The Interleukin Network in Sepsis: From Cytokine Storm to Clinical Applications
Abstract
1. Introduction
1.1. Pathophysiology of Sepsis: The Cytokine Storm
1.2. Pediatric Sepsis
2. Materials and Methods
3. Key Interleukins Involved in Sepsis
3.1. Interleukin-1 Family
3.1.1. Structure, Classification and Function
3.1.2. Individual Roles and Pathophysiological Implications
3.1.3. Therapeutic Strategies
3.2. Interleukin-6
3.3. Interleukin-10
3.4. Interleukin-8
3.5. Interleukin-12
3.6. Interleukin-17 Family
4. Cytokine-Mediated Immunosuppression in Pediatric Sepsis
5. Therapeutic Implications
5.1. Targeting IL-1 Pathways in Sepsis
5.2. Clinical Applications of IL-1 Inhibition
5.3. Emerging Cytokine Targets and Alternative Approaches
6. Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| IL | Interleukin (followed by the number: IL-1, IL-6, IL-10, IL-8, IL-12, IL-17, IL-18, IL-33, etc.) |
| IL-1Ra | Interleukin-1 Receptor Antagonist |
| IL-6R | Interleukin-6 Receptor |
| TNF-α | Tumor Necrosis Factor-alpha |
| CRP | C-Reactive Protein |
| SIRS | Systemic Inflammatory Response Syndrome |
| SOFA | Sequential Organ Failure Assessment |
| ICU | Intensive Care Unit |
| AKI | Acute Kidney Injury |
| ARDS | Acute Respiratory Distress Syndrome |
| DIC | Disseminated Intravascular Coagulation |
| ALI | Acute Lung Injury |
| SAE | Sepsis-Associated Encephalopathy |
| PCT | Procalcitonin |
| HBP | Heparin-Binding Protein |
| APACHE II | Acute Physiology and Chronic Health Evaluation II |
| PRR (s) | Pathogen Recognition Receptor (s) |
| PAMP (s) | Pathogen-Associated Molecular Pattern (s) |
| LPS | Lipopolysaccharide |
| NF-κB | Nuclear Factor kappa-light-chain-enhancer of activated B cells |
| MAPK | Mitogen-Activated Protein Kinase |
| JAK/STAT3 | Janus Kinase/Signal Transducer and Activator of Transcription 3 pathway |
| NET (s) | Neutrophil Extracellular Trap (s) |
| SNP (s) | Single Nucleotide Polymorphism (s) |
| IFN-γ | Interferon gamma |
| MAS | Macrophage Activation Syndrome |
| HLH | Hemophagocytic Lymphohistiocytosis |
| ROS | Reactive Oxygen Species |
| MHC | Major Histocompatibility Complex |
| TCR | T-Cell Receptor |
| Th1/Th2/Th17 | T-Helper lymphocyte subsets |
| Tc17 | Cytotoxic T lymphocyte subset producing IL-17 |
| VE-cadherin | Vascular Endothelial cadherin |
| SBI (s) | Serious Bacterial Infection (s) |
| eM | Engineered Macrophages (es. IL-10-eM) |
| AIM | Apoptosis Inhibitor of Macrophages |
| EBV | Epstein–Barr Virus |
| gp130 | Glycoprotein 130 (IL-6 co-receptor) |
| HBD | Hepatobiliary Dysfunction |
References
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef]
- Moskowitz, A.; Omar, Y.; Chase, M.; Lokhandwala, S.; Patel, P.; Andersen, L.W.; Cocchi, M.N.; Donnino, M.W. Reasons for death in patients with sepsis and septic shock. J. Crit. Care 2017, 38, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Srzić, I.; Adam, V.N.; Pejak, D.T. Sepsis definition: What’s new in the treatment guidelines. Acta Clin. Croat. 2022, 61, 67–72. [Google Scholar] [CrossRef]
- Stearns-Kurosawa, D.J.; Osuchowski, M.F.; Valentine, C.; Kurosawa, S.; Remick, D.G. The pathogenesis of sepsis. Annu. Rev. Pathol. Mech. Dis. 2011, 6, 19–48. [Google Scholar] [CrossRef]
- Blackwell, T.S.; Christman, J.W. Sepsis and cytokines: Current status. Br. J. Anaesth. 1996, 77, 110–117. [Google Scholar] [CrossRef]
- Justiz Vaillant, A.A.; Qurie, A. Interleukin; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Reddy, H.; Javvaji, C.K.; Malali, S.; Kumar, S.; Acharya, S.; Toshniwal, S. Navigating the Cytokine Storm: A Comprehensive Review of Chemokines and Cytokines in Sepsis. Cureus 2024, 16, e54275. [Google Scholar] [CrossRef]
- van der Poll, T.; Shankar-Hari, M.; Wiersinga, W.J. The immunology of sepsis. Immunity 2021, 54, 2450–2464. [Google Scholar] [CrossRef]
- Wiersinga, W.J.; Leopold, S.J.; Cranendonk, D.R.; van der Poll, T. Host innate immune responses to sepsis. Virulence 2014, 5, 36–44. [Google Scholar] [CrossRef]
- Pignataro, G.; Gemma, S.; Petrucci, M.; Barone, F.; Piccioni, A.; Franceschi, F.; Candelli, M. Unraveling NETs in Sepsis: From Cellular Mechanisms to Clinical Relevance. Int. J. Mol. Sci. 2025, 26, 7464. [Google Scholar] [CrossRef]
- Jarczak, D.; Nierhaus, A. Cytokine Storm—Definition, Causes, and Implications. Int. J. Mol. Sci. 2022, 23, 11740. [Google Scholar] [CrossRef]
- Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen recognition and innate immunity. Cell 2006, 124, 783–801. [Google Scholar] [CrossRef]
- Akira, S.; Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 2004, 4, 499–511. [Google Scholar] [CrossRef]
