Artificial Intelligence for the Diagnosis and Management of Patellofemoral Instability: A Comprehensive Review
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Diagnosis
3.2. Outcomes and Complications
3.3. Challenges, Limitations and Future Directions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mercurio, M.; Corona, K.; Galasso, O.; Cerciello, S.; Morris, B.J.; Guerra, G.; Gasparini, G. Soccer Players Show the Highest Seasonal Groin Pain Prevalence and the Longest Time Loss from Sport among 500 Athletes from Major Team Sports. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 2149–2157. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, S.; Varacallo, M.; Thomas, J.D.; Carroll, J.J.; Kahwaji, C.I. Patellar Instability; StatPearls: Tampa, FL, USA, 2018. [Google Scholar]
- Dejour, D.H.; Mesnard, G.; Giovannetti de Sanctis, E. Updated Treatment Guidelines for Patellar Instability: “Un Menu à La Carte”. J. Exp. Orthop. 2021, 8, 109. [Google Scholar] [CrossRef] [PubMed]
- Blønd, L.; Askenberger, M.; Stephen, J.; Akmeşe, R.; Balcarek, P.; El Attal, R.; Chouliaras, V.; Ferrua, P.; Monart, J.M.; Pagen-stert, G.; et al. Management of First-Time Patellar Dislocation: The ESSKA 2024 Formal Consensus—Part 1. Knee Surg. Sports Traumatol. Arthrosc. 2025, 33, 1925–1932. [Google Scholar] [CrossRef]
- Barbosa, R.M.; Da Silva, M.V.; Macedo, C.S.; Santos, C.P. Imaging Evaluation of Patellofemoral Joint Instability: A Review. Knee Surg. Relat. Res. 2023, 35, 7. [Google Scholar] [CrossRef]
- Schoettle, P.B.; Zanetti, M.; Seifert, B.; Pfirrmann, C.W.; Fucentese, S.F.; Romero, J. The Tibial Tuberosity–Trochlear Groove Distance; a Comparative Study between CT and MRI Scanning. Knee 2006, 13, 26–31. [Google Scholar] [CrossRef]
- Dai, Z.-Z.; Sha, L.; Zhang, Z.-M.; Liang, Z.-P.; Li, H.; Li, H. Comparing the Tibial Tuberosity–Trochlear Groove Distance between CT and MRI in Skeletally Immature Patients with and without Patellar Instability. Orthop. J. Sports Med. 2021, 9, 2325967120973665. [Google Scholar] [CrossRef]
- Chen, J.; Wu, C.; Ye, Z.; Zhao, J.; Xie, G. Tibial Tuberosity-Trochlear Groove Distance and Its Components in Patients with and without Episodic Patellar Dislocation: A Study of 781 Knees. J. Bone Jt. Surg. 2022, 104, 504–511. [Google Scholar] [CrossRef]
- Al-Dadah, O.; Hing, C. Patellofemoral Instability. Knee 2022, 37, A1–A2. [Google Scholar] [CrossRef]
- Park, S.J.; Won, S.H.; Park, M.S.; Sung, K.H. Normative Values of Tibial Tubercle–Trochlear Groove Distance and Tibial Tubercle–Posterior Cruciate Ligament Distance in Children. Am. J. Sports Med. 2023, 51, 1785–1791. [Google Scholar] [CrossRef]
- Camp, C.L.; Heidenreich, M.J.; Dahm, D.L.; Stuart, M.J.; Levy, B.A.; Krych, A.J. Individualizing the Tibial Tubercle–Trochlear Groove Distance: Patellar Instability Ratios That Predict Recurrent Instability. Am. J. Sports Med. 2016, 44, 393–399. [Google Scholar] [CrossRef]
- Pineda, T.; Dejour, D.H. [Artículo Traducido] Menú a La Carta Para Inestabilidad Patelar Recurrente. Rev. Esp. Cir. Ortop. Traumatol. 2025, 69, T544–T550. [Google Scholar]
