Dyslipidemia Assessed in Pediatric Patients: Validation of LDL-C Assessed by Friedewald Formula, Direct Assessment, and Sampson–NIH Formula
Abstract
1. Introduction
1.1. Dyslipidemia
1.2. Primary and Secondary Dyslipidemias
1.3. Lipid Profile
1.4. Direct Methods for Determination of LDL-C
1.5. The Friedewald Formula for Determination of LDL-C
1.6. The Sampson–NIH Equation to Calculate LDL-C
1.7. Reporting Lipid Panel
2. Material and Methods
2.1. Statistical Analysis
2.2. Characteristics of the Statistical Tool
3. Results
3.1. Sample Characteristics
3.2. Characteristics of Lipid Profile Assessment of the Tested Sample
3.3. Estimation of the Agreement of LDL Results Assessed by Direct Method vs. LDL-C Calculated by the Friedewald Formula
3.4. LDL-D Measured by Direct Method vs. LDL-C Calculated by the Sampson–NIH Formula
3.5. LDL-C, Calculated by the Friedewald Formula vs. LDL-C and the Sampson–NIH Formula
3.6. Estimation of the Effects of Age and Sex on LDL Scores in a Multivariate Approach
3.6.1. Selection of Variables and Effects for a Multifactor Model
3.6.2. Characteristics of the Overall Fit of the Model
3.6.3. Characteristics of Model Coefficients
3.7. EMM Results: Contrast Analysis
3.8. Comparative Evaluation of Indirect Methods for Dyslipidemia Diagnosis Against Direct LDL Measurement
3.9. Analysis of Incorrect and Missed Diagnoses
4. Discussion
5. Conclusions
- The direct measurement method yields the highest LDL values for the age of 13 years, which is significantly different from the results obtained by the Friedewald method and Sampson–NIH equation.
- The comparison between the direct method and Friedewald or Sampson–NIH method indicates a systematic underestimation of LDL concentrations by the indirect methods.
- The comparison between the Friedewald and Sampson–NIH methods indicates small although still statistically significant differences. This suggests that although both indirect methods underestimate LDL levels compared to the direct method, the differences between them are small but still detectable.
- From a clinical point of view, the Friedewald and Sampson–NIH formulas seem to be essentially interchangeable.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Multifactor Model Specification
References
- Cybulska, B.; Kłosiewicz-Latoszek, L. The HDL paradox: What does it mean and how to manage low serum HDL cholesterol level? Kardiol. Pol. 2014, 72, 681–686. [Google Scholar] [CrossRef]
- Fülöp, T.; Dupuis, G.; Witkowski, J.M.; Larbi, A. The Role of Immunosenescence in the Development of Age-Related Diseases. Rev. Investig. Clin. 2016, 68, 84–91. [Google Scholar] [CrossRef]
- Pac-Kożuchowska, E. The concentration of lipids, lipoproteins and apolipoproteins in cord blood serum of newborns in the course of intrauterine period. Ann. Univ. Marie Curie-Skłodowska Sect. D Med. 2003, 58, 92. [Google Scholar]
- Maldonado, V.; Weeks, B.; Cho, M.; Turpin, D.; Arevalo, A. Pediatric dyslipidemia. Prog. Pediatr. Cardiol. 2022, 65, 101518. [Google Scholar] [CrossRef]
- Krawiec, P.; Pac-Kożuchowska, E. Diagnosis and treatment of lipid disorders in children. Pediatr. Endocrinol. 2012, 11, 81–87. [Google Scholar]
- Stewart, J.; McCallin, T.; Martinez, J.; Chacko, S.; Yusuf, S. Hyperlipidemia. Pediatr. Rev. 2020, 41, 393–402. [Google Scholar] [CrossRef]
- Gauer, R. Hyperlipidemia Treatment in Children: The Younger, the Better. Am. Fam. Physician 2010, 82, 460–467. [Google Scholar] [PubMed]
- Gooding, H.C.; Rodday, A.M.; Wong, J.B.; Gillman, M.W.; Lloyd-Jones, D.M.; Leslie, L.K.; de Ferranti, S.D. Application of Pediatric and Adult Guidelines for Treatment of Lipid Levels Among US Adolescents Transitioning to Young Adulthood. JAMA Pediatr. 2015, 169, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction for Children and Adolescents; National Heart, Blood and Lung. Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction for Children and Adolescents: Summary Report. Pediatrics 2011, 128 (Suppl. S5), S213–S256. [Google Scholar] [CrossRef]