- Gogos, C.A.; Drosou, E.; Bassaris, H.P.; Skoutelis, A. Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: A marker for prognosis and future therapeutic options. J. Infect. Dis. 2000, 181, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Valsamaki, A.; Vazgiourakis, E.; Mantzarlis, K.; Manoulakas, E.; Makris, D. Immune Dysregulation in Sepsis. A Narrative Review for the Clinicians. Biomedicines 2025, 13, 2386. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.; Zhou, L.; Tian, W.; Liu, X.; Yang, L.; Yang, X.; Zhang, Y.; Wei, S.; Wang, D.W.; Wei, J. Deep insight into cytokine storm: From pathogenesis to treatment. Signal Transduct. Target. Ther. 2025, 10, 112. [Google Scholar] [CrossRef] [PubMed]
- Schlapbach, L.J.; Watson, R.S.; Sorce, L.R.; Argent, A.C.; Menon, K.; Hall, M.W.; Akech, S.; Albers, D.J.; Alpern, E.R.; Balamuth, F.; et al. International Consensus Criteria for Pediatric Sepsis and Septic Shock. JAMA 2024, 331, 665–674. [Google Scholar] [CrossRef]
- Goldstein, B.; Giroir, B.; Randolph, A. International pediatric sepsis consensus conference: Definitions for sepsis and organ dysfunction in pediatrics. Pediatr. Crit. Care Med. 2005, 6, 2–8. [Google Scholar] [CrossRef]
- Noni, M.; Kalogera, E.; Xydia, A.; Paradeisis, G.; Spyridopoulou, K.; Zachariadou, L.; Botsa, E. Validation of a Rapid Host-Protein Score to Discriminate Bacterial from Viral Infections in Hospitalized Febrile Pediatric Patients. Children 2025, 12, 381. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Chen, Z.H.; An, X.X.; Li, H.; Zhang, H.L.; Wu, S.J.; Guo, Y.-Q.; Zhang, K.; Zeng, C.-L.; Fang, X.-M. Analysis and validation of diagnostic biomarkers and immune cell infiltration characteristics in pediatric sepsis by integrating bioinformatics and machine learning. World J. Pediatr. 2023, 19, 1094–1103. [Google Scholar] [CrossRef]
- Lyu, P.; Xie, N.; Shao, X.; Xing, S.; Wang, X.; Duan, L.; Zhao, X.; Lu, J.-M.; Liu, R.-F.; Zhang, D.; et al. Integrating bioinformatics and machine learning for comprehensive analysis and validation of diagnostic biomarkers and immune cell infiltration characteristics in pediatric septic shock. Sci. Rep. 2025, 15, 10456. [Google Scholar] [CrossRef]
- Kong, C.; Zhu, Y.; Xie, X.; Wu, J.; Qian, M. Six potential biomarkers in septic shock: A deep bioinformatics and prospective observational study. Front. Immunol. 2023, 14, 1184700. [Google Scholar] [CrossRef]
- Liu, B.; Fan, Y.; Zhang, X.; Li, H.; Gao, F.; Shang, W.; Hu, J.; Tang, Z. Identification of Immune-Related Genes as Potential Biomarkers in Early Septic Shock. Int. Arch. Allergy Immunol. 2024, 186, 264–279. [Google Scholar] [CrossRef]
- Baxla, V.; Sharma, A.K.; Seema, K.; Kumar, A.; Boipai, M.; Bhattacharya, P.K.; Kumar, M. Sepsis Biomarkers: CRP, Procalcitonin, and Presepsin—Diagnostic and Prognostic Significance in Sepsis. J. West Afr. Coll. Surg. 2025, 15, 457–462. [Google Scholar] [CrossRef]
- Manchikalapati, R.; Schening, J.; Farias, A.J.; Sacco, K.A. Clinical utility of interleukin-1 inhibitors in pediatric sepsis. Shock 2024, 61, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Huang, M.; Yao, Y. Recent advances in the biology of IL-1 family cytokines and their potential roles in development of sepsis. Cytokine Growth Factor Rev. 2019, 45, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Krakauer, T.; Buckley, M.J.; Fisher, D. Proinflammatory Mediators of Toxic Shock and Their Correlation to Lethality. Mediat. Inflamm. 2010, 2010, 517594. [Google Scholar] [CrossRef]
- Fazeli, P.; Saeidnia, M.; Erfani, M.; Kalani, M. An overview of the biological and multifunctional roles of IL-38 in different infectious diseases and COVID-19. Immunol. Res. 2022, 70, 316–324. [Google Scholar] [CrossRef]
- Chang, D.; Jia, J.; Zang, B. Changes in plasma interleukin-33 concentration in sepsis and its correlation with seriousness of sepsis. Chin. Crit. Care Med. 2015, 27, 138–142. [Google Scholar] [CrossRef]
- Buhl, A.L.; Wenzel, J. Interleukin-36 in infectious and inflammatory skin diseases. Front. Immunol. 2019, 10, 1162. [Google Scholar] [CrossRef]
- Roy, U. Insight into the structures of Interleukin-18 systems. Comput. Biol. Chem. 2020, 88, 107353. [Google Scholar] [CrossRef]
- Herminghaus, A.; Totskyi, M.; Vollmer, C.; Dimski, T.; Brandenburger, T.; Kuebart, A.; Rinderknecht, H.; Bergmann, C.B.; Vernikouskaya, I.; Bülow, J.M.; et al. Diagnostic utility of IL-18 plasma levels in distinguishing abdominal from non-abdominal sepsis. Front. Immunol. 2025, 16, 1591262. [Google Scholar] [CrossRef]
- Zheng, H. The critical immunoregulatory roles and molecular mechanisms of IL-10 and IL-18 genes in pneumonia and sepsis. Medicine 2025, 104, e42104. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.Q.; Snyder, J.; Connolly, J.; Glessner, J.; Kao, C.; Sleiman, P.; Hakonarson, H. Circulating LIGHT (TNFSF14) and Interleukin-18 Levels in Sepsis-Induced Multi-Organ Injuries. Biomedicines 2022, 10, 264. [Google Scholar] [CrossRef] [PubMed]