- Pauyo, T.; Park, J.P.; Bozzo, I.; Bernstein, M. Patellofemoral Instability Part I: Evaluation and Nonsurgical Treatment. JAAOS-J. Am. Acad. Orthop. Surg. 2022, 30, e1431–e1442. [Google Scholar] [CrossRef] [PubMed]
- Mercurio, M.; Denami, F.; Melissaridou, D.; Corona, K.; Cerciello, S.; Laganà, D.; Gasparini, G.; Minici, R. Deep Learning Models to Detect Anterior Cruciate Ligament Injury on MRI: A Comprehensive Review. Diagnostics 2025, 15, 776. [Google Scholar] [CrossRef] [PubMed]
- Alsoof, D.; McDonald, C.L.; Kuris, E.O.; Daniels, A.H. Machine Learning for the Orthopaedic Surgeon: Uses and Limitations. J. Bone Jt. Surg. 2022, 104, 1586–1594. [Google Scholar] [CrossRef]
- Familiari, F.; Galasso, O.; Massazza, F.; Mercurio, M.; Fox, H.; Srikumaran, U.; Gasparini, G. Artificial Intelligence in the Management of Rotator Cuff Tears. Int. J. Environ. Res. Public Health 2022, 19, 16779. [Google Scholar] [CrossRef]
- Vescio, A.; Testa, G.; Sapienza, M.; Familiari, F.; Mercurio, M.; Gasparini, G.; de Salvatore, S.; Donati, F.; Canavese, F.; Pavone, V. Artificial Intelligence in Pediatric Orthopedics: A Comprehensive Review. Medicina 2025, 61, 954. [Google Scholar] [CrossRef]
- Andriollo, L.; Picchi, A.; Sangaletti, R.; Perticarini, L.; Rossi, S.M.P.; Logroscino, G.; Benazzo, F. The Role of Artificial Intelligence in Anterior Cruciate Ligament Injuries: Current Concepts and Future Perspectives. Healthcare 2024, 12, 300. [Google Scholar] [CrossRef]
- Wolfgart, J.M.; Hofmann, U.K.; Praster, M.; Danalache, M.; Migliorini, F.; Feierabend, M. Machine Learning to Recognise ACL Tears: A Systematic Review. Appl. Sci. 2025, 15, 4636. [Google Scholar] [CrossRef]
- Alaiti, R.K.; Vallio, C.S.; da Silva, A.G.M.; Gobbi, R.G.; Pécora, J.R.; Helito, C.P. Predicting ACL Reconstruction Failure with Machine Learning: Development of Machine Learning Prediction Models. Orthop. J. Sports Med. 2025, 13, 23259671251324519. [Google Scholar] [CrossRef]
- Elkohail, A.; Soffar, A.; Khalifa, A.M.; Omar, I.; Mosaad, M.; Abdulaziz, M.; Elsaket, A.; Panhwer, H.S.; Abdelglil, M.; Teama, M.; et al. AI-Enhanced Surgical Decision-Making in Orthopedics: From Preoperative Planning to Intraoperative Guidance and Real-Time Adaptation. Cureus 2025, 17, 92762. [Google Scholar] [CrossRef]
- Rodriguez, H.C.; Rust, B.D.; Roche, M.W.; Gupta, A. Artificial Intelligence and Machine Learning in Knee Arthroplasty. Knee 2025, 54, 28–49. [Google Scholar] [CrossRef]
- Lan, Q.; Li, S.; Zhang, J.; Guo, H.; Yan, L.; Tang, F. Reliable Prediction of Implant Size and Axial Alignment in AI-Based 3D Preoperative Planning for Total Knee Arthroplasty. Sci. Rep. 2024, 14, 16971. [Google Scholar] [CrossRef]
- Kumar, R.; Sporn, K.; Borole, A.; Khanna, A.; Gowda, C.; Paladugu, P.; Ngo, A.; Jagadeesan, R.; Zaman, N.; Tavakkoli, A. Biomarker-Guided Imaging and AI-Augmented Diagnosis of Degenerative Joint Disease. Diagnostics 2025, 15, 1418. [Google Scholar] [CrossRef]
- Choi, E.; Shin, S.; Lee, K.; An, T.; Lee, R.K.; Kim, S.; Son, Y.; Kim, S.T. Artificial Intelligence-Enhanced Diagnosis of Degenera-tive Joint Disease Using Temporomandibular Joint Panoramic Radiography and Joint Noise Data. Sci. Rep. 2025, 15, 1823. [Google Scholar]
