Clinical Benefits and Limitations of Cone-Beam Computed Tomography in Endodontic Practice: A Contemporary Evidence-Based Review
Abstract
1. Introduction
2. Methods
3. Radiological Aspects of CBCT in Endodontics
4. Root Canal Morphology
5. Diagnosis of Apical Periodontitis
6. Surgical and Non-Surgical Retreatment
7. Vertical Root Fractures
8. Root Resorption
9. Traumatic Dental Injuries
10. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Society of Endodontology. Quality guidelines for endodontic treatment: Consensus report of the European Society of Endodontology. Int. Endod. J. 2006, 39, 921–930. [Google Scholar] [CrossRef]
- Sarsam, W.; Davies, J.; Al-Salehi, S.K. The role of imaging in endodontics. Br. Dent. J. 2025, 238, 448–457. [Google Scholar] [CrossRef]
- Bender, I.B.; Seltzer, S.; Soltanoff, W. Endodontic success—A reappraisal of criteria. II. Oral Surg. Oral Med. Oral Pathol. 1966, 22, 790–802. [Google Scholar] [CrossRef]
- Friedman, S.; Mor, C. The success of endodontic therapy—Healing and functionality. J. Calif. Dent. Assoc. 2004, 32, 493–503. [Google Scholar] [CrossRef]
- Strindberg, L.Z. The dependence of the results of pulp therapy on certain factors. An analytical study based on radiographic and clinical follow-up examination. Acta Odontol. Scand. 1956, 14, 1–175. [Google Scholar]
- Bender, I. Factors influencing radiographic appearance of bony lesions. J. Endod. 1997, 23, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Kruse, C.; Spin-Neto, R.; Wenzel, A.; Kirkevang, L.L. Cone beam computed tomography and periapical lesions: A systematic review analysing studies on diagnostic efficacy by a hierarchical model. Int. Endod. J. 2015, 48, 815–828. [Google Scholar] [CrossRef] [PubMed]
- Tsai, P.; Torabinejad, M.; Rice, D.; Azevedo, B. Accuracy of cone-beam computed tomography and periapical radiography in detecting small periapical lesions. J. Endod. 2012, 38, 965–970. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Brown, J.; Pimentel, T.; Kelly, R.D.; Abella, F.; Durack, C. Cone beam computed tomography in Endodontics—A review of the literature. Int. Endod. J. 2019, 52, 1138–1152. [Google Scholar] [CrossRef]
- Lechuga, L.; Weidlich, G.A. Cone beam CT vs. fan beam CT: A comparison of image quality and dose delivered between two differing CT imaging modalities. Cureus 2016, 8, e778. [Google Scholar] [CrossRef]
- Chan, F.; Brown, L.F.; Parashos, P. CBCT in contemporary endodontics. Aust. Dent. J. 2023, 68, 39–55. [Google Scholar] [CrossRef]
- Aminoshariae, A.; Kulild, J.C.; Syed, A. Cone-beam computed tomography compared with intraoral radiographic lesions in endodontic outcome studies: A systematic review. J. Endod. 2018, 44, 1626–1631. [Google Scholar] [CrossRef]
- Rosen, E.; Taschieri, S.; Del Fabbro, M.; Beitlitum, I.; Tsesis, I. The diagnostic efficacy of cone-beam computed tomography in endodontics: A systematic review and analysis by a hierarchical model of efficacy. J. Endod. 2015, 41, 1008–1014. [Google Scholar] [CrossRef]
- Aktan, A.M.; Yildirim, C.; Karataşlıoğlu, E.; Çiftçi, M.E.; Aksoy, F. Effects of voxel size and resolution on the accuracy of endodontic length measurement using cone beam computed tomography. Ann. Anat. 2016, 208, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Mai, H.N.; Lee, D.H. Effects of Exposure Parameters and Voxel Size for Cone-Beam Computed Tomography on the Image Matching Accuracy with an Optical Dental Scan Image: An In Vitro Study. BioMed Res. Int. 2021, 2021, 6971828. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Guo, X.; Chen, C.; Qin, L.; Meng, L. Effect of Field of View and Voxel Size on CBCT-Based Accuracy of Dynamic Navigation in Endodontic Microsurgery: An In Vitro Study. J. Endod. 2023, 49, 1012–1019. [Google Scholar] [CrossRef] [PubMed]
- Patel, S. New dimensions in endodontic imaging: Part 2. Cone beam computed tomography. Int. Endod. J. 2009, 42, 463–475. [Google Scholar] [CrossRef]
- Ludlow, J.B.; Timothy, R.; Walker, C.; Hunter, R.; Benavides, E.; Samuelson, D.B.; Scheske, M.J. Effective dose of dental CBCT-a meta analysis of published data and additional data for nine CBCT units. Dentomaxillofac. Radiol. 2015, 44, 20140197. [Google Scholar] [CrossRef]
- Lee, H.; Badal, A. A Review of Doses for Dental Imaging in 2010–2020 and Development of a Web Dose Calculator. Radiol. Res. Pract. 2021, 2021, 6924314. [Google Scholar] [CrossRef]
- UK Health Security Agency. Ionising Radiation: Dose Comparisons. 2011. Available online: https://www.gov.uk/government/publications/ionising-radiation-dose-comparisons/ionising-radiation-dose-comparisons (accessed on 23 July 2025).