- Standage, S.W.; Wong, H.R. Biomarkers for pediatric sepsis and septic shock. Expert Rev. Anti Infect. Ther. 2011, 9, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Sriram, A.; Kernan, K.F.; Qin, Y.; Aldewereld, Z.; Walton, A.H.; Cabler, S.; Storch, G.; Cheynet, V.; Brengel-Pesce, K.; Canna, S.; et al. Epstein-Barr Virus Seropositivity, Immune Dysregulation, and Mortality in Pediatric Sepsis. JAMA Netw. Open 2025, 8, e2527487. [Google Scholar] [CrossRef]
- Pignataro, G.; Triunfo, C.; Piccioni, A.; Racco, S.; Fuorlo, M.; Forte, E.; Franceschi, F.; Candelli, M. The Epigenetics of Sepsis: How Gene Modulation Shapes Outcomes. Biomedicines 2025, 13, 1936. [Google Scholar] [CrossRef]
- Papatheodorou, I.; Blažková, G.; Bosáková, V.; Tomášiková, Z.; Spearing, E.; Klieber, R.; Ostašov, P.; Štíchová, J.; Dvončová, M.; Mýtniková, A.; et al. Redefining the role of IL-18 in post-surgical recovery and sepsis: A key mediator of inflammation resolution. J. Transl. Med. 2025, 23, 728. [Google Scholar] [CrossRef]
- Sen, E.S.; Clarke, S.L.N.; Ramanan, A.V. Macrophage Activation Syndrome. Indian J. Pediatr. 2016, 83, 248–253. [Google Scholar] [CrossRef]
- Cavalli, G.; Dinarello, C.A. Anakinra Therapy for Non-cancer Inflammatory Diseases. Front. Pharmacol. 2018, 9, 1157. [Google Scholar] [CrossRef]
- Rajasekaran, S.; Kruse, K.; Kovey, K.; Davis, A.T.; Hassan, N.E.; Ndika, A.N.; Zuiderveen, S.; Birmingham, J. Therapeutic Role of Anakinra, an Interleukin-1 Receptor Antagonist, in the Management of Secondary Hemophagocytic Lymphohistiocytosis/Sepsis/Multiple Organ Dysfunction/Macrophage Activating Syndrome in Critically Ill Children*. Pediatr. Crit. Care Med. 2014, 15, 401–408. [Google Scholar] [CrossRef]
- Behzadi, P.; Sameer, A.S.; Nissar, S.; Banday, M.Z.; Gajdács, M.; García-Perdomo, H.A.; Akhtar, K.; Pinheiro, M.; Magnusson, P.; Sarshar, M.; et al. The Interleukin-1 (IL-1) Superfamily Cytokines and Their Single Nucleotide Polymorphisms (SNPs). J. Immunol. Res. 2022, 2022, 2054431. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Masuda, K.; Kishimoto, T. Regulation of IL-6 in immunity and diseases. Adv. Exp. Med. Biol. 2016, 941, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Garbers, C.; Rose-John, S. Dissecting interleukin-6 classic- and trans-signaling in inflammation and cancer. Methods Mol. Biol. 2018, 1725, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Eichberger, J.; Resch, E.; Resch, B. Diagnosis of Neonatal Sepsis: The Role of Inflammatory Markers. Front. Pediatr. 2022, 10, 840288. [Google Scholar] [CrossRef] [PubMed]
- Rose-John, S. Interleukin-6 signalling in health and disease. F1000Research 2020, 9, 1013. [Google Scholar] [CrossRef]
- Butterick, T.A.; Trembley, J.H.; Hocum Stone, L.L.; Muller, C.J.; Rudquist, R.R.; Bach, R.R. Gulf War Illness-associated increases in blood levels of interleukin 6 and C-reactive protein: Biomarker evidence of inflammation. BMC Res. Notes 2019, 12, 816. [Google Scholar] [CrossRef]
- Roy, S.; Kumar, V.; Kumar, V.; Behera, B.K. Acute Phase Proteins and their Potential Role as an Indicator for Fish Health and in Diagnosis of Fish Diseases. Protein Pept. Lett. 2016, 24, 78–89. [Google Scholar] [CrossRef]
- Schumertl, T.; Lokau, J.; Garbers, C. IL-6 Signaling in Immunopathology: From Basic Biology to Selective Therapeutic Intervention. Immunotargets Ther. 2025, 14, 681–695. [Google Scholar] [CrossRef]
- Song, J.; Park, D.W.; Moon, S.; Cho, H.J.; Park, J.H.; Seok, H.; Choi, W.S. Diagnostic and prognostic value of interleukin-6, pentraxin 3, and procalcitonin levels among sepsis and septic shock patients: A prospective controlled study according to the Sepsis-3 definitions. BMC Infect. Dis. 2019, 19, 968. [Google Scholar] [CrossRef]
- Cicchinelli, S.; Pignataro, G.; Gemma, S.; Piccioni, A.; Picozzi, D.; Ojetti, V.; Franceschi, F.; Candelli, M. PAMPs and DAMPs in Sepsis: A Review of Their Molecular Features and Potential Clinical Implications. Int. J. Mol. Sci. 2024, 25, 962. [Google Scholar] [CrossRef]
- Rose-John, S. IL-6 trans-signaling via the soluble IL-6 receptor: Importance for the pro-inflammatory activities of IL-6. Int. J. Biol. Sci. 2012, 8, 1237–1247. [Google Scholar] [CrossRef]
- Valle, M.L.; Dworshak, J.; Sharma, A.; Ibrahim, A.S.; Al-Shabrawey, M.; Sharma, S. Inhibition of interleukin-6 trans-signaling prevents inflammation and endothelial barrier disruption in retinal endothelial cells. Exp. Eye Res. 2019, 178, 27–36. [Google Scholar] [CrossRef]
- Montgomery, A.; Tam, F.; Gursche, C.; Cheneval, C.; Besler, K.; Enns, W.; Manku, S.; Rey, K.; Hanson, P.J.; Rose-John, S.; et al. Overlapping and distinct biological effects of IL-6 classic and trans-signaling in vascular endothelial cells. Am. J. Physiol. Cell Physiol. 2021, 320, C554–C565. [Google Scholar] [CrossRef]
- van Leeuwen, L.M.; Fourie, E.; van den Brink, G.; Bekker, V.; van Houten, M.A. Diagnostic value of maternal, cord blood and neonatal biomarkers for early-onset sepsis: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2024, 30, 850–857. [Google Scholar] [CrossRef] [PubMed]
