Machine Learning Reveals Novel Pediatric Heart Failure Phenotypes with Distinct Mortality and Hospitalization Outcomes
Abstract
1. Introduction
2. Methodology
2.1. Study Design and Data Collection
2.2. Ethical Approval and Data Governance
2.3. Study Population and Eligibility Criteria
2.4. Data Abstraction and Quality Assurance
2.5. Data Preprocessing and Feature Engineering
2.6. Unsupervised Phenotyping via Dimensionality Reduction and Clustering
2.7. Outcome Association Analysis
3. Results
3.1. Demographic and Clinical Features Across Phenotypes
3.2. Clinical and Hemodynamic Parameters Across Phenotypes
3.3. Biomarkers Profile Across Phenotype
3.4. Treatment Patterns Across Phenotypes
3.5. Outcomes Across Phenotypes
4. Discussion
4.1. Limitations
4.2. Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burstein, D.S.; Shamszad, P.; Dai, D.; Almond, C.S.; Price, J.F.; Lin, K.Y.; O’Connor, M.J.; Shaddy, R.E.; Mascio, C.E.; Rossano, J.W. Significant mortality, morbidity and resource utilization associated with advanced heart failure in congenital heart disease in children and young adults. Am. Heart J. 2019, 209, 9–19. [Google Scholar] [CrossRef]
- Agrawal, A.; Janjua, D.; Alsayed Ali Zeyada, A.A.; Taher Elsheikh, A. Heart failure in children and adolescents: An update on diagnostic approaches and management. Clin. Exp. Pediatr. 2024, 67, 178–190. [Google Scholar] [CrossRef]
- Kantor, P.F.; Lougheed, J.; Dancea, A.; McGillion, M.; Barbosa, N.; Chan, C.; Dillenburg, R.; Atallah, J.; Buchholz, H.; Chant-Gambacort, C.; et al. Presentation, diagnosis, and medical management of heart failure in children: Canadian Cardiovascular Society guidelines. Can. J. Cardiol. 2013, 29, 1535–1552. [Google Scholar] [CrossRef] [PubMed]
- Kirk, R.; Dipchand, A.I.; Rosenthal, D.N.; Addonizio, L.; Burch, M.; Chrisant, M.; Dubin, A.; Everitt, M.; Gajarski, R.; Mertens, L.; et al. The International Society for Heart and Lung Transplantation Guidelines for the management of pediatric heart failure: Executive summary. J. Heart Lung Transplant. Off. Publ. Int. Soc. Heart Transplant. 2014, 33, 888–909. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.; VanderPluym, C. Medical management of pediatric heart failure. Cardiovasc. Diagn. Ther. 2021, 11, 323–335. [Google Scholar] [CrossRef] [PubMed]
- Amdani, S.; Conway, J.; George, K.; Martinez, H.R.; Asante-Korang, A.; Goldberg, C.S.; Davies, R.R.; Miyamoto, S.D.; Hsu, D.T. Evaluation and Management of Chronic Heart Failure in Children and Adolescents with Congenital Heart Disease: A Scientific Statement From the American Heart Association. Circulation 2024, 150, e33–e50. [Google Scholar] [CrossRef]
- El-Saiedi, S.A.; Fathalla, A.; Gaber, H.; El Shershaby, M.; AbdelMassih, A.F. New Strategies in the Treatment of Advanced Heart Failure in Children and the Current Consensus of Cairo University Children Hospital Heart Failure Working Group. Curr. Probl. Cardiol. 2023, 48, 101389. [Google Scholar] [CrossRef]
- Watanabe, K.; Shih, R. Update of Pediatric Heart Failure. Pediatr. Clin. N. Am. 2020, 67, 889–901. [Google Scholar] [CrossRef]