- Familiari, F.; Madonna, V.; Mercurio, M.; Cinque, M.E.; Gasparini, G.; Galasso, O.; Moatshe, G. Outcomes and Complications of Inlay versus Onlay Patellofemoral Arthroplasty: A Systematic Review. Knee 2023, 41, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Sava, M.-P.; Neopoulos, G.; Leica, A.; Hirschmann, M.T. Patellofemoral Arthroplasty with Onlay Prosthesis Leads to Higher Rates of Osteoarthritis Progression than Inlay Design Implants: A Systematic Review. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 3927–3940. [Google Scholar] [CrossRef] [PubMed]
- Vella-Baldacchino, M.; Chughtai, D.; Kow, J.; Carr, C.; Coyle, A.; Farrow-Foster, A.; Russell, J.; Liddle, A.D. Outcomes of Pa-tellofemoral Joint Arthroplasty: A Systematic Review of Revision Timelines and Complication Rates. J. Orthop. Surg. 2025, 20, 289. [Google Scholar] [CrossRef]
- Erquicia, J.I.; Jiménez, D.M.; Riverola, A.P.; Cavalieri, E.; Gasol, B.; Camprubí, E.; Bonet, J.G.; Blanquet, J.L. Standard Versus Dysplastic Inlay Implant for Patellofemoral Arthroplasty: Surgical Technique and Decision-Making. Arthrosc. Tech. 2024, 13, 102962. [Google Scholar] [CrossRef]
- Dejour, D.H.; Mazy, D.; Pineda, T.; Cance, N.; Dan, M.J.; de Sanctis, E.G. Patellar Instability: Current Approach. EFORT Open Rev. 2025, 10, 378–387. [Google Scholar] [CrossRef]
- Gupta, H.; Batta, N.; Kataria, H.; Batra, V.; Upadhyay, A.; Jain, V.; Mishra, P.; Goel, N. A Comparison of the Reliability of the Patellar Tendon-Trochlear Groove (PTTG) Distance and the Tibial Tuberosity-Trochlear Groove (TTTG) Distance Measured on MRI. Malays. Orthop. J. 2020, 14, 34. [Google Scholar]
- Familiari, F.; Tollefson, L.V.; Izzo, A.; Mercurio, M.; LaPrade, R.F.; Di Vico, G. A High-Grade Lachman’s Exam Predicts a Ramp Tear of the Medial Meniscus in Patients with Anterior Cruciate Ligament Tear: A Prospective Clinical and Radiological Evaluation. J. Clin. Med. 2024, 13, 683. [Google Scholar] [CrossRef] [PubMed]
- Giovannetti de Sanctis, E.; Toanen, C.; Guarino, A.; Pineda, T.; Deroche, E.; Resurg; Dejour, D.H. The Role of the Most Cranial Trochlear Orientation in Patellar Maltracking to Better Characterise Trochlear Morphology. Knee Surg. Sports Traumatol. Arthrosc. 2024, 32, 2909–2918. [Google Scholar] [CrossRef] [PubMed]
- Dejour, D.H.; de Sanctis, E.G.; Müller, J.H.; Deroche, E.; Pineda, T.; Guarino, A.; Toanen, C.; Group, P.I.; Amarossi, A.; Baujard, A.; et al. Adapting the Dejour Classification of Trochlear Dysplasia from Qualitative Radiograph-and CT-Based Assessments to Quantitative MRI-Based Measurements. Knee Surg. Sports Traumatol. Arthrosc. 2025, 33, 2833–2846. [Google Scholar] [CrossRef] [PubMed]
- Minici, R.; Mercurio, M.; Iannò, B.; Galasso, O.; Gasparini, G.; Laganà, D. Advantages of the Use of Axial Traction Magnetic Resonance Imaging (MRI) of the Shoulder in Patients with Suspected Rota-Tor Cuff Tears: An Exploratory Pilot Study. Healthcare 2023, 11, 724. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Ye, Q.; Shen, Q.; Yang, W.; Huang, S.; Jiang, Z.; He, L.; Gong, X. Development of Automatic Measurement for Patellar Height Based on Deep Learning and Knee Radiographs. Eur. Radiol. 2020, 30, 4974–4984. [Google Scholar] [CrossRef]
