The ICN-UN Battery: A Machine Learning-Optimized Tool for Expeditious Alzheimer’s Disease Diagnosis
Abstract
Share and Cite
Barceló, E.; Romero, D.; Allegri, R.; Meza, E.; Mosquera-Heredia, M.I.; Vidal, O.M.; Silvera-Redondo, C.; Arcos-Burgos, M.; Garavito-Galofre, P.; Vélez, J.I. The ICN-UN Battery: A Machine Learning-Optimized Tool for Expeditious Alzheimer’s Disease Diagnosis. Diagnostics 2025, 15, 3045. https://doi.org/10.3390/diagnostics15233045
Barceló E, Romero D, Allegri R, Meza E, Mosquera-Heredia MI, Vidal OM, Silvera-Redondo C, Arcos-Burgos M, Garavito-Galofre P, Vélez JI. The ICN-UN Battery: A Machine Learning-Optimized Tool for Expeditious Alzheimer’s Disease Diagnosis. Diagnostics. 2025; 15(23):3045. https://doi.org/10.3390/diagnostics15233045
Chicago/Turabian StyleBarceló, Ernesto, Duban Romero, Ricardo Allegri, Eliana Meza, María I. Mosquera-Heredia, Oscar M. Vidal, Carlos Silvera-Redondo, Mauricio Arcos-Burgos, Pilar Garavito-Galofre, and Jorge I. Vélez. 2025. "The ICN-UN Battery: A Machine Learning-Optimized Tool for Expeditious Alzheimer’s Disease Diagnosis" Diagnostics 15, no. 23: 3045. https://doi.org/10.3390/diagnostics15233045
APA StyleBarceló, E., Romero, D., Allegri, R., Meza, E., Mosquera-Heredia, M. I., Vidal, O. M., Silvera-Redondo, C., Arcos-Burgos, M., Garavito-Galofre, P., & Vélez, J. I. (2025). The ICN-UN Battery: A Machine Learning-Optimized Tool for Expeditious Alzheimer’s Disease Diagnosis. Diagnostics, 15(23), 3045. https://doi.org/10.3390/diagnostics15233045