- Beneyto, L.A.P.; Luis, O.R.; Sánchez, C.S.; Simón, O.C.; Rentero, D.B.; Bayarri, V.M. Prognostic value of interleukin 6 for death of patients with sepsis. Med. Clin. 2017, 148, 433. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Chen, M.; Zhang, Y.; Cao, Y.; Yang, J.; Wei, B.; Wang, J. Diagnostic and Prognostic Value of Interleukin-6 in Emergency Department Sepsis Patients. Infect. Drug Resist. 2022, 15, 5557–5566. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-H.; Chang, T.-Y.; Wang, Y.-L.; Lee, E.-P.; Lin, J.-J.; Hsiao, Y.-W.; Jaing, T.-H.; Yang, C.-P.; Hung, I.-J. Outcome of Tocilizumab Treatment in Febrile Neutropenic Children with Severe Sepsis/Septic Shock in a Single-Center Retrospective Case Series. Cancers 2024, 16, 1512. [Google Scholar] [CrossRef]
- Lee, E.-P.; Lin, J.-J.; Chen, S.-H.; Chan, O.-W.; Su, Y.-T.; Hsiao, M.-R.; Hsia, S.-H.; Wu, H.-P. Clinical Value of Tocilizumab in Reducing Mortality in Refractory Septic Shock in Children with Hematologic and Non-Hematologic Diseases. Cells 2025, 14, 441. [Google Scholar] [CrossRef]
- Saxton, R.A.; Tsutsumi, N.; Su, L.L.; Abhiraman, G.C.; Mohan, K.; Henneberg, L.T.; Aduri, N.G.; Gati, C.; Garcia, K.C. Structure-based decoupling of the pro- and anti-inflammatory functions of interleukin-10. Science 2021, 371, eabc8433. [Google Scholar] [CrossRef]
- Mazer, M.; Unsinger, J.; Drewry, A.; Walton, A.; Osborne, D.; Blood, T.; Hotchkiss, R.; ERemy, K. IL-10 Has Differential Effects on the Innate and Adaptive Immune Systems of Septic Patients. J. Immunol. 2019, 203, 2088–2099. [Google Scholar] [CrossRef]
- Vico-Barranco, I.; Arbulo-Echevarria, M.M.; Serrano-García, I.; Pérez-Linaza, A.; Miranda-Sayago, J.M.; Miazek, A.; Narbona-Sánchez, I.; Aguado, E. A novel, lat/lck double deficient t cell subline j.Cam1.7 for combined analysis of early tcr signaling. Cells 2021, 10, 343. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.; Weng, T.; Nie, P.; Zhu, L.; Gao, M.; Jia, H.; Yang, S.; Li, X.; Zhang, L.; Xu, Y.; et al. Overexpression of interleukin-10 in engineered macrophages protects endothelial cells against LPS-induced injury in vitro. FEBS Open Bio 2022, 12, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Almahmoud, K.; Namas, R.A.; Zaaqoq, A.M.; Abdul-Malak, O.; Namas, R.; Zamora, R.; Sperry, J.; Billiar, T.R.; Vodovotz, Y. Prehospital hypotension is associated with altered inflammation dynamics and worse outcomes following blunt trauma in humans. Crit. Care Med. 2015, 43, 1395–1404. [Google Scholar] [CrossRef] [PubMed]
- Matsushima, K.; Shichino, S.; Ueha, S. Thirty-five years since the discovery of chemotactic cytokines, interleukin-8 and MCAF: A historical overview. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2023, 99, 213–226. [Google Scholar] [CrossRef]
- Matsushima, K.; Yang, D.; Oppenheim, J.J. Interleukin-8: An evolving chemokine. Cytokine 2022, 153, 155828. [Google Scholar] [CrossRef]
- Bernhard, S.; Hug, S.; Stratmann, A.E.P.; Erber, M.; Vidoni, L.; Knapp, C.L.; Thomaß, B.D.; Fauler, M.; Nilsson, B.; Ekdahl, K.N.; et al. Interleukin 8 elicits rapid physiological changes in neutrophils that are altered by inflammatory conditions. J. Innate Immun. 2021, 13, 225–241. [Google Scholar] [CrossRef]
- Teijeira, A.; Garasa, S.; Ochoa Mdel, C.; Cirella, A.; Olivera, I.; Glez-Vaz, J.; Andueza, M.P.; Migueliz, I.; Alvarez, M.; Rodríguez-Ruiz, M.E.; et al. Differential Interleukin-8 thresholds for chemotaxis and netosis in human neutrophils. Eur. J. Immunol. 2021, 51, 2274–2280. [Google Scholar] [CrossRef]
- Wang, Y.; Du, C.; Zhang, Y.; Zhu, L. Composition and Function of Neutrophil Extracellular Traps. Biomolecules 2024, 14, 416. [Google Scholar] [CrossRef]
- Asiri, A.; Hazeldine, J.; Moiemen, N.; Harrison, P. IL-8 Induces Neutrophil Extracellular Trap Formation in Severe Thermal Injury. Int. J. Mol. Sci. 2024, 25, 7216. [Google Scholar] [CrossRef]
- Mao, Y.; Zhang, A.; Yang, H.; Zhang, C. Identification of IL-8 in CSF as a potential biomarker in sepsis-associated encephalopathy. Cytokine 2023, 172, 156390. [Google Scholar] [CrossRef]
- Fu, P.; Xie, S.; Zhang, X. IL-8 gene locus is associated with risk, severity and 28-day mortality of sepsis in a Chinese population. Clin. Exp. Med. 2019, 19, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Han, T.; Liang, T.; Liu, R.; Quan, Y. The association between interleukin-8 gene polymorphism and the risk of sepsis in older adults. J. Orthop. Surg. Res. 2024, 19, 804. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.W.; Ma, T.; Cai, Q.; Wang, L.; Song, H.W.; Liu, Z. Elevation of Serum PARK7 and IL-8 Levels Is Associated with Acute Lung Injury in Patients with Severe Sepsis/Septic Shock. J. Intensive Care Med. 2019, 34, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, J.; Guo, S. Predictive value of IL-8 for mortality risk in elderly sepsis patients of emergency department. Cytokine 2024, 184, 156774. [Google Scholar] [CrossRef]