- Bayramoglu, N.; Nieminen, M.T.; Saarakkala, S. Automated Detection of Patellofemoral Osteoarthritis from Knee Lateral View Radiographs Using Deep Learning: Data from the Multicenter Osteoarthritis Study (MOST). Osteoarthr. Cartil. 2021, 29, 1432–1447. [Google Scholar] [CrossRef]
- Bayramoglu, N.; Nieminen, M.T.; Saarakkala, S. Machine Learning Based Texture Analysis of Patella from X-Rays for Detecting Patellofemoral Osteoarthritis. Int. J. Med. Inf. 2022, 157, 104627. [Google Scholar] [CrossRef]
- Tuya, E.; Nai, R.; Liu, X.; Wang, C.; Liu, J.; Li, S.; Huang, J.; Yu, J.; Zhang, Y.; Liu, W.; et al. Automatic Measurement of the Patellofemoral Joint Parameters in the Laurin View: A Deep Learning–Based Approach. Eur. Radiol. 2023, 33, 566–577. [Google Scholar]
- Xu, S.-M.; Dong, D.; Li, W.; Bai, T.; Zhu, M.-Z.; Gu, G.-S. Deep Learning-Assisted Diagnosis of Femoral Trochlear Dysplasia Based on Magnetic Resonance Imaging Measurements. World J. Clin. Cases 2023, 11, 1477. [Google Scholar] [CrossRef]
- Barbosa, R.M.; Serrador, L.; da Silva, M.V.; Macedo, C.S.; Santos, C.P. Knee Landmarks Detection via Deep Learning for Automatic Imaging Evaluation of Trochlear Dysplasia and Patellar Height. Eur. Radiol. 2024, 34, 5736–5747. [Google Scholar] [CrossRef] [PubMed]
- Kwak, Y.H.; Ko, Y.J.; Kwon, H.; Koh, Y.-G.; Aldosari, A.M.; Nam, J.-H.; Kang, K.-T. Application of a Machine Learning and Optimization Method to Predict Patellofemoral Instability Risk Factors in Children and Adolescents. Knee Surg. Sports Traumatol. Arthrosc. 2025, 33, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Bayramoglu, N.; Englund, M.; Haugen, I.K.; Ishijima, M.; Saarakkala, S. Deep Learning for Predicting Progression of Patellofemoral Osteoarthritis Based on Lateral Knee Radiographs, Demographic Data, and Symptomatic Assessments. Methods Inf. Med. 2024, 63, 001–010. [Google Scholar] [CrossRef] [PubMed]
- Nagawa, K.; Inoue, K.; Hara, Y.; Shimizu, H.; Tsuchihashi, S.; Matsuura, K.; Kozawa, E.; Sugita, N.; Niitsu, M. Three-Dimensional Magnetic Resonance Imaging-Based Statistical Shape Analysis and Machine Learning-Based Prediction of Patellofemoral Instability. Sci. Rep. 2024, 14, 11390. [Google Scholar] [CrossRef]
- Sieberer, J.; Rancu, A.; Park, N.; Desroches, S.; Manafzadeh, A.R.; Tommasini, S.; Wiznia, D.H.; Fulkerson, J. Patellar Tilt Calculation Utilizing Artificial Intelligence on CT Knee Imaging. Knee 2025, 54, 217–221. [Google Scholar] [CrossRef]
- Zhan, H.; Kang, X.; Zhang, X.; Zhang, Y.; Wang, Y.; Yang, J.; Zhang, K.; Han, J.; Feng, Z.; Zhang, L.; et al. Machine-Learning Models Reliably Predict Clinical Outcomes in Medial Patellofemoral Ligament Reconstruction. Arthrosc. J. Arthrosc. Relat. Surg. 2024, 41, 1896–1908.e2. [Google Scholar] [CrossRef]
- Available online: https://www.Ohri.ca/Programs/Clinical_epidemiology/Oxford.Asp (accessed on 1 September 2025).