- Cardiology, S.G.; Board, E.; Pediatric Cardiovascular Disease Committee. Recommendations for diagnosis and treatment of heart failure in children (2020 revised edition). Zhonghua Er Ke Za Zhi = Chin. J. Pediatr. 2021, 59, 84–94. [Google Scholar] [CrossRef]
- Das, B.B. Current State of Pediatric Heart Failure. Children 2018, 5, 88. [Google Scholar] [CrossRef]
- Wang, T.; Zhou, D.; Chen, Y.; Kuang, S.; Xing, Y.; Yi, Q.; Pan, Z.; Xu, W.; Rao, J.; Liu, Y.; et al. Non-invasive estimation of pulmonary hypertension and clinical deterioration risk in pediatric congenital heart disease: Development and validation of predictive tools. Chin. Med. J. 2024, 137, 1384–1386. [Google Scholar] [CrossRef]
- Huang, S.; Xiang, X.; Zhu, X.; Tian, J.; Pan, B.; Zheng, M. Pediatric heart failure classification based on left ventricular ejection fraction. Pediatr. Discov. 2023, 1, e50. [Google Scholar] [CrossRef]
- Bajcetic, M.; Vidonja Uzelac, T.; Jovanovic, I. Heart failure pharmacotherapy: Differences between adult and paediatric patients. Curr. Med. Chem. 2014, 21, 3108–3120. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Hu, D.; Sun, H.; Lv, T.; Xu, W.; Tian, J. Pediatric Diastolic Heart Failure: Clinical Features Description of 421 Cases. Front. Pediatr. 2022, 10, 846408. [Google Scholar] [CrossRef] [PubMed]
- Rosano, G.M.C.; Teerlink, J.R.; Kinugawa, K.; Bayes-Genis, A.; Chioncel, O.; Fang, J.; Greenberg, B.; Ibrahim, N.E.; Imamura, T.; Inomata, T.; et al. The use of left ventricular ejection fraction in the diagnosis and management of heart failure. A clinical consensus statement of the Heart Failure Association (HFA) of the ESC, the Heart Failure Society of America (HFSA), and the Japanese Heart Failure Society (JHFS). Eur. J. Heart Fail. 2025, in press. [Google Scholar] [CrossRef]
- Gravrand, V.; Lefebvre, C.S.; Hamza, F.; Della-Negra, T.; Coyaud, V.; Vasseur, A.; Hennequin, C.; Nivet-Antoine, V.; Schaffner, D. Pediatric reference values of NT-proBNP and Galectin-3 based on a French cohort. Clin. Chim. Acta 2025, 564, 119925. [Google Scholar] [CrossRef]
- Ahmad, T.; Lund, L.H.; Rao, P.; Ghosh, R.; Warier, P.; Vaccaro, B.; Dahlström, U.; O’Connor, C.M.; Felker, G.M.; Desai, N.R. Machine learning methods improve prognostication, identify clinically distinct phenotypes, and detect heterogeneity in response to therapy in a large cohort of heart failure patients. J. Am. Heart Assoc. 2018, 7, e008081. [Google Scholar] [CrossRef]
- Soltani, F.; Jenkins, D.A.; Kaura, A.; Bradley, J.; Black, N.; Farrant, J.P.; Williams, S.G.; Mulla, A.; Glampson, B.; Davies, J. Phenogrouping heart failure with preserved or mildly reduced ejection fraction using electronic health record data. BMC Cardiovasc. Disord. 2024, 24, 343. [Google Scholar] [CrossRef]
- Segar, M.W.; Patel, K.V.; Ayers, C.; Basit, M.; Tang, W.H.W.; Willett, D.; Berry, J.; Grodin, J.L.; Pandey, A. Phenomapping of patients with heart failure with preserved ejection fraction using machine learning-based unsupervised cluster analysis. Eur. J. Heart Fail. 2020, 22, 148–158. [Google Scholar] [CrossRef]
- Klassen, T.P.; Hartling, L.; Craig, J.C.; Offringa, M. Children are not just small adults: The urgent need for high-quality trial evidence in children. PLoS Med. 2008, 5, e172. [Google Scholar] [CrossRef]