- Daniels, S.R. Pediatric guidelines for dyslipidemia. J. Clin. Lipidol. 2015, 9 (Suppl. S5), S5–S10. [Google Scholar] [CrossRef]
- Myśliwiec, M.; Marta Bandura, M.; Wołoszyn-Durkiewicz, A.; Hennig, M.; Walczak, M.; Peregud-Pogorzelski, J.; Sykut-Cegielska, J.; Miszczak-Knecht, M.; Chlebus, K.; Wasąg, B.; et al. Polish recommendations for the management of familial hypercholesterolemia in children and adolescents. Arch. Med. Sci. 2024, 20, 1741–1753. [Google Scholar] [PubMed]
- Solnica, B.; Sygitowicz, G.; Sitkiewicz, D.; Cybulska, B.; Jacek Jóźwiak, J.; Odrowąż-Sypniewska, G.; Banach, M. Guidelines of the Polish Society of Laboratory Diagnostics and the Polish Lipidological Society for Laboratory Diagnostics of Lipid Management Disorders. J. Lab. Diagn. Diagn. Lab. 2019, 55, 239–256. [Google Scholar] [CrossRef]
- Sbelendorio, V.; Palmieri, B. Accuracy of analyses for lipid profile parameters as measured with the CR3000 system. Eur. Rev. Med. Pharmacol. Sci. 2008, 12, 191–196. [Google Scholar]
- Solnica, B.; Sygitowicz, G.; Sitkiewicz, D.; Jóźwiak, J.; Kasperczyk, S.; Broncel, M.; Wolska, A.; Odrowąż-Sypniewska, G.; Banach, M. 2024 Guidelines of the Polish Society of Laboratory Diagnostics and the Polish Lipid Association on laboratory diagnostics of lipid metabolism disorders. Diagn. Lab. 2024, 60, 1–24. [Google Scholar] [CrossRef]
- Nauck, M.; Graziani, M.S.; Bruton, D.; Cobbaert, C.; Cole, T.G.; Lefevre, F.; Riesen, W.; Bachorik, P.S.; Rifai, N. Analytical and clinical performance of a detergent-based homogeneous LDL-C-cholesterol assay: A multicenter evaluation. Clin. Chem. 2000, 46, 506–514. [Google Scholar] [CrossRef]
- Nauck, M.; Rifai, N. Analytical performance and clinical efficacy of three routine procedures for LDL-C cholesterol measurement compared with the ultracentrifuga-tion-dextran sulfate-Mg2+ method. Clin. Chim. Acta 2000, 294, 77–92. [Google Scholar] [CrossRef]
- Ramasamy, I. Update on the laboratory investigation of dyslipidemias. Clin. Chim. Acta 2018, 479, 103–125. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Knopfholz, J.; Disserol, C.C.D.; Pierin, A.J.; Schirr, F.L.; Streisky, L.; Takito, L.L.; Bandeira, A.M. Validation of the Friedewald Formula in Patients with Metabolic Syndrome. Cholesterol 2014, 2014, 261878. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.S.; Blaha, M.J.; Elshazly, M.B.; Toth, P.P.; Kwiterovich, P.O.; Blumenthal, R.S.; Jones, S.R. Comparison of a novel method vs the friedewald equation forestimating low-density lipoprotein cholesterol levels from the standard lipid profile. JAMA 2013, 310, 2061–2068. [Google Scholar] [CrossRef] [PubMed]
- Sampson, M.; Ling, C.; Sun, Q.; Harb, R.; Ashmaig, M.; Warnick, R.; Sethi, A.; Fleming, J.K.; Otvos, J.D.; Meeusen, J.W.; et al. A new equation for calculation of low-density lipoprotein cholesterol in patients with normolipidemia and/or hypertriglyceridemia. JAMA Cardiol. 2020, 5, 540–548. [Google Scholar] [CrossRef]
- Sampson, M.; Wolska, A.; Meeusen, J.W.; Otvos, J. The Sampson–NIH Equation Is the Preferred Calculation Method for LDL-C. Clin. Chem. 2024, 70, 399–402. [Google Scholar] [CrossRef]
- Daniels, S.R.; Greer, F.R. and the Committee on Nutrition: Lipid screening and cardiovascular health in childhood. Pediatrics 2008, 122, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Altman, D.G.; Bland, J.M. Commentary on quantifying agreement between two methods of measurement. Clin. Chem. 2002, 48, 801–802. [Google Scholar] [CrossRef]
- Koller, M. robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects Models. J. Stat. Softw. 2016, 75, 1–24. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 27 October 2025).