- Guo, S.; Liao, C.; Liu, Q. Prognostic value of TNF-α, PCT, IL-8, and HBP, combined with APACHE II score in patients with sepsis. J. Infect. Dev. Ctries. 2025, 19, 439–445. [Google Scholar] [CrossRef]
- Leonard, S.; Guertin, H.; Odoardi, N.; Miller, M.R.; Patel, M.A.; Daley, M.; Cepinskas, G.; Fraser, D.D. Pediatric sepsis inflammatory blood biomarkers that correlate with clinical variables and severity of illness scores. J. Inflamm. 2024, 21, 7. [Google Scholar] [CrossRef]
- Elsner, R.A.; Smita, S.; Shlomchik, M.J. IL-12 induces a B cell-intrinsic IL-12/IFNγ feed-forward loop promoting extrafollicular B cell responses. Nat. Immunol. 2024, 25, 1283–1295. [Google Scholar] [CrossRef]
- Elsner, R.A.; Shlomchik, M.J. Coordinated Regulation of Extrafollicular B Cell Responses by IL-12 and IFNγ. Immunol. Rev. 2025, 331, e70027. [Google Scholar] [CrossRef]
- Gaignage, M.; Uyttenhove, C.; Jones, L.L.; Bourdeaux, C.; Chéou, P.; Mandour, M.F.; Coutelier, J.; Vignali, D.A.; Van Snick, J. Novel antibodies that selectively block mouse IL-12 enable the re-evaluation of the role of IL-12 in immune protection and pathology. Eur. J. Immunol. 2021, 51, 1482–1493. [Google Scholar] [CrossRef]
- Angurana, S.K.; Bansal, A.; Muralidharan, J.; Aggarwal, R.; Singhi, S. Cytokine Levels in Critically Ill Children with Severe Sepsis and Their Relation With the Severity of Illness and Mortality. J. Intensive Care Med. 2021, 36, 576–583. [Google Scholar] [CrossRef]
- Lu, J.; Sun, K.; Yang, H.; Fan, D.; Huang, H.; Hong, Y.; Wu, S.; Zhou, H.; Fang, F.; Li, Y.; et al. Sepsis Inflammation Impairs the Generation of Functional Dendritic Cells by Targeting Their Progenitors. Front. Immunol. 2021, 12, 732612. [Google Scholar] [CrossRef]
- Huangfu, L.; Li, R.; Huang, Y.; Wang, S. The IL-17 family in diseases: From bench to bedside. Signal Transduct. Target. Ther. 2023, 8, 402. [Google Scholar] [CrossRef] [PubMed]
- McGeachy, M.J.; Cua, D.J.; Gaffen, S.L. The IL-17 Family of Cytokines in Health and Disease. Immunity 2019, 50, 892–906. [Google Scholar] [CrossRef] [PubMed]
- Saran, A.; Nishizaki, D.; Lippman, S.M.; Kato, S.; Kurzrock, R. Interleukin-17: A pleiotropic cytokine implicated in inflammatory, infectious, and malignant disorders. Cytokine Growth Factor Rev. 2025, 83, 35–44. [Google Scholar] [CrossRef] [PubMed]
- de Souza Costa, M.F.; de Negreiros, C.B.T.; Bornstein, V.U.; Valente, R.H.; Mengel, J.; das Graças Henriques, M.; Benjamim, C.F.; Penido, C. Murine IL-17+ Vγ4 T lymphocytes accumulate in the lungs and play a protective role during severe sepsis. BMC Immunol. 2015, 16, 36. [Google Scholar] [CrossRef]
- Dong, S.; Liu, S.; Gao, Q.; Shi, J.; Song, K.; Wu, Y.; Liu, H.; Guo, C.; Huang, Y.; Du, S.; et al. Interleukin-17D produced by alveolar epithelial type II cells alleviates LPS-induced acute lung injury via the Nrf2 pathway. Clin. Sci. 2023, 137, 1499–1512. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, S.; Fan, Y.; Sheng, C.; Ge, W. Association Between IL10 Polymorphisms and the Susceptibility to Sepsis: A Meta-Analysis. Biochem. Genet. 2023, 61, 847–860. [Google Scholar] [CrossRef]
- Frimpong, A.; Owusu, E.D.A.; Amponsah, J.A.; Obeng-Aboagye, E.; van der Puije, W.; Frempong, A.F.; Kusi, K.A.; Ofori, M.F. Cytokines as Potential Biomarkers for Differential Diagnosis of Sepsis and Other Non-Septic Disease Conditions. Front. Cell Infect. Microbiol. 2022, 12, 901433. [Google Scholar] [CrossRef]
- Zhao, H.; Li, W.; Lu, Z.; Sheng, Z.; Yao, Y. The Growing Spectrum of Anti-Inflammatory Interleukins and Their Potential Roles in the Development of Sepsis. J. Interferon Cytokine Res. 2015, 35, 242–251. [Google Scholar] [CrossRef]
- Fan, Z.; Kernan, K.F.; Qin, Y.; Canna, S.; Berg, R.A.; Wessel, D.; Pollack, M.M.; Meert, K.; Hall, M.; Newth, C.; et al. Hyperferritinemic sepsis, macrophage activation syndrome, and mortality in a pediatric research network: A causal inference analysis. Crit. Care 2023, 27, 347. [Google Scholar] [CrossRef]
- Gander-Bui, H.T.T.; Schläfli, J.; Baumgartner, J.; Walthert, S.; Genitsch, V.; van Geest, G.; Galván, J.A.; Cardozo, C.; Martinez, C.G.; Grans, M.; et al. Targeted removal of macrophage-secreted interleukin-1 receptor antagonist protects against lethal Candida albicans sepsis. Immunity 2023, 56, 1743–1760.e9. [Google Scholar] [CrossRef]
- Wang, M. Targeting IL-1Ra to attenuate fungal infection. Nat. Rev. Nephrol. 2023, 19, 622. [Google Scholar] [CrossRef] [PubMed]
- Rigante, D.; Frediani, B.; Galeazzi, M.; Cantarini, L. From the Mediterranean to the sea of Japan: The transcontinental odyssey of autoinflammatory diseases. Biomed. Res. Int. 2013, 2013, 485103. [Google Scholar] [CrossRef] [PubMed]