- American Association of Endodontists. AAE and AAOMR Joint Position Statement: Use of Cone Beam Computed Tomography in Endodontics 2015 Update. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2015, 120, 508–512. [Google Scholar] [CrossRef]
- Patel, S.; Brown, J.; Semper, M.; Abella, F.; Mannocci, F. European Society of Endodontology position statement: Use of cone beam computed tomography in Endodontics: European Society of Endodontology (ESE) developed by. Int. Endod. J. 2019, 52, 1675–1678. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Osorio, N.; Quijano-Guauque, S.; Briñez-Rodríguez, S.; Velasco-Flechas, G.; Muñoz-Solís, A.; Chávez, C.; Fernandez-Grisales, R. Cone-beam computed tomography in endodontics: From the specific technical considerations of acquisition parameters and interpretation to advanced clinical applications. Restor. Dent. Endod. 2024, 49, 1. [Google Scholar] [CrossRef]
- Dillenseger, J.P.; Gros, C.I.; Sayeh, A.; Rasamimanana, J.; Lawniczak, F.; Leminor, J.M.; Matern, J.F.; Constantinesco, A.; Bornert, F.; Choquet, P. Image quality evaluation of small FOV and large FOV CBCT devices for oral and maxillofacial radiology. Dentomaxillofac. Radiol. 2017, 46, 20160285. [Google Scholar] [CrossRef]
- Pauwels, R.; Beinsberger, J.; Collaert, B.; Theodorakou, C.; Rogers, J.; Walker, A.; Cockmartin, L.; Bosmans, H.; Jacobs, R.; Bogaerts, R.; et al. Effective dose range for dental cone beam computed tomography scanners. Eur. J. Radiol. 2012, 81, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Yeung, A.W.K. The “As Low as Reasonably Achievable” (ALARA) principle: A brief historical overview and a bibliometric analysis of the most cited publications. Radioprotection 2019, 54, 103–109. [Google Scholar] [CrossRef]
- Schulze, R.; Heil, U.; Gross, D.; Bruellmann, D.D.; Dranischnikow, E.; Schwanecke, U.; Schoemer, E. Artefacts in CBCT: A review. Dentomaxillofac. Radiol. 2011, 40, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Kanagasingam, S.; Mistry, C.D.; Ahmed, W.; Barrak, F. Analysis of Artefacts in Endodontically Treated Teeth on Cone Beam Computed (CBCT) Images and their Impact on Diagnostic Value. J. Clin. Med. Surg. 2024, 4, 1–9. [Google Scholar] [CrossRef]
- Pauwels, R.; Stamatakis, H.; Bosmans, H.; Bogaerts, R.; Jacobs, R.; Horner, K.; Tsiklakis, K. Quantification of metal artifacts on cone beam computed tomography images. Clin. Oral Implants Res. 2013, 24, 94–99. [Google Scholar] [CrossRef]
- Pinto, J.C.; de Faria Vasconcelos, K.; Leite, A.F.; Wanderley, V.A.; Pauwels, R.; Oliveira, M.L.; Jacobs, R.; Tanomaru-Filho, M. Image quality for visualization of cracks and fine endodontic structures using 10 CBCT devices with various scanning protocols and artefact conditions. Sci. Rep. 2023, 13, 4001. [Google Scholar] [CrossRef]
- Spin-Neto, R.; Wenzel, A. Patient movement and motion artefacts in cone beam computed tomography of the Dentomaxillofac. region: A systematic literature review. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2016, 121, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Bechara, B.; Alex McMahan, C.; Moore, W.S.; Noujeim, M.; Teixeira, F.B.; Geha, H. Cone beam CT scans with and without artefact reduction in root fracture detection of endodontically treated teeth. Dentomaxillofac. Radiol. 2013, 42, 20120245. [Google Scholar] [CrossRef]
- Queiroz, P.M.; Santaella, G.M.; Groppo, F.C.; Freitas, D.Q. Metal artifact production and reduction in CBCT with different numbers of basis images. Imaging Sci. Dent. 2018, 48, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Van Gorp, G.; Maes, A.; Lambrechts, M.; Jacobs, R.; Declerck, D. Is use of CBCT without proper training justified in paediatric dental traumatology? An exploratory study. BMC Oral Health 2023, 23, 270. [Google Scholar] [CrossRef]
- Patel, S.; Harvey, S. Guidelines for reporting on CBCT scans. Int. Endod. J. 2021, 54, 628–633. [Google Scholar] [CrossRef]
- Cheung, G.S.; Wei, W.L.; McGrath, C. Agreement between periapical radiographs and cone-beam computed tomography for assessment of periapical status of root filled molar teeth. Int. Endod. J. 2013, 46, 889–895. [Google Scholar] [CrossRef]
- Mashyakhy, M.; Hadi, F.A.; Alhazmi, H.A.; Alfaifi, R.A.; Alabsi, F.S.; Bajawi, H.; Alkahtany, M.; AbuMelha, A. Prevalence of Missed Canals and Their Association with Apical Periodontitis in Posterior Endodontically Treated Teeth: A CBCT Study. Int. J. Dent. 2021, 2021, 9962429. [Google Scholar] [CrossRef] [PubMed]
- Baruwa, A.O.; Martins, J.N.R.; Meirinhos, J.; Pereira, B.; Gouveia, J.; Quaresma, S.A.; Monroe, A.; Ginjeira, A. The Influence of Missed Canals on the Prevalence of Periapical Lesions in Endodontically Treated Teeth: A Cross-sectional Study. J. Endod. 2020, 46, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Cantatore, G.; Berutti, E.; Castellucci, A. Missed anatomy: Frequency and clinical impact. Endod. Top. 2006, 15, 3–31. [Google Scholar] [CrossRef]
