klaus Seelos, Niklas Thon, Sophia Stoecklein, and et al. 2025. "Evaluation of AI-Powered Routine Screening of Clinically Acquired cMRIs for Incidental Intracranial Aneurysms" Diagnostics 15, no. 3: 254. https://doi.org/10.3390/diagnostics15030254
APA StyleSchmidt, C. C., Stahl, R., Mueller, F., Fischer, T. D., Forbrig, R., Brem, C., Isik, H., Seelos, K., Thon, N., Stoecklein, S., Liebig, T., & Rueckel, J. (2025). Evaluation of AI-Powered Routine Screening of Clinically Acquired cMRIs for Incidental Intracranial Aneurysms. Diagnostics, 15(3), 254. https://doi.org/10.3390/diagnostics15030254