- Rigante, D.; Ansuini, V.; Caldarelli, M.; Bertoni, B.; La Torraca, I.; Stabile, A. Hydrocephalus in CINCA syndrome treated with anakinra. Childs Nerv. Syst. 2006, 22, 334–337. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, G.; Pardeo, M.; Rigante, D. Current recommendations for the pharmacologic therapy in Kawasaki syndrome and management of its cardiovascular complications. Eur. Rev. Med. Pharmacol. Sci. 2007, 11, 301–308. [Google Scholar] [PubMed]
- Stabile, A.; Bertoni, B.; Ansuini, V.; La Torraca, I.; Sallì, A.; Rigante, D. The clinical spectrum and treatment options of macrophage activation syndrome in the pediatric age. Eur. Rev. Med. Pharmacol. Sci. 2006, 10, 53–59. [Google Scholar] [PubMed]
- Shakoory, B.; Carcillo, J.A.; Chatham, W.W.; Amdur, R.L.; Zhao, H.; Dinarello, C.A.; Cron, R.Q.; Opal, S.M. Interleukin-1 Receptor Blockade Is Associated with Reduced Mortality in Sepsis Patients with Features of Macrophage Activation Syndrome: Reanalysis of a Prior Phase III Trial. Crit. Care Med. 2016, 44, 275–281. [Google Scholar] [CrossRef]
- Meyer, N.J.; Reilly, J.P.; Anderson, B.J.; Palakshappa, J.A.; Jones, T.K.; Dunn, T.G.; Shashaty, M.G.S.; Feng, R.; Christie, J.D.; Opal, S.M. Mortality Benefit of Recombinant Human Interleukin-1 Receptor Antagonist for Sepsis Varies by Initial Interleukin-1 Receptor Antagonist Plasma Concentration. Crit. Care Med. 2018, 46, 21–28. [Google Scholar] [CrossRef]
- Willemart, C.; Seurinck, R.; Stroobants, T.; Van Coillie, S.; De Loor, J.; Choi, S.M.; Roelandt, R.; Rajapurkar, M.; Ligthart, S.; Jorens, P.G.; et al. Potential of biomarker-based enrichment strategies to identify critically ill patients for emerging cell death interventions. Cell Death Differ. 2025; Online ahead of print. [Google Scholar] [CrossRef]
- Gao, X.; Yan, X.; Yin, Y.; Lin, X.; Zhang, Q.; Xia, Y.; Cao, J. Therapeutic targeting of apoptosis inhibitor of macrophage/CD5L in sepsis. Am. J. Respir. Cell Mol. Biol. 2019, 60, 323–334. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, X.; Jiang, H.; Wu, S.; Hong, Y.; Su, W.; Wang, X. Curcumin exerts anti-inflammatory, antioxidant and anti-ferroptotic effects through the Nrf2/HO-1 pathway to protect cardiomyocytes against sepsis. Signa Vitae 2024, 20, 46–53. [Google Scholar]
- Miao, Y.; Liu, N.; Xing, L.; Li, B.; Xiao, W.; Dai, J.; Qin, X.; He, Y.; Zhao, Y.; Chen, Z.; et al. Identifying six chromatin remodeling-related genes as diagnostic biomarkers in sepsis using bioinformatic analyses. Signa Vitae 2025, 21, 1–13. [Google Scholar] [CrossRef]
| Author (Year) | Study Type/ Population | IL-1 Family Focus | Key Findings | Clinical/Therapeutic Implications |
|---|---|---|---|---|
| Manchikalapati et al., 2024 [25] | Narrative review; pediatric sepsis | IL-1 inhibition | Evaluates clinical utility of IL-1 inhibitors in children with sepsis | IL-1 blockade may be beneficial; need for pediatric-specific trials |
| Ge et al., 2019 [26] | Review; experimental & clinical data | IL-1 family (IL-1α/β, IL-18, IL-33, IL-36, IL-37, IL-38) | Summarizes biology of IL-1 cytokines in inflammation and sepsis | Highlights IL-1 as central mediator and therapeutic target |
| Krakauer et al., 2010 [27] | Experimental study; toxic shock, animal models | IL-1 and other pro-inflammatory mediators | IL-1 contributes to cytokine storm and lethality | Supports role of IL-1 blockade in toxic shock/sepsis |
| Fazeli et al., 2022 [28] | Review | IL-38 | IL-38 shows anti-inflammatory properties, reducing IL-6, TNF-α, IL-17 | Potential protective role of IL-38 in sepsis and infections |
| Chang et al., 2015 [29] | Clinical study; septic patients, human | IL-33 | Elevated IL-33 correlates with severity and procalcitonin levels | IL-33 may serve as biomarker to predict sepsis outcomes |
| Buhl et al., 2019 [30] | Review; dermatology/infectious models | IL-36 | IL-36γ elevated in bacterial infections, recruits neutrophils | Anti-IL-36R therapy promising; possible sepsis relevance |
| Roy et al., 2020 [31] | Structural biology, human | IL-18 system | Provides molecular insight into IL-18/IFN-γ axis | Basis for rational drug design targeting IL-18 |
| Herminghaus et al., 2025 [32] | Clinical study; sepsis patients, human | IL-18 | IL-18 distinguishes abdominal vs. non-abdominal sepsis | Diagnostic biomarker role |
| Zheng H., 2025 [33] | Review/clinical correlation | IL-10 and IL-18 | IL-18 contributes to severity in pneumonia and sepsis | IL-18 and IL-10 as potential therapeutic target |
| Qu et al., 2022 [34] | Clinical study; sepsis-induced organ failure, human | IL-18 | High IL-18 linked to multi-organ injury and mortality | Prognostic biomarker |
| Standage et al., 2011 [35] | Review; pediatric sepsis | IL-18 (biomarker focus) | IL-18 among candidate biomarkers for septic shock | Supports pediatric biomarker panels |
| Sriram et al., 2025 [36] | Clinical cohort; pediatric sepsis with EBV, human | IL-18 | EBV seropositivity linked to dysregulated IL-18 and higher mortality | Suggests IL-18 as immune dysregulation marker |