- Abuabara, A.; Baratto-Filho, F.; Aguiar Anele, J.; Leonardi, D.P.; Sousa-Neto, M.D. Efficacy of clinical and radiological methods to identify second mesiobuccal canals in maxillary first molars. Acta Odontol. Scand. 2013, 71, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Bhuva, B.; Barnes, J.J.; Patel, S. The use of limited cone beam computed tomography in the diagnosis and management of a case of perforating internal root resorption. Int. Endod. J. 2011, 44, 777–786. [Google Scholar] [CrossRef]
- Blattner, T.C.; George, N.; Lee, C.C.; Kumar, V.; Yelton, C.D.J. Efficacy of Cone-Beam Computed Tomography as a Modality to Accurately Identify the Presence of Second Mesiobuccal Canals in Maxillary First and Second Molars: A Pilot Study. J. Endod. 2010, 36, 867–870. [Google Scholar] [CrossRef]
- Martins, J.N.R.; Alkhawas, M.A.M.; Altaki, Z.; Bellardini, G.; Berti, L.; Boveda, C.; Chaniotis, A.; Flynn, D.; Gonzalez, J.A.; Kottoor, J.; et al. Worldwide Analyses of Maxillary First Molar Second Mesiobuccal Prevalence: A Multicenter Cone-beam Computed Tomographic Study. J. Endod. 2018, 44, 1641–1649. [Google Scholar] [CrossRef]
- Martins, J.N.R.; Marques, D.; Silva, E.; Caramês, J.; Mata, A.; Versiani, M.A. Second mesiobuccal root canal in maxillary molars-A systematic review and meta-analysis of prevalence studies using cone beam computed tomography. Arch. Oral Biol. 2020, 113, 104589. [Google Scholar] [CrossRef]
- Michetti, J.; Maret, D.; Mallet, J.P.; Diemer, F. Validation of cone beam computed tomography as a tool to explore root canal anatomy. J. Endod. 2010, 36, 1187–1190. [Google Scholar] [CrossRef]
- Martins, J.N.R.; Ensinas, P.; Chan, F.; Babayeva, N.; von Zuben, M.; Berti, L.; Lam, E.W.N.; Antúnez, M.; Pei, F.; de la Espriella, C.M.; et al. Worldwide Prevalence of the Lingual Canal in Mandibular Incisors: A Multicenter Cross-sectional Study with Meta-analysis. J. Endod. 2023, 49, 819–835. [Google Scholar] [CrossRef]
- Martins, J.N.R.; Marques, D.; Silva, E.; Caramês, J.; Mata, A.; Versiani, M.A. Prevalence of C-shaped canal morphology using cone beam computed tomography—A systematic review with meta-analysis. Int. Endod. J. 2019, 52, 1556–1572. [Google Scholar] [CrossRef]
- Gonçalves, N.; Pereira, B.; Meirinhos, J.; Vasconcelos, I.; Martins, J.; Ginjeira, A. Mandibular first molar root canal retreatment with the presence of a missed middle mesial root canal: A report of two cases. G. Ital. Endod. 2021, 35, 13–20. [Google Scholar] [CrossRef]
- Martins, J.N.R.; Nole, C.; Ounsi, H.F.; Parashos, P.; Plotino, G.; Ragnarsson, M.F.; Aguilar, R.R.; Santiago, F.; Seedat, H.C.; Vargas, W.; et al. Worldwide Assessment of the Mandibular First Molar Second Distal Root and Root Canal: A Cross-sectional Study with Meta-analysis. J. Endod. 2022, 48, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, J.F., Jr.; Rôças, I.N.; Hernández, S.R.; Brisson-Suárez, K.; Baasch, A.C.; Pérez, A.R.; Alves, F.R.F. Dens Invaginatus: Clinical Implications and Antimicrobial Endodontic Treatment Considerations. J. Endod. 2022, 48, 161–170. [Google Scholar] [CrossRef]
- Patel, S.; Patel, R.; Foschi, F.; Mannocci, F. The Impact of Different Diagnostic Imaging Modalities on the Evaluation of Root Canal Anatomy and Endodontic Residents’ Stress Levels: A Clinical Study. J. Endod. 2019, 45, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, Z.; Asgary, S.; Shalavi, S.; Abbott, P.V. A Clinical Update on the Different Methods to Decrease the Occurrence of Missed Root Canals. Iran Endod. J. 2016, 11, 208–213. [Google Scholar] [CrossRef]
- Patel, S.; Bhuva, B.; Bose, R. Present status and future directions: Vertical root fractures in root filled teeth. Int. Endod. J. 2022, 55, 804–826. [Google Scholar] [CrossRef]
- Krastl, G.; Zehnder, M.S.; Connert, T.; Weiger, R.; Kühl, S. Guided Endodontics: A novel treatment approach for teeth with pulp canal calcification and apical pathology. Dent. Traumatol. 2016, 32, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Chong, B.S.; Dhesi, M.; Makdissi, J. Computer-aided dynamic navigation: A novel method for guided endodontics. Quintessence Int. 2019, 50, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Hegde, V.; Mandke, L.; Memon, K.; Ansari, M.; Srilatha, S.; Mujawar, A. Dynamic navigation in endodontics: A comprehensive literature review. J. Conserv. Dent. Endod. 2024, 27, 1202–1210. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.; Khademi, J. Modern molar endodontic access and directed dentin conservation. Dent. Clin. North Am. 2010, 54, 249–273. [Google Scholar] [CrossRef]
- Bóveda, C.; Kishen, A. Contracted endodontic cavities: The foundation for less invasive alternatives in the management of apical periodontitis. Endod. Top. 2015, 33, 169–186. [Google Scholar] [CrossRef]
- Selvakumar, R.J.; Surendran, S.; Sundar, S.; Arul, B.; Natanasabapathy, V. Impact of Contracted Endodontic Access Cavities on the Fracture Resistance of Endodontically Treated Teeth After Mechanical Aging by Simulated Chewing Forces. J. Endod. 2023, 49, 1176–1182. [Google Scholar] [CrossRef]