- Ganatra, H.A. Machine Learning in Pediatric Healthcare: Current Trends, Challenges, and Future Directions. J. Clin. Med. 2025, 14, 807. [Google Scholar] [CrossRef]
- Chou, W.C.; Gaynor, J.W.; Graham, E.M.; Klepczynski, B.; Walker, T.; Coker, E.S.; Ittenbach, R.F.; Lin, Z. A Machine Learning-Based Clustering Analysis to Explore Bisphenol A and Phthalate Exposure from Medical Devices in Infants with Congenital Heart Defects. Environ. Health Perspect. 2025, 133, 67016. [Google Scholar] [CrossRef]
- Yuan, Y.; Pan, B.; Wang, F.; Chen, Z.; Guo, Y.; Shen, X.; Liang, X.; Liang, Y.; Xing, Y.; Zhang, H.; et al. Age-based classification and outcomes in pediatric heart failure: Findings from a retrospective multicenter cohort study. J. Am. Heart Assoc. 2025, 14, e038129. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.Q.; Wang, Y.; Ma, G.Z.; Xu, R.H.; Cai, Z.X.; Ni, C.M.; Chen, P.; Zhu, Z.D. Intravenous immunoglobulin in the therapy of adult acute fulminant myocarditis: A retrospective study. Exp. Ther. Med. 2014, 7, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Li, M.; Ma, L.; Wu, Z.; Wu, Y.; Huang, Y.; Yin, Z.; Zhou, N. Early clinical predictors of fulminant myocarditis in pediatric patients: A retrospective cohort study. Front. Cardiovasc. Med. 2025, 12, 1678220. [Google Scholar] [CrossRef] [PubMed]
- Mitsnefes, M.M. Cardiovascular disease in children with chronic kidney disease. J. Am. Soc. Nephrol. JASN 2012, 23, 578–585. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Adnani, H.; Safadi, R.; Yerigeri, K.; Nayak, S.; Raina, R.; Sinha, R. Cardiorenal syndrome in the pediatric population: A systematic review. Ann. Pediatr. Cardiol. 2022, 15, 493–510. [Google Scholar] [CrossRef]
- Olsen, J.; Tunuguntla, H.; Alali, A.; Choudhry, S.; Hope, K.D.; Puri, K.; Spinner, J.A.; Akcan-Arikan, A.; Price, J.F. Central venous pressure and impaired renal function in children and young adults with cardiovascular disease. JACC Adv. 2024, 3, 100995. [Google Scholar] [CrossRef]
- Nemtsova, V.; Burkard, T.; Vischer, A.S. Hypertensive Heart Disease: A Narrative Review Series—Part 2: Macrostructural and Functional Abnormalities. J. Clin. Med. 2023, 12, 5723. [Google Scholar] [CrossRef]
- Rossano, J.W. Congenital heart disease: A global public health concern. Lancet Child Adolesc. Health 2020, 4, 168–169. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, Y.; Ren, J.; Jin, X.; Li, J.; Hou, Y.; Li, R.; Qin, L.; Liu, W.; Yang, Y. Global, regional, and national burden of congenital heart disease, 1990–2021: A systematic analysis for the global burden of disease study 2021. Eur. J. Pediatr. 2025, 184, 253. [Google Scholar] [CrossRef] [PubMed]
- Derridj, N.; Ghanchi, A.; Bonnet, D.; Adnot, P.; Rahshenas, M.; Salomon, L.J.; Cohen, J.F.; Khoshnood, B. Early Mortality in Infants Born with Neonatally Operated Congenital Heart Defects and Low or Very-Low Birthweight: A Systematic Review and Meta-Analysis. J. Cardiovasc. Dev. Dis. 2023, 10, 47. [Google Scholar] [CrossRef] [PubMed]