- Bland, J.M.; Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Bates, D.; Maechler, M.; Jagan, M. Matrix: Sparse and Dense Matrix Classes and Methods. R Package Version 1.6-5. 2024. Available online: https://CRAN.R-project.org/package=Matrix (accessed on 27 October 2025).
- Datta D blandr: A Bland-Altman Method Comparison Package for R. Version 0.6.0. 2017. Available online: https://github.com/deepankardatta/blandr (accessed on 9 June 2024).
- Lenth, R. emmeans: Estimated Marginal Means. aka Least-Squares Means. R Package Version 1.10.1. 2024. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 27 October 2025).
- Lüdecke, D. sjPlot: Data Visualization for Statistics in Social Science. R Package Version 2.8.15. 2013. Available online: https://CRAN.R-project.org/package=sjPlot (accessed on 27 October 2025).
- Lüdecke, D.; Ben-Shachar, M.; Patil, I.; Waggoner, P.; Makowski, D. performance: An R Package for Assessment. Comparison and Testing of Statistical Models. J. Open Source Softw. 2021, 6, 3139. [Google Scholar] [CrossRef]
- Makowski, D.; Lüdecke, D.; Patil, I.; Thériault, R.; Ben-Shachar, M.; Wiernik, B. Automated Results Reporting as a Practical Tool to Improve Reproducibility and Methodological Best Practices Adoption. CRAN. 2013. Available online: https://easystats.github.io/report/ (accessed on 27 October 2025).
- Sjoberg, D.; Whiting, K.; Curry, M.; Lavery, J.; Larmarange, J. Reproducible Summary Tables with the gtsummary Package. R J. 2021, 13, 570–580. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. Available online: https://ggplot2.tidyverse.org (accessed on 27 October 2025).
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. dplyr: A Grammar of Data Manipulation. R Package Version 1.1.4. 2023. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 27 October 2025).
- Barry, M.J. Screening for Lipid Disorders in Children and Adolescents: US Preventive Services Task Force Recommendation Statement. JAMA 2023, 330, 253–260. [Google Scholar]
- Martins, J.; Muller Rossouw, H.; Pillay, T.S. How should low-density lipoprotein cholesterol be calculated in 2022. Curr. Opin. Lipidol. 2022, 33, 237–256. [Google Scholar] [CrossRef] [PubMed]




| p c | Sex | Sample (Total) | n | Characteristics | |
|---|---|---|---|---|---|
| Girl n2 = 1022 a | Boy n1 = 960 a | ||||
| 0.011 | 13.00 | 12.00 | 13.00 | 1.982 | Age (years) |
| (1.00, 9.00) | (9.00, 15.00) | (9.00, 15.00) | |||
| 0.035 | 1.982 | Age group (years): | |||
| 486.00 (47.55%) | 502.00 (52.29%) | 988.00 (4.85%) | <13 years | ||
| 536.00 (52.45%) | 458.00 (47.71%) | 994.00 (50.15%) | ≥13 years | ||
| p b | Sex | Sample (in Total) a | n | Characteristics | |
|---|---|---|---|---|---|
| Girl n2 = 1022 a | Boy n1 = 960 a | ||||
| 0.054 | 79.50 | 83.00 | 81.00 | 1.982 | TG [mg/dL] |
| (59.00, 110.00) | (61.00, 113.00) | (60.00, 111.00) | |||
| 0.009 | 150.00 | 154.00 | 153.00 | 1.982 | TC [mg/dL] |