- Albitar, L.; Zhao, T.; Huang, C.; Mahdian, M. Artificial Intelligence (AI) for Detection and Localization of Unobturated Second Mesial Buccal (MB2) Canals in Cone-Beam Computed Tomography (CBCT). Diagnostics 2022, 12, 3214. [Google Scholar] [CrossRef]
- Shetty, S.; Yuvali, M.; Ozsahin, I.; Al-Bayatti, S.; Narasimhan, S.; Alsaegh, M.; Al-Daghestani, H.; Shetty, R.; Castelino, R.; David, L.R.; et al. Machine Learning Models in the Detection of MB2 Canal Orifice in CBCT Images. Int. Dent. J. 2025, 75, 1640–1648. [Google Scholar] [CrossRef]
- Santos-Junior, A.O.; Fontenele, R.C.; Neves, F.S.; Tanomaru-Filho, M.; Jacobs, R. A novel artificial intelligence-powered tool for automated root canal segmentation in single-rooted teeth on cone-beam computed tomography. Int. Endod. J. 2025, 58, 658–671. [Google Scholar] [CrossRef]
- Das, S.; Warhadpande, M.M.; Redij, S.A.; Jibhkate, N.G.; Sabir, H. Frequency of second mesiobuccal canal in permanent maxillary first molars using the operating microscope and selective dentin removal: A clinical study. Contemp. Clin. Dent. 2015, 6, 74–78. [Google Scholar] [CrossRef]
- Xu, T.; Tay, F.R.; Gutmann, J.L.; Fan, B.; Fan, W.; Huang, Z.; Sun, Q. Micro-Computed Tomography Assessment of Apical Accessory Canal Morphologies. J. Endod. 2016, 42, 798–802. [Google Scholar] [CrossRef]
- Vizzotto, M.B.; Silveira, P.F.; Arús, N.A.; Montagner, F.; Gomes, B.P.; da Silveira, H.E. CBCT for the assessment of second mesiobuccal (MB2) canals in maxillary molar teeth: Effect of voxel size and presence of root filling. Int. Endod. J. 2013, 46, 870–876. [Google Scholar] [CrossRef] [PubMed]
- Kerekes, K.; Tronstad, L. Long-term results of endodontic treatment performed with a standardized technique. J. Endod. 1979, 5, 83–90. [Google Scholar] [CrossRef]
- Ng, Y.L.; Mann, V.; Gulabivala, K. A prospective study of the factors affecting outcomes of nonsurgical root canal treatment: Part 1: Periapical health. Int. Endod. J. 2011, 44, 583–609. [Google Scholar] [CrossRef]
- Uraba, S.; Ebihara, A.; Komatsu, K.; Ohbayashi, N.; Okiji, T. Ability of Cone-beam Computed Tomography to Detect Periapical Lesions That Were Not Detected by Periapical Radiography: A Retrospective Assessment According to Tooth Group. J. Endod. 2016, 42, 1186–1190. [Google Scholar] [CrossRef]
- Meusburger, T.; Wülk, A.; Kessler, A.; Heck, K.; Hickel, R.; Dujic, H.; Kühnisch, J. The Detection of Dental Pathologies on Periapical Radiographs-Results from a Reliability Study. J. Clin. Med. 2023, 12, 2224. [Google Scholar] [CrossRef] [PubMed]
- Low, K.M.; Dula, K.; Bürgin, W.; von Arx, T. Comparison of periapical radiography and limited cone-beam tomography in posterior maxillary teeth referred for apical surgery. J. Endod. 2008, 34, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Arias, A.; Whitworth, J.; Mannocci, F. Outcome of endodontic treatment—The elephant in the room. Int. Endod. J. 2020, 53, 291–297. [Google Scholar] [CrossRef]
- Restrepo-Restrepo, F.A.; Cañas-Jiménez, S.J.; Romero-Albarracín, R.D.; Villa-Machado, P.A.; Pérez-Cano, M.I.; Tobón-Arroyave, S.I. Prognosis of root canal treatment in teeth with preoperative apical periodontitis: A study with cone-beam computed tomography and digital periapical radiography. Int. Endod. J. 2019, 52, 1533–1546. [Google Scholar] [CrossRef]
- Kanagasingam, S.; Lim, C.X.; Yong, C.P.; Mannocci, F.; Patel, S. Diagnostic accuracy of periapical radiography and cone beam computed tomography in detecting apical periodontitis using histopathological findings as a reference standard. Int. Endod. J. 2017, 50, 417–426. [Google Scholar] [CrossRef]
- de Paula-Silva, F.W.; Wu, M.K.; Leonardo, M.R.; da Silva, L.A.; Wesselink, P.R. Accuracy of periapical radiography and cone-beam computed tomography scans in diagnosing apical periodontitis using histopathological findings as a gold standard. J. Endod. 2009, 35, 1009–1012. [Google Scholar] [CrossRef] [PubMed]
- Hilmi, A.; Patel, S.; Mirza, K.; Galicia, J.C. Efficacy of imaging techniques for the diagnosis of apical periodontitis: A systematic review. Int. Endod. J. 2023, 56, 326–339. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.H.C.; Yeung, A.W.K.; Sigurdsson, A.; Wong, M.C.M.; Zhang, C.F. Prevalence, Classification and Factors Associated with Cemental Tears—A Retrospective Observational Cross-sectional Study in a Postgraduate Endodontic Clinic. Int. Endod. J. 2025, in press. [CrossRef]
- Bornstein, M.M.; Lauber, R.; Sendi, P.; von Arx, T. Comparison of periapical radiography and limited cone-beam computed tomography in mandibular molars for analysis of anatomical landmarks before apical surgery. J. Endod. 2011, 37, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Kamburoğlu, K.; Kursun, S. A comparison of the diagnostic accuracy of CBCT images of different voxel resolutions used to detect simulated small internal resorption cavities. Int. Endod. J. 2010, 43, 798–807. [Google Scholar] [CrossRef]