- Shorten, C.; Khoshgoftaar, T.M.; Furht, B. Text Data Augmentation for Deep Learning. J. Big Data 2021, 8, 101. [Google Scholar] [CrossRef]
- Mercurio, M.; Cerciello, S.; Corona, K.; Guerra, G.; Simonetta, R.; Familiari, F.; Galasso, O.; Gasparini, G. Factors Associated with a Successful Return to Performance After Anterior Cruciate Ligament Reconstruction: A Multiparametric Evaluation in Soccer Players. Orthop. J. Sports Med. 2024, 12, 23259671241275663. [Google Scholar] [CrossRef]
- Van Haver, A.; Mahieu, P.; Claessens, T.; Li, H.; Pattyn, C.; Verdonk, P.; Audenaert, E. A Statistical Shape Model of Trochlear Dysplasia of the Knee. Knee 2014, 21, 518–523. [Google Scholar] [CrossRef]
- Mariani, S.; La Marra, A.; Arrigoni, F.; Necozione, S.; Splendiani, A.; Di Cesare, E.; Barile, A.; Masciocchi, C. Dynamic Measurement of Patello-Femoral Joint Alignment Using Weight-Bearing Magnetic Resonance Imaging (WB-MRI). Eur. J. Radiol. 2015, 84, 2571–2578. [Google Scholar] [CrossRef]
- Pınar, H.; Akseki, D.; Karaoğlan, O.; Genç, İ. Kinematic and Dynamic Axial Computed Tomography of the Patello-Femoral Joint in Patients with Anterior Knee Pain. Knee Surg. Sports Traumatol. Arthrosc. 1994, 2, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.E.; Kim, S.; Chang, H.-J. Artificial Intelligence and Echocardiography. J. Cardiovasc. Imaging 2021, 29, 193. [Google Scholar] [CrossRef] [PubMed]
- Sermesant, M.; Delingette, H.; Cochet, H.; Jaïs, P.; Ayache, N. Applications of Artificial Intelligence in Cardiovascular Imaging. Nat. Rev. Cardiol. 2021, 18, 600–609. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, X.; Sheng, B.; Yuan, M.; Lv, F.; Lv, F.; Yu, F.; Li, J. Abnormal Sagittal Patellar Tilt during Active Knee Flexion and Extension on 4DCT Might Be Associated with Patellofemoral Pain. BMC Musculoskelet. Disord. 2025, 26, 132. [Google Scholar] [CrossRef]
- Hwang, I.; Saravanan, K.; Coralli, C.V.; Tu, S.J.; Mellon, S.J. DG-PPU: Dynamical Graphs Based Post-Processing of Point Clouds Extracted from Knee Ultrasounds. In Proceedings of the 2025 IEEE 22nd International Symposium on Biomedical Imaging (ISBI), London, UK, 14–17 April 2025; IEEE: New York, NY, USA, 2025; pp. 1–5. [Google Scholar]
- Buchanan, R.; Tu, S.J.; Camurri, M.; Mellon, S.J.; Fallon, M. 3d Freehand Ultrasound Using Visual Inertial and Deep Inertial Odometry for Measuring Patellar Tracking. In Proceedings of the 2024 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Eindhoven, The Netherlands, 26–28 June 2024; IEEE: New York, NY, USA, 2024; pp. 1–6. [Google Scholar]
- Amirian, S.; Carlson, L.A.; Gong, M.F.; Lohse, I.; Weiss, K.R.; Plate, J.F.; Tafti, A.P. Explainable AI in Orthopedics: Challenges, Opportunities, and Prospects. In Proceedings of the 2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE), Las Vegas, NV, USA, 24–27 July 2023; IEEE: New York, NY, USA, 2023; pp. 1374–1380. [Google Scholar]
- Bruno, F.; Barile, A.; Arrigoni, F.; Laporta, A.; Russo, A.; Carotti, M.; Splendiani, A.; Di Cesare, E.; Masciocchi, C. Weight-Bearing MRI of the Knee: A Review of Advantages and Limits. Acta Bio Med. Atenei Parm. 2018, 89, 78. [Google Scholar]
- Hansen, P.; Harving, M.; Øhlenschlæger, T.; Brinch, S.; Lavard, P.; Krogsgaard, M.; Boesen, M. Comparison between Conventional MRI and Weight-Bearing Positional MRI Reveals Important Differences in Radiological Measurements of the Patellofemoral Joint. Skelet. Radiol. 2023, 52, 1525–1534. [Google Scholar] [CrossRef]
- Tennant, S.; Williams, A.; Vedi, V.; Kinmont, C.; Gedroyc, W.; Hunt, D. Patello-Femoral Tracking in the Weight-Bearing Knee: A Study of Asymptomatic Volunteers Utilising Dynamic Magnetic Resonance Imaging: A Preliminary Report. Knee Surg. Sports Traumatol. Arthrosc. 2001, 9, 155–162. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, F.; Rong, F.; Lv, F.; Lv, F.; Li, J. Analysis of Spatial Patellofemoral Alignment Using Novel Three-Dimensional Measurements Based on Weight-Bearing Cone-Beam CT. Insights Imaging 2025, 16, 1. [Google Scholar] [CrossRef]