| Papatheodorou et al., 2025 [38] | Clinical/translational study; post-surgical patients, human | IL-18 | IL-18 involved in inflammation resolution; dynamic role | Context-dependent biomarker and therapeutic target |
| Sen et al., 2016 [39] | Review | IL-1/IL-18 in MAS/macrophage activation | Links IL-1 family to MAS and pediatric hyperinflammation | IL-1 blockade (e.g., anakinra) useful in MAS |
| Cavalli et al., 2018 [40] | Review | IL-1 blockade | Overview of anakinra across inflammatory diseases | Supports repurposing in sepsis |
| Rajasekaran et al., 2014 [41] | Case series/clinical experience; critically ill children, human | IL-1Ra (anakinra) | Anakinra improved inflammatory markers in HLH/sepsis/MAS | Suggests therapeutic role, though not definitive |
| Behzadi et al., 2022 [42] | Review/genetic focus | IL-1 SNPs | SNPs in IL-1 family influence sepsis susceptibility | Genetic variants may guide precision medicine |
| Author (Year) | Study Type/ Population | IL-6 Focus | Key Findings | Clinical/Therapeutic Implications |
|---|---|---|---|---|
| Tanaka et al., 2016 [43] | Review: Immunity and disease | IL-6 regulation | Describes IL-6’s role in immune regulation and disease pathogenesis | IL-6 is a pleiotropic cytokine; therapeutic targeting explored |
| Garbers et al., 2018 [44] | Methods in Mol. Biol.; experimental, human | IL-6 classic vs. trans-signalling | Differentiates IL-6 signalling pathways and their biological effects | Trans-signalling inhibition may offer tailored therapy |
| Eichberger et al., 2022 [45] | Review; neonatal sepsis | IL-6 as diagnostic marker | IL-6 among key markers for early diagnosis of neonatal sepsis | Supports IL-6 as part of biomarker panels |
| Rose-John S., 2020 [46] | Review | IL-6 signalling | Summarizes IL-6 signalling in health and disease | Provides a rationale for IL-6 targeted therapies |
| Butterick et al., 2019 [47] | Clinical study; Gulf War Illness, human | IL-6 and CRP | Elevated IL-6 and CRP in affected veterans | IL-6 as marker of chronic inflammation |
| Roy et al., 2017 [48] | Review; animal model | IL-6 and acute phase proteins | IL-6 regulates acute phase proteins in infection | Highlights IL-6 role across species |
| Schumertl et al., 2025 [49] | Review; immunopathology | IL-6 signalling and therapy | Summarizes IL-6 biology and therapeutic interventions | Focus on selective IL-6 pathway inhibitors |
| Song et al., 2019 [50] | Prospective clinical study; septic patients, human | IL-6, PTX3, PCT | IL-6 elevated in sepsis/septic shock, correlates with prognosis | IL-6 useful for diagnosis and definition of prognosis |
| van Leeuwen et al., 2024 [55] | Systematic review and meta-analysis; neonates | Maternal, cord, neonatal IL-6 | IL-6 helpful in early-onset sepsis diagnosis | Confirms IL-6 as a neonatal sepsis biomarker |
| Pallás Beneyto et al., 2017 [56] | Clinical study, human | IL-6 prognostic value | Confirms IL-6 predictive value for sepsis mortality | IL-6 as a prognostic biomarker in sepsis |
| Yu et al., 2022 [57] | Clinical study; ED sepsis patients, human | IL-6 diagnostic/prognostic | High IL-6 predicts sepsis and adverse outcomes | IL-6 as an independent predictor of sepsis |
| Chen et al., 2024 [58] | Retrospective case series; febrile neutropenic children, human | Tocilizumab (anti-IL-6R) | Tocilizumab improved outcomes in severe pediatric sepsis | Suggests therapeutic benefit of IL-6 blockade |
| Lee et al., 2025 [59] | Clinical study; refractory pediatric septic shock, human | Tocilizumab therapy | Tocilizumab reduced mortality in refractory septic shock | Supports IL-6 blockade as a life-saving intervention |
| Author (Year) | Study Type/ Population | IL-10 Focus | Key Findings | Clinical/Therapeutic Implications |
|---|---|---|---|---|
| Saxton et al., 2021 [60] | Structural biology study | IL-10 signaling mechanisms | Decoupled pro- and anti-inflammatory functions of IL-10 via structural analysis | Provides rationale for designing IL-10-based immunotherapies |
| Mazer et al., 2019 [61] | Observational study; septic patients | IL-10 effects on the immune system | IL-10 suppresses innate responses but has variable effects on adaptive immunity | Highlights dual and context-dependent role of IL-10 in sepsis |
| Vico-Barranco et al., 2021 [62] | Cell line model (TCR signalling) | IL-10 and T-cell signalling | Developed novel T-cell subline for studying IL-10-mediated regulation | Tool for dissecting IL-10 role in T-cell biology |
| Yi et al., 2022 [63] | In vitro study; engineered macrophages | IL-10 overexpression | IL-10-overexpressing macrophages protected endothelial cells from LPS-induced injury | Suggests therapeutic potential of IL-10-engineered cells in sepsis-related vascular damage |