- Chau, K.K.; Zhu, M.; AlHadidi, A.; Wang, C.; Hung, K.; Wohlgemuth, P.; Lam, W.Y.H.; Liu, W.; Yuan, Y.; Chen, H. A novel AI model for detecting periapical lesion on CBCT: CBCT-SAM. J. Dent. 2025, 153, 105526. [Google Scholar] [CrossRef]
- Setzer, F.C.; Shi, K.J.; Zhang, Z.; Yan, H.; Yoon, H.; Mupparapu, M.; Li, J. Artificial Intelligence for the Computer-aided Detection of Periapical Lesions in Cone-beam Computed Tomographic Images. J. Endod. 2020, 46, 987–993. [Google Scholar] [CrossRef]
- Kazimierczak, W.; Kazimierczak, N.; Issa, J.; Wajer, R.; Wajer, A.; Kalka, S.; Serafin, Z. Endodontic Treatment Outcomes in Cone Beam Computed Tomography Images-Assessment of the Diagnostic Accuracy of AI. J. Clin. Med. 2024, 13, 4116. [Google Scholar] [CrossRef]
- Al-Nuaimi, N.; Patel, S.; Davies, A.; Bakhsh, A.; Foschi, F.; Mannocci, F. Pooled analysis of 1-year recall data from three root canal treatment outcome studies undertaken using cone beam computed tomography. Int. Endod. J. 2018, 51, 216–226. [Google Scholar] [CrossRef]
- Fernández, R.; Cadavid, D.; Zapata, S.M.; Alvarez, L.G.; Restrepo, F.A. Impact of three radiographic methods in the outcome of nonsurgical endodontic treatment: A five-year follow-up. J. Endod. 2013, 39, 1097–1103. [Google Scholar] [CrossRef]
- Fernández, R.; Cardona, J.A.; Cadavid, D.; Álvarez, L.G.; Restrepo, F.A. Survival of Endodontically Treated Roots/Teeth Based on Periapical Health and Retention: A 10-year Retrospective Cohort Study. J. Endod. 2017, 43, 2001–2008. [Google Scholar] [CrossRef]
- Liang, Y.H.; Li, G.; Wesselink, P.R.; Wu, M.K. Endodontic outcome predictors identified with periapical radiographs and cone-beam computed tomography scans. J. Endod. 2011, 37, 326–331. [Google Scholar] [CrossRef]
- Wong, J.; Cheng Lee, A.H.; Pan Cheung, G.S.; McGrath, C.; Neelakantan, P. Clinician/Patient-Reported Outcomes and Their Association After Root Canal Treatment. J. Endod. 2024, 50, 1725–1733. [Google Scholar] [CrossRef] [PubMed]
- Kruse, C.; Spin-Neto, R.; Evar Kraft, D.C.; Vaeth, M.; Kirkevang, L.L. Diagnostic accuracy of cone beam computed tomography used for assessment of apical periodontitis: An ex vivo histopathological study on human cadavers. Int. Endod. J. 2019, 52, 439–450. [Google Scholar] [CrossRef]
- Liang, Y.H.; Jiang, L.; Gao, X.J.; Shemesh, H.; Wesselink, P.R.; Wu, M.K. Detection and measurement of artificial periapical lesions by cone-beam computed tomography. Int. Endod. J. 2014, 47, 332–338. [Google Scholar] [CrossRef]
- Pope, O.; Sathorn, C.; Parashos, P. A comparative investigation of cone-beam computed tomography and periapical radiography in the diagnosis of a healthy periapex. J. Endod. 2014, 40, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Kruse, C.; Spin-Neto, R.; Reibel, J.; Wenzel, A.; Kirkevang, L.L. Diagnostic validity of periapical radiography and CBCT for assessing periapical lesions that persist after endodontic surgery. Dentomaxillofac. Radiol. 2017, 46, 20170210. [Google Scholar] [CrossRef]
- Burns, L.E.; Kim, J.; Wu, Y.; Alzwaideh, R.; McGowan, R.; Sigurdsson, A. Outcomes of primary root canal therapy: An updated systematic review of longitudinal clinical studies published between 2003 and 2020. Int. Endod. J. 2022, 55, 714–731. [Google Scholar] [CrossRef] [PubMed]
- Ng, Y.L.; Mann, V.; Gulabivala, K. A prospective study of the factors affecting outcomes of non-surgical root canal treatment: Part 2: Tooth survival. Int. Endod. J. 2011, 44, 610–625. [Google Scholar] [CrossRef]
- Azim, A.A.; Albanyan, H.; Azim, K.A.; Piasecki, L. The Buffalo study: Outcome and associated predictors in endodontic microsurgery- a cohort study. Int. Endod. J. 2021, 54, 301–318. [Google Scholar] [CrossRef]
- Sabeti, M.; Chung, Y.J.; Aghamohammadi, N.; Khansari, A.; Pakzad, R.; Azarpazhooh, A. Outcome of Contemporary Nonsurgical Endodontic Retreatment: A Systematic Review of Randomized Controlled Trials and Cohort Studies. J. Endod. 2024, 50, 414–433. [Google Scholar] [CrossRef] [PubMed]
- Vujanovic-Eskenazi, A.; Valero-James, J.M.; Sanchez-Garces, M.A.; Gay-Escoda, C. A retrospective radiographic evaluation of the anterior loop of the mental nerve: Comparison between panoramic radiography and cone beam computerized tomography. Med. Oral Patol. Oral Cir. Bucal. 2015, 20, 239–245. [Google Scholar] [CrossRef]
- Wong, J.; Lee, A.; Zhang, C. Diagnosis and Management of Apical Fenestrations Associated with Endodontic Diseases: A Literature Review. Eur. Endod. J. 2021, 6, 25–33. [Google Scholar] [CrossRef]
- Lee, S.M.; Yu, Y.H.; Wang, Y.; Kim, E.; Kim, S. The Application of “Bone Window” Technique in Endodontic Microsurgery. J. Endod. 2020, 46, 872–880. [Google Scholar] [CrossRef]
- Maroua, A.L.; Ajaj, M.; Hajeer, M.Y. The Accuracy and Reproducibility of Linear Measurements Made on CBCT-derived Digital Models. J. Contemp. Dent. Pract. 2016, 17, 294–299. [Google Scholar] [CrossRef] [PubMed]