- Tiribilli, E.; Bocchi, L. Deep Learning-Based Workflow for Bone Segmentation and 3D Modeling in Cone-Beam CT Orthopedic Imaging. Appl. Sci. 2024, 14, 7557. [Google Scholar] [CrossRef]
- Radanliev, P.; Santos, O.; Brandon-Jones, A.; Joinson, A. Ethics and Responsible AI Deployment. Front. Artif. Intell. 2024, 7, 1377011. [Google Scholar] [CrossRef]
- Koski, E.; Murphy, J. AI in Healthcare. In Nurses and Midwives in the Digital Age; IOS Press: Amsterdam, The Netherlands, 2021; pp. 295–299. [Google Scholar]
- Korb, R.; Peter, E. Integration of Artificial Intelligence into Clinical Workflows: Barriers and Best Practices; ResearchGate: Berlin, Germany, 2025. [Google Scholar]
- Mennella, C.; Maniscalco, U.; De Pietro, G.; Esposito, M. Ethical and Regulatory Challenges of AI Technologies in Healthcare: A Narrative Review. Heliyon 2024, 10, e26297. [Google Scholar] [CrossRef]
- Nizamullah, F.; Fahad, M.; Abbasi, N.; Qayyum, M.U.; Zeb, S. Ethical and Legal Challenges in AI-Driven Healthcare: Patient Privacy, Data Security, Legal Framework, and Compliance. Int. J. Innov. Res. Sci. Eng. Technol. 2024, 13, 15216–15223. [Google Scholar]
- Purnomo, G.; Yeo, S.-J.; Liow, M.H.L. Artificial Intelligence in Arthroplasty. Arthroplasty 2021, 3, 37. [Google Scholar] [CrossRef]
- Misir, A.; Yuce, A. AI in Orthopedic Research: A Comprehensive Review. J. Orthop. Res. 2025, 43, 1508–1527. [Google Scholar] [CrossRef]


| N | Authors (Year) Country | Journal | AI | Sample | Aim | Result | Limits |
|---|---|---|---|---|---|---|---|
| 1 | Ye et al. (2020) China [37] | Eur. Radiol. | CNN (VGG-16) | 1018 left knee radiographs | Determine the patellar height using lateral knee radiographs. | ISI, CDI, and KI (ICC = 0.91–0.95,) MCDI (left knee ICC = 0.65). The performance of the algorithm met or exceeded that of manual determination of ISI, CDI, and KI by radiologists. | Training size and category; lack of standard and ancillary information. |
| 2 | Bayramoglu et al. (2021) Finland [38] | Osteo. Cart. | CNN | 2803 patients (19% PFOA at X-rays) | Detect PFOA from lateral view plain radiographs. | ROC AUC (0.958). | Multicenter Osteoarthritis study data alone; limited X-rays view; model explanations. |
| 3 | Bayramoglu et al. (2022) Finland [39] | Int. J. Med. Inf | CNN | 5507 knees (953 PFOA) | Predict PFOA based on texture patches analysis of lateral knee radiographs. | Age, sex, BMI, WOMAC score, tibiofemoral KL grade to predict PFOA AUC (0.817). | Lack of external data. |
| 4 | Tuya et al. (2023) China [40] | Eur. Radiol. | U-Net | 1431 consecutive Laurin views | Calculated radiographic parameters using the Laurin view. | SA, CA, LPT (ICC = 0.85–0.97). | Small sample size; lack of a gold standard and the inherent variation in manual measurement. |
| 5 | Xu et al. (2023) China [41] | WJCC | CNN | 464 MRI 1.5 T Knee (202 FTD) | Detect FTD from knee MRI scans. | Sensitivity, Specificity, PPV and NPV of the AI model (0.74–0.96). | Single axial 1.5T MRI image. |
| 6 | Barbosa et al. (2024) Portugal [42] | Eur. Radiol. | U-Net | 763 knee MRI slices (95 patients) | Index measurements in knee MRI slices (axial and sagittal). | LTI, TGD, ISI, CDI and PTI (ICC > 0.9), and SA, TFA and MISI (ICC > 0.75). | Less robust models, landmarks positioning. |
| 7 | Kwak et al. (2025) Korea [43] | KSSTA | ML | 108 Patients (54 dislocated patella) (1.5–3.0 MRI) | Early diagnosis and personalized treatment planning in young patients. | KS AUC (0.87), Wiberg index AUC (0.85), IS method AUC (0.84); patellar tilt AUC (0.81) and total AUC (0.934). | Retrospective design; lack of CT and WLLRx, only logistic regression. |