| (134.00, 169.00) | (137.00, 172.00) | (135.00, 171.00) | |||
| 0.043 | 54.00 | 55.00 | 54.00 | 1.982 | HDL [mg/dL] |
| (44.00, 64.00) | (46.00, 64.00) | (45.00, 64.00) | |||
| 0.1 | 97.00 | 99.00 | 97.00 | 1.981 | non-HDL [mg/dL] |
| (79.00, 114.00) | (81.00, 115.00) | (80.00, 115.00) | |||
| 0.137 | 94.00 | 97.00 | 95.00 | 1.982 | LDL-D [mg/dL] direct method |
| (78.00, 112.00) | (79.00, 112.25) | (79.00, 112.00) | |||
| 0.294 | 77.80 | 79.60 | 78.60 | 1.982 | LDL-C, Friedewald Formula |
| (62.60, 94.55) | (63.40, 95.25) | (63.00, 94.75) | |||
| 0.266 | 78.74 | 80.71 | 79.72 | 1.982 | LDL-C, Sampson–NIH Formula |
| (63.57, 96.47) | (64.50, 96.82) | (64.17, 96.51) | |||
| p b | Age Groups | n | Characteristics | |
|---|---|---|---|---|
| ≥13 Years | <13 Years | |||
| n2 = 994 a | n1 = 988 a | |||
| 0.816 | 81.50 | 81.00 | 1.982 | TG [mg/dL] |
| (60.00, 108.00) | (59.00, 114.00) | |||
| <0.001 | 149.00 | 157.00 | 1.982 | TC [mg/dL] |
| (131.25, 167.75) | (138.00, 174.00) | |||
| 0.044 | 53.00 | 55.00 | 1.982 | HDL [mg/dL] |
| (45.00, 63.00) | (46.00, 65.00) | |||
| <0.001 | 93.00 | 100.00 | 1.982 | non-HDL [mg/dL] |
| (77.00, 112.00) | (83.00, 117.00) | |||
| <0.001 | 93.00 | 97.00 | 1.982 | LDL-D [mg/dL] direct method |
| (76.00, 110.00) | (81.00, 115.00) | |||
| <0.001 | 76.40 | 81.90 | 1.982 | LDL-C, Friedewald Formula |
| (60.65, 92.60) | (65.40, 97.20) | |||
| <0.001 | 76.74 | 82.78 | 1.982 | LDL-C, Sampson–NIH Formula |
| (60.68, 93.98) | (66.63, 98.45) | |||
| LDL mg/dL | Explanatory Variables | ||
|---|---|---|---|
| p | 95% CI | β | |
| <0.001 | 93.59–96.77 | 95.18 | Constant |
| Reference category | Direct method | ||
| <0.001 | −16.44–−16.10 | −16.27 | Friedewald Formula |
| <0.001 | −15.50–−15.16 | −15.33 | Sampson–NIH Formula |
| 0.004 | −0.63–−0.12 | −0.37 | Age (centered for Mdn = 13.0 years) |
| Reference category | Sex [girl] | ||
| 0.295 | −3.28–0.99 | −1.14 | Sex [boy] |
| <0.001 | −0.16–−0.08 | −0.12 | Method: [Friedewald] × age (centered for Mdn = 13.0 lat) |
| <0.001 | −0.18–−0.11 | −0.15 | Method [Sampson–NIH] × age (centered for Mdn = 13.0 years) |
| Method | EMM | SE | 95% CI |
|---|---|---|---|
| Direct | 95.1 | 0.55 | 94.1–96.2 |
| Friedewald | 79.0 | 0.55 | 78.0–80.1 |
| Sampson–NIH | 80.0 | 0.55 | 78.9–81.1 |
| Contrast | Estimate | SE | z | padj |
|---|---|---|---|---|
| Direct | 16.10 | 0.08 | 196.34 | <0.001 |
| Friedewald | 15.12 | 0.08 | 184.43 | <0.001 |
| Sampson–NIH | −0.98 | 0.08 | −11.91 | <0.001 |
| True Dyslipidemia | True No Dyslipidemia | |
|---|---|---|
| Dyslipidemia | 627 | 3 |
| No dyslipidemia | 348 | 961 |
| True Dyslipidemia | True No Dyslipidemia | |
|---|---|---|
| Dyslipidemia | 645 | 3 |
| No dyslipidemia | 330 | 961 |
| Classification Metric | Friedewald Equation | Sampson–NIH Equation | Notes |
|---|---|---|---|
| Accuracy (95% CI) | 0.82 (0.80–0.84) | 0.83 (0.81–0.84) | Proportion of correct classifications (true positives + true negatives)/total cases. |