- George, R.; Cameron, A.; Meer, M. Streamlining and simplification of surgical stent fabrication for micro-endodontic surgery. Aust. Endod. J. 2020, 46, 445–451. [Google Scholar] [CrossRef] [PubMed]
- La Rosa, G.R.M.; Peditto, M.; Venticinque, A.; Marcianò, A.; Bianchi, A.; Pedullà, E. Advancements in guided surgical endodontics: A scoping review of case report and case series and research implications. Aust. Endod. J. 2024, 50, 397–408. [Google Scholar] [CrossRef]
- Tsukiboshi, M.; Yamauchi, N.; Tsukiboshi, Y. Long-term outcomes of autotransplantation of teeth: A case series. Dent. Traumatol. 2019, 35, 358–367. [Google Scholar] [CrossRef]
- Plotino, G.; Abella Sans, F.; Duggal, M.S.; Grande, N.M.; Krastl, G.; Nagendrababu, V.; Gambarini, G. European Society of Endodontology position statement: Surgical extrusion, intentional replantation and tooth autotransplantation. Int. Endod. J. 2021, 54, 655–659. [Google Scholar] [CrossRef]
- EzEldeen, M.; Wyatt, J.; Al-Rimawi, A.; Coucke, W.; Shaheen, E.; Lambrichts, I.; Willems, G.; Politis, C.; Jacobs, R. Use of CBCT guidance for tooth autotransplantation in children. J. Dent. Res. 2019, 98, 406–413. [Google Scholar] [CrossRef]
- Li, Y.; Lin, Z.; Liu, Y.; Chen, G.; Li, C.; Wu, H.; Wang, X.; Liu, Y.; Kuang, M.; Zhou, L. Fully guided system for position-predictable autotransplantation of teeth: A randomized clinical trial. Int. Endod. J. 2025, 58, 550–565. [Google Scholar] [CrossRef]
- Nascimento, E.H.L.; Gaêta-Araujo, H.; Andrade, M.F.S.; Freitas, D.Q. Prevalence of technical errors and periapical lesions in a sample of endodontically treated teeth: A CBCT analysis. Clin. Oral Investig. 2018, 22, 2495–2503. [Google Scholar] [CrossRef] [PubMed]
- Shemesh, H.; Cristescu, R.C.; Wesselink, P.R.; Wu, M.K. The use of cone-beam computed tomography and digital periapical radiographs to diagnose root perforations. J. Endod. 2011, 37, 513–516. [Google Scholar] [CrossRef]
- Kalogeropoulos, K.; Xiropotamou, A.; Koletsi, D.; Tzanetakis, G.N. The Effect of Cone-Beam Computed Tomography (CBCT) Evaluation on Treatment Planning after Endodontic Instrument Fracture. Int. J. Environ. Res. Public Health 2022, 19, 4088. [Google Scholar] [CrossRef] [PubMed]
- Terauchi, Y.; Ali, W.T.; Abielhassan, M.M. Present status and future directions: Removal of fractured instruments. Int. Endod. J. 2022, 55, 685–709. [Google Scholar] [CrossRef]
- Lira de Farias Freitas, A.P.; Cavalcanti, Y.W.; Costa, F.C.M.; Peixoto, L.R.; Maia, A.M.A.; Rovaris, K.; Bento, P.M.; Melo, D.P. Assessment of artefacts produced by metal posts on CBCT images. Int. Endod. J. 2019, 52, 223–236. [Google Scholar] [CrossRef]
- Bhatt, M.; Coil, J.; Chehroudi, B.; Esteves, A.; Aleksejuniene, J.; MacDonald, D. Clinical decision-making and importance of the AAE/AAOMR position statement for CBCT examination in endodontic cases. Int. Endod. J. 2021, 54, 26–37. [Google Scholar] [CrossRef]
- Ee, J.; Fayad, M.I.; Johnson, B.R. Comparison of endodontic diagnosis and treatment planning decisions using cone-beam volumetric tomography versus periapical radiography. J. Endod. 2014, 40, 910–916. [Google Scholar] [CrossRef] [PubMed]
- Mota de Almeida, F.J.; Knutsson, K.; Flygare, L. The effect of cone beam CT (CBCT) on therapeutic decision-making in endodontics. Dentomaxillofac. Radiol. 2014, 43, 20130137. [Google Scholar] [CrossRef]
- Tay, K.X.; Lim, L.Z.; Goh, B.K.C.; Yu, V.S.H. Influence of cone beam computed tomography on endodontic treatment planning: A systematic review. J. Dent. 2022, 127, 104353. [Google Scholar] [CrossRef] [PubMed]
- Fryback, D.G.; Thornbury, J.R. The efficacy of diagnostic imaging. Med. Decis. Mak. 1991, 11, 88–94. [Google Scholar] [CrossRef]
- Durack, C.; Patel, S.; Davies, J.; Wilson, R.; Mannocci, F. Diagnostic accuracy of small volume cone beam computed tomography and intraoral periapical radiography for the detection of simulated external inflammatory root resorption. Int. Endod. J. 2011, 44, 136–147. [Google Scholar] [CrossRef]
- Krell, K.V.; Caplan, D.J. 12-month Success of Cracked Teeth Treated with Orthograde Root Canal Treatment. J. Endod. 2018, 44, 543–548. [Google Scholar] [CrossRef]
- Rud, J.; Omnell, K.A. Root fractures due to corrosion. Diagnostic aspects. Scand. J. Dent. Res. 1970, 78, 397–403. [Google Scholar] [CrossRef]
- Brady, E.; Mannocci, F.; Brown, J.; Wilson, R.; Patel, S. A comparison of cone beam computed tomography and periapical radiography for the detection of vertical root fractures in nonendodontically treated teeth. Int. Endod. J. 2014, 47, 735–746. [Google Scholar] [CrossRef]
- Corbella, S.; Del Fabbro, M.; Tamse, A.; Rosen, E.; Tsesis, I.; Taschieri, S. Cone beam computed tomography for the diagnosis of vertical root fractures: A systematic review of the literature and meta-analysis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2014, 118, 593–602. [Google Scholar] [CrossRef]