| Almahmoud et al., 2015 [64] | Retrospective study; trauma | IL-10 and inflammation dynamics | Prehospital hypotension linked to altered IL-10 levels and worse outcomes | IL-10 as biomarker of dysregulated inflammation in trauma and sepsis |
| Interleukin | Reference | Main Findings | Clinical Relevance |
|---|---|---|---|
| IL-8 | Matsushima K. et al., 2023 [65] | Historical overview of IL-8 discovery and role as a chemotactic cytokine | Provides background for understanding IL-8’s role in sepsis |
| IL-8 | Matsushima K. et al., 2022 [66] | Comprehensive review on IL-8 biology and evolving functions | Highlights IL-8’s role in inflammatory and infectious diseases |
| IL-8 | Bernhard S. et al., 2021 [67] | IL-8 rapidly alters neutrophil functions, modified under inflammation | Supports role of IL-8 in sepsis pathophysiology |
| IL-8 | Teijeira A. et al., 2021 [68] | Defined IL-8 thresholds for neutrophil chemotaxis vs. NETosis | Suggests IL-8 levels may guide immune dysregulation severity |
| IL-8 | Mao Y. et al., 2023 [71] | CSF IL-8 proposed as biomarker for sepsis-associated encephalopathy | Potential diagnostic marker in pediatric and adult sepsis |
| IL-8 | Fu P. et al., 2019 [72] | IL-8 polymorphism associated with sepsis risk and mortality | Genetic marker for prognosis in sepsis |
| IL-8 | Han T. et al., 2024 [73] | IL-8 polymorphism linked to increased sepsis susceptibility in elderly | Age-specific genetic risk marker for sepsis |
| IL-8 | Liu X.W. et al., 2019 [74] | IL-8 linked with acute lung injury in septic patients | Supports prognostic role of IL-8 in sepsis complications |
| IL-8 | Zhang X. et al., 2024 [75] | Serum IL-8 predicts mortality in elderly sepsis patients | IL-8 as prognostic biomarker in sepsis outcomes |
| IL-8 | Guo S. et al., 2025 [76] | Combined biomarker panel including IL-8 improves sepsis prognosis | Supports use of IL-8 with other markers for risk stratification |
| IL-12 | Elsner R.A. et al., 2024 [78] | IL-12 induces B cell-intrinsic loop promoting extrafollicular responses | Reveals IL-12’s role in adaptive immune regulation |
| IL-12 | Elsner R.A. & Shlomchik M.J., 2025 [79] | IL-12 and IFN-γ coordinate B cell responses | Highlights IL-12’s immunoregulatory function |
| IL-12 | Angurana S.K. et al., 2021 [81] | Measured cytokines including IL-12 in septic children; linked to mortality | IL-12 may be prognostic biomarker in pediatric sepsis |
| IL-12 | Lu J. et al., 2021 [82] | Sepsis impairs dendritic cell progenitors, involving IL-12 dysregulation | Suggests IL-12 role in impaired immune response during sepsis |
| IL-17 | Huangfu L. et al., 2023 [83] | Review of IL-17 family roles in multiple diseases | IL-17 as therapeutic target in inflammatory conditions |
| IL-17 | McGeachy M.J. et al., 2019 [84] | Overview of IL-17 cytokines in health and disease | Contextualizes IL-17 function in sepsis |
| IL-17 | Saran A. et al., 2025 [85] | IL-17 implicated in inflammatory, infectious, malignant disorders | Supports role of IL-17 in systemic inflammation and sepsis |
| IL-17 | de Souza Costa M.F. et al., 2015 [86] | IL-17+ T cells accumulate in lungs, protective role in sepsis | Preclinical evidence of IL-17 protective effects in sepsis |
| IL-17 | Dong S. et al., 2023 [87] | IL-17D protects against LPS-induced acute lung injury | Suggests IL-17D as therapeutic target in sepsis-related ALI |
| Drug | Mechanism of Action | Population | Survival Treated vs. Standard Care (%) | p | Reference |
|---|---|---|---|---|---|
| Tocilizumab | IL-6 receptor blocker | Febrile neutropenic children | 100 vs. 33 | 0.14 | Chen S.H. et al., 2024 [58] |
| Anakinra | IL-1 Receptor blocker | Septic patients with DIC and hepatobiliary dysfunction | 65.4 vs. 35.3 | 0.007 | Shakoory B. et al., 2016 [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Candelli, M.; Sacco Fernandez, M.; Rozzi, G.; Sodero, G.; Piccioni, A.; Pignataro, G.; Rigante, D.; Franceschi, F. The Interleukin Network in Sepsis: From Cytokine Storm to Clinical Applications. Diagnostics 2025, 15, 2927. https://doi.org/10.3390/diagnostics15222927
Candelli M, Sacco Fernandez M, Rozzi G, Sodero G, Piccioni A, Pignataro G, Rigante D, Franceschi F. The Interleukin Network in Sepsis: From Cytokine Storm to Clinical Applications. Diagnostics. 2025; 15(22):2927. https://doi.org/10.3390/diagnostics15222927
Chicago/Turabian StyleCandelli, Marcello, Marta Sacco Fernandez, Gloria Rozzi, Giorgio Sodero, Andrea Piccioni, Giulia Pignataro, Donato Rigante, and Francesco Franceschi. 2025. "The Interleukin Network in Sepsis: From Cytokine Storm to Clinical Applications" Diagnostics 15, no. 22: 2927. https://doi.org/10.3390/diagnostics15222927
APA StyleCandelli, M., Sacco Fernandez, M., Rozzi, G., Sodero, G., Piccioni, A., Pignataro, G., Rigante, D., & Franceschi, F. (2025). The Interleukin Network in Sepsis: From Cytokine Storm to Clinical Applications. Diagnostics, 15(22), 2927. https://doi.org/10.3390/diagnostics15222927