| Kappa Statistic | 0.639 | 0.657 | Measure of agreement beyond chance, with higher values indicating better concordance. |
| Sensitivity | 0.643 | 0.662 | Proportion of true dyslipidemia cases correctly identified (true positives/actual positives). |
| Specificity | 0.997 | 0.997 | Proportion of non-dyslipidemia cases correctly identified (true negatives/actual negatives). |
| Positive Predictive Value (PPV) | 0.995 | 0.995 | Probability that a positive prediction is correct (true positives/predicted positives). |
| Negative Predictive Value (NPV) | 0.734 | 0.744 | Probability that a negative prediction is correct (true negatives/predicted negatives). |
| Detection Rate | 0.323 | 0.333 | Proportion of true positives identified in the total sample (true positives/total cases). |
| Detection Prevalence | 0.325 | 0.334 | Proportion of positive predictions in the total sample (predicted positives/total cases). |
| Balanced Accuracy | 0.82 | 0.829 | Average of sensitivity and specificity, reflecting overall diagnostic balance. |
| False Positives (Incorrect Diagnoses) | 3 | 3 | Number of non-dyslipidemia cases incorrectly classified as dyslipidemia. |
| False Negatives (Missed Diagnoses) | 348 | 330 | Number of dyslipidemia cases incorrectly classified as no dyslipidemia. |
| McNemar’s Test p-Value | <0.001 | <0.001 | Indicates significant asymmetry in errors, primarily due to false negatives. |
| p-Value (Accuracy > NIR) | <0.001 | <0.001 | Significance of accuracy exceeding chance-level classification (NIR: 0.50). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wawer, J.; Chojęta, A.; Swadźba, J.; Janiszewska, M.; Chojęta, M.; Wawer, G.A.; Grywalska, E.; Milaniuk, A. Dyslipidemia Assessed in Pediatric Patients: Validation of LDL-C Assessed by Friedewald Formula, Direct Assessment, and Sampson–NIH Formula. Diagnostics 2025, 15, 2979. https://doi.org/10.3390/diagnostics15232979
Wawer J, Chojęta A, Swadźba J, Janiszewska M, Chojęta M, Wawer GA, Grywalska E, Milaniuk A. Dyslipidemia Assessed in Pediatric Patients: Validation of LDL-C Assessed by Friedewald Formula, Direct Assessment, and Sampson–NIH Formula. Diagnostics. 2025; 15(23):2979. https://doi.org/10.3390/diagnostics15232979
Chicago/Turabian StyleWawer, Joanna, Agnieszka Chojęta, Jakub Swadźba, Mariola Janiszewska, Michał Chojęta, Genowefa Anna Wawer, Ewelina Grywalska, and Anna Milaniuk. 2025. "Dyslipidemia Assessed in Pediatric Patients: Validation of LDL-C Assessed by Friedewald Formula, Direct Assessment, and Sampson–NIH Formula" Diagnostics 15, no. 23: 2979. https://doi.org/10.3390/diagnostics15232979
APA StyleWawer, J., Chojęta, A., Swadźba, J., Janiszewska, M., Chojęta, M., Wawer, G. A., Grywalska, E., & Milaniuk, A. (2025). Dyslipidemia Assessed in Pediatric Patients: Validation of LDL-C Assessed by Friedewald Formula, Direct Assessment, and Sampson–NIH Formula. Diagnostics, 15(23), 2979. https://doi.org/10.3390/diagnostics15232979