- Talwar, S.; Utneja, S.; Nawal, R.R.; Kaushik, A.; Srivastava, D.; Oberoy, S.S. Role of Cone-beam Computed Tomography in Diagnosis of Vertical Root Fractures: A Systematic Review and Meta-analysis. J. Endod. 2016, 42, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Brady, E.; Wilson, R.; Brown, J.; Mannocci, F. The detection of vertical root fractures in root filled teeth with periapical radiographs and CBCT scans. Int. Endod. J. 2013, 46, 1140–1152. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Ahlowalia, M.; Alfayate, R.P.; Patel, S.; Foschi, F. Prevalence of and Factors Associated with Vertical Root Fracture in a Japanese Population: An Observational Study on Teeth with Isolated Periodontal Probing Depth. J. Endod. 2023, 49, 1617–1624. [Google Scholar] [CrossRef]
- Hassan, B.; Metska, M.E.; Ozok, A.R.; van der Stelt, P.; Wesselink, P.R. Detection of vertical root fractures in endodontically treated teeth by a cone beam computed tomography scan. J. Endod. 2009, 35, 719–722. [Google Scholar] [CrossRef] [PubMed]
- Fontenele, R.C.; Machado, A.H.; de Oliveira Reis, L.; Freitas, D.Q. Influence of metal artefact reduction tool on the detection of vertical root fractures involving teeth with intracanal materials in cone beam computed tomography images: A systematic review and meta-analysis. Int. Endod. J. 2021, 54, 1769–1781. [Google Scholar] [CrossRef] [PubMed]
- PradeepKumar, A.R.; Shemesh, H.; Nivedhitha, M.S.; Hashir, M.M.J.; Arockiam, S.; Uma Maheswari, T.N.; Natanasabapathy, V. Diagnosis of Vertical Root Fractures by Cone-beam Computed Tomography in Root-filled Teeth with Confirmation by Direct Visualization: A Systematic Review and Meta-Analysis. J. Endod. 2021, 47, 1198–1214. [Google Scholar] [CrossRef]
- Patel, S.; Saberi, N.; Pimental, T.; Teng, P.-H. Present status and future directions: Root resorption. Int. Endod. J. 2022, 55, 892–921. [Google Scholar] [CrossRef]
- Lima, T.F.; Gamba, T.O.; Zaia, A.A.; Soares, A.J. Evaluation of cone beam computed tomography and periapical radiography in the diagnosis of root resorption. Aust. Dent. J. 2016, 61, 425–431. [Google Scholar] [CrossRef]
- Carney, K.A.; Colloc, T.N.E.; Kilgariff, J.K. Management of rarely seen internal tunnelling root resorption associated with a maxillary permanent incisor. Br. Dent. J. 2024, 236, 955–961. [Google Scholar] [CrossRef]
- Patel, K.; Mannocci, F.; Patel, S. The Assessment and Management of External Cervical Resorption with Periapical Radiographs and Cone-beam Computed Tomography: A Clinical Study. J. Endod. 2016, 42, 1435–1440. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Dawood, A.; Wilson, R.; Horner, K.; Mannocci, F. The detection and management of root resorption lesions using intraoral radiography and cone beam computed tomography—An in vivo investigation. Int. Endod. J. 2009, 42, 831–838. [Google Scholar] [CrossRef]
- Estrela, C.; Bueno, M.R.; De Alencar, A.H.; Mattar, R.; Valladares Neto, J.; Azevedo, B.C.; De Araújo Estrela, C.R. Method to evaluate inflammatory root resorption by using cone beam computed tomography. J. Endod. 2009, 35, 1491–1497. [Google Scholar] [CrossRef]
- Kalender, A.; Oztan, M.D.; Basmaci, F.; Aksoy, U.; Orhan, K. CBCT evaluation of multiple idiopathic internal resorptions in permanent molars: Case report. BMC Oral Health 2014, 14, 39. [Google Scholar] [CrossRef]
- Amaral, T.; Bastos, J.; Queiroz, V.; Milagres, R.; Abdo, E.; Abreu, M.; Brasileiro, C.; Chetan, D.; Pimenta, L. CT image segmentation as a tool for volumetric measurement of external inflammatory root resorption. Rev. Gaúcha Odontol. 2024, 72, e20240019. [Google Scholar] [CrossRef]
- Heithersay, G.S. External Root Resorption—Part I. Aust. Endod. Newsl. 1996, 22, 22–25. [Google Scholar] [CrossRef]
- Goodell, K.B.; Mines, P.; Kersten, D.D. Impact of Cone-beam Computed Tomography on Treatment Planning for External Cervical Resorption and a Novel Axial Slice-based Classification System. J. Endod. 2018, 44, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Suhr Villefrance, J.; Kirkevang, L.L.; Wenzel, A.; Væth, M.; Matzen, L.H. Long-term prognosis for teeth with external cervical resorption based on periapical images and cone beam CT: A clinical study. Int. Endod. J. 2024, 57, 1596–1607. [Google Scholar] [CrossRef]
- Rodríguez, G.; Abella, F.; Durán-Sindreu, F.; Patel, S.; Roig, M. Influence of Cone-beam Computed Tomography in Clinical Decision Making among Specialists. J. Endod. 2017, 43, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Mavridou, A.M.; Lambrechts, P.; Saberi, N. External cervical resorption-part 1: Histopathology, distribution and presentation. Int. Endod. J. 2018, 51, 1205–1223. [Google Scholar] [CrossRef]
- Patel, S.; Foschi, F.; Mannocci, F.; Patel, K. External cervical resorption: A three-dimensional classification. Int. Endod. J. 2018, 51, 206–214. [Google Scholar] [CrossRef]
- Yi, J.; Sun, Y.; Li, Y.; Li, C.; Li, X.; Zhao, Z. Cone-beam computed tomography versus periapical radiograph for diagnosing external root resorption: A systematic review and meta-analysis. Angle Orthod. 2017, 87, 328–337. [Google Scholar] [CrossRef]