| 8 | Bayramoglu et al. (2024) Finland [44] | Methods Inf. Med | CNN (VGG-16) | 1832 subjects, (3276 knees) | Predict the radiographic progression of PFOA over a 7 year period using lateral knee radiographs. | AUC (0.856). | Single population trained model; No PFOA potential predictors progression consideration. |
| 9 | Nagawa et al. (2024) Japan [45] | Sci. Rep. | ML-based prediction model (SVM) | 49 patients (19 PFI) | Predictive model for patellofemoral instability based on MRI. | Accuracy (0.909 ± 0.015); AUC (0.939 ± 0.009). | Small sample size; only the distal femur evaluation. |
| 10 | Sieberer et al. (2025) USA [46] | Knee | AI algorithm | 60 patients (30 dislocated patella) | AI-derived measurements patellar tilt segmenting 3D CT scans. | Predicted ICC (0.86–0.90). | lack of gold standard; CT supine position. |
| 11 | Zhan et al. (2024) China [47] | Arthroscopy | ML | 218 patients | Develop a ML model to predict clinical outcomes after MPFLR. | Score Accuracies Lysholm (0.884); IKDC (0.859); Kujala (0.969) Tegner (0.756). | Retrospective nature; selected knee surgery; no external validation; small sample size; short follow-up. |
| Criteria | Total | Quality | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |||
| Ye et al. (2020) [37] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | High |
| Bayramoglu et al. (2021) [38] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | High |
| Bayramoglu et al. (2022) [39] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | High |
| Tuya et al. (2023) [40] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | High |
| Xu et al. (2023) [41] | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 5 | Medium |
| Barbosa et al. (2024) [42] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | High |
| Kwak et al. (2025) [43] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | High |
| Bayramoglu et al. (2024) [44] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | High |
| Nagawa et al. (2024) [45] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | High |
| Sieberer et al. (2025) [46] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | High |
| Zhan et al. (2024) [47] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mercurio, M.; Denami, F.; Vescio, A.; Familiari, F.; Longo, U.G.; Galasso, O.; Gasparini, G., on behalf of the Italian Orthopaedic Research Society (IORS); Dejour, D.H. Artificial Intelligence for the Diagnosis and Management of Patellofemoral Instability: A Comprehensive Review. Diagnostics 2025, 15, 2918. https://doi.org/10.3390/diagnostics15222918
Mercurio M, Denami F, Vescio A, Familiari F, Longo UG, Galasso O, Gasparini G on behalf of the Italian Orthopaedic Research Society (IORS), Dejour DH. Artificial Intelligence for the Diagnosis and Management of Patellofemoral Instability: A Comprehensive Review. Diagnostics. 2025; 15(22):2918. https://doi.org/10.3390/diagnostics15222918
Chicago/Turabian StyleMercurio, Michele, Federica Denami, Andrea Vescio, Filippo Familiari, Umile Giuseppe Longo, Olimpio Galasso, Giorgio Gasparini on behalf of the Italian Orthopaedic Research Society (IORS), and David H. Dejour. 2025. "Artificial Intelligence for the Diagnosis and Management of Patellofemoral Instability: A Comprehensive Review" Diagnostics 15, no. 22: 2918. https://doi.org/10.3390/diagnostics15222918
APA StyleMercurio, M., Denami, F., Vescio, A., Familiari, F., Longo, U. G., Galasso, O., Gasparini, G., on behalf of the Italian Orthopaedic Research Society (IORS), & Dejour, D. H. (2025). Artificial Intelligence for the Diagnosis and Management of Patellofemoral Instability: A Comprehensive Review. Diagnostics, 15(22), 2918. https://doi.org/10.3390/diagnostics15222918