- Baena-de la Iglesia, T.; Yañez-Vico, R.M.; Iglesias-Linares, A. Diagnostic performance of cone-beam computed tomography to diagnose in vivo/in vitro root resorption: A systematic review and meta-analysis. J. Evid. Based Dent. Pract. 2023, 23, 101803. [Google Scholar] [CrossRef]
- Krastl, G.; Weiger, R.; Ebeleseder, K.; Galler, K. Present status and future directions: Endodontic management of traumatic injuries to permanent teeth. Int. Endod. J. 2022, 55, 1003–1019. [Google Scholar] [CrossRef]
- Bourguignon, C.; Cohenca, N.; Lauridsen, E.; Flores, M.T.; O’Connell, A.C.; Day, P.F.; Tsilingaridis, G.; Abbott, P.V.; Fouad, A.F.; Hicks, L.; et al. International Association of Dental Traumatology guidelines for the management of traumatic dental injuries: 1. Fractures and luxations. Dent. Traumatol. 2020, 36, 314–330. [Google Scholar] [CrossRef]
- Andreasen, F.M.; Andreasen, J.O. Diagnosis of luxation injuries: The importance of standardized clinical, radiographic and photographic techniques in clinical investigations. Dent. Traumatol. 1985, 1, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Avsever, H.; Gunduz, K.; Orhan, K.; Uzun, I.; Ozmen, B.; Egrioglu, E.; Midilli, M. Comparison of intraoral radiography and cone-beam computed tomography for the detection of horizontal root fractures: An in vitro study. Clin. Oral Investig. 2014, 18, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Puri, T.; Mannocci, F.; Navai, A. Diagnosis and Management of Traumatic Dental Injuries Using Intraoral Radiography and Cone-beam Computed Tomography: An In Vivo Investigation. J. Endod. 2021, 47, 914–923. [Google Scholar] [CrossRef]
- Lam, R. Epidemiology and outcomes of traumatic dental injuries: A review of the literature. Aust. Dent. J. 2016, 61, 4–20. [Google Scholar] [CrossRef]
- Cohenca, N.; Silberman, A. Contemporary imaging for the diagnosis and treatment of traumatic dental injuries: A review. Dent. Traumatol. 2017, 33, 321–328. [Google Scholar] [CrossRef] [PubMed]
| Type of Radiograph | Average Effective Dose (μSv) |
|---|---|
| Small CBCT [19] < 50 cm2 | 96.5 (17.1–220.2) |
| Medium CBCT [19] 50–150 cm2 | 113.7 (28.0 to 298.0) |
| Large CBCT [19] > 150 cm2 | 151.4 (32.0 to 392.2) |
| Intraoral [19] | 1.32 (0.60–2.56) |
| Panoramic [19] | 17.94 (3.47–75.0) |
| Transatlantic flight [20] | 80 |
| UK average annual radiation dose [20] | 2700 |
| USA average annual radiation dose [20] | 6200 |
| AAE-AAOMR [21] and ESE [22] Recommendation for the Indication of CBCT | |
|---|---|
| Diagnosis and pre-operative assessment | To establish a definitive diagnosis in cases of nonspecific symptomatology where clinical findings and conventional two-dimensional radiography are inconclusive. |
| Anatomy | To visualize complex root canal systems, locate calcified or missed canals, and plan for guided endodontics. |
| Trauma | To identify and diagnose traumatic dental injuries that require advanced imaging modalities for proper assessment |
| Vertical root fractures | To aid in the diagnosis of vertical root fractures and the associated bone loss patterns when 2D radiography is inconclusive |
| Surgical | For preoperative assessment in periradicular surgery and to evaluate the proximity to adjacent anatomical structures. |
| Non-surgical retreatment | To investigate suspected etiologies of post-treatment disease and identify complications, such as perforations, separated instruments, and/or untreated anatomy. |
| Resorption | To localize, differentiate, and determine the prognosis of internal and external root resorption. |
| Post-operative assessment and outcome evaluation | To serve as a potential follow-up imaging modality if it was used for the initial evaluation. |
| Level | Type of Efficacy |
|---|---|
| 1 | Technical efficacy |
| 2 | Diagnostic accuracy efficacy |
| 3 | Diagnostic thinking efficacy |
| 4 | Therapeutic efficacy |
| 5 | Patient outcome efficacy |
| 6 | Societal efficacy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, J.; Zhang, C.; Lee, A.H.C. Clinical Benefits and Limitations of Cone-Beam Computed Tomography in Endodontic Practice: A Contemporary Evidence-Based Review. Diagnostics 2025, 15, 3117. https://doi.org/10.3390/diagnostics15243117
Wong J, Zhang C, Lee AHC. Clinical Benefits and Limitations of Cone-Beam Computed Tomography in Endodontic Practice: A Contemporary Evidence-Based Review. Diagnostics. 2025; 15(24):3117. https://doi.org/10.3390/diagnostics15243117
Chicago/Turabian StyleWong, Jasmine, Chengfei Zhang, and Angeline Hui Cheng Lee. 2025. "Clinical Benefits and Limitations of Cone-Beam Computed Tomography in Endodontic Practice: A Contemporary Evidence-Based Review" Diagnostics 15, no. 24: 3117. https://doi.org/10.3390/diagnostics15243117
APA StyleWong, J., Zhang, C., & Lee, A. H. C. (2025). Clinical Benefits and Limitations of Cone-Beam Computed Tomography in Endodontic Practice: A Contemporary Evidence-Based Review. Diagnostics, 15(24), 3117. https://doi.org/10.3390/diagnostics15243117