- De Silvestro, A.; Reich, B.; Bless, S.; Sieker, J.; Hollander, W.; de Bijl-Marcus, K.; Hagmann, C.; Nijman, J.; Knirsch, W. Morbidity and mortality in premature or low birth weight patients with congenital heart disease in three European pediatric heart centers between 2016 and 2020. Front. Pediatr. 2024, 12, 1323430. [Google Scholar] [CrossRef] [PubMed]
- Raphael, C.; Briscoe, C.; Davies, J.; Ian Whinnett, Z.; Manisty, C.; Sutton, R.; Mayet, J.; Francis, D.P. Limitations of the New York Heart Association functional classification system and self-reported walking distances in chronic heart failure. Heart (Br. Card. Soc.) 2007, 93, 476–482. [Google Scholar] [CrossRef]
- Vancheri, F.; Longo, G.; Henein, M.Y. Left ventricular ejection fraction: Clinical, pathophysiological, and technical limitations. Front. Cardiovasc. Med. 2024, 11, 1340708. [Google Scholar] [CrossRef]
- Giannattasio, A.; Maglione, M.; Di Nardo, G.; Di Marco, G.M.; Lauretta, D.; Carrella, M.C.; Furlan, D.; Savoia, F.; Tipo, V. Outbreak of Acute Fulminant Myocarditis in Children in Campania Region, Italy: A Case Series. Children 2024, 11, 1414. [Google Scholar] [CrossRef]
- Lv, J.; Han, B.; Wang, C.; Wang, J.; Jiang, D.; Zhao, L.; Yi, Y.; Zhang, J. The clinical features of children with acute fulminant myocarditis and the diagnostic and follow-up value of cardiovascular magnetic resonance. Front. Pediatr. 2019, 7, 388. [Google Scholar] [CrossRef]
- Blumer, V.; Kanwar, M.K.; Barnett, C.F.; Cowger, J.A.; Damluji, A.A.; Farr, M.; Goodlin, S.J.; Katz, J.N.; McIlvennan, C.K.; Sinha, S.S. Cardiogenic shock in older adults: A focus on age-associated risks and approach to management: A scientific statement from the American Heart Association. Circulation 2024, 149, e1051–e1065. [Google Scholar] [CrossRef]
- Senman, B.; Jentzer, J.C.; Barnett, C.F.; Bartos, J.A.; Berg, D.D.; Chih, S.; Drakos, S.G.; Dudzinski, D.M.; Elliott, A.; Gage, A.; et al. Need for a Cardiogenic Shock Team Collaborative—Promoting a Team-Based Model of Care to Improve Outcomes and Identify Best Practices. J. Am. Heart Assoc. 2024, 13, e031979. [Google Scholar] [CrossRef]
- Rohde, S.; de By, T.M.; Bogers, A.J.; Schweiger, M. Myocardial recovery in children supported with a durable ventricular assist device—A systematic review. Eur. J. Cardio-Thorac. Surg. 2023, 64, ezad263. [Google Scholar] [CrossRef]
- Hofmann, U.; Frantz, S. How can we cure a heart “in flame”? A translational view on inflammation in heart failure. Basic Res. Cardiol. 2013, 108, 356. [Google Scholar] [CrossRef] [PubMed]
- Papamichail, A.; Kourek, C.; Briasoulis, A.; Xanthopoulos, A.; Tsougos, E.; Farmakis, D.; Paraskevaidis, I. Targeting Key Inflammatory Mechanisms Underlying Heart Failure: A Comprehensive Review. Int. J. Mol. Sci. 2024, 25, 510. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Sun, Y.; Su, G.; Li, Y.; Shuai, X. Intravenous immunoglobulin therapy for acute myocarditis in children and adults a meta-analysis. Int. Heart J. 2019, 60, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Popa, A.; Lazea, C.; Agoston-Coldea, L. Novel insights on acute myocarditis in pediatric patients. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 11479–11495. [Google Scholar]
- Koubský, K. Pediatric chronic heart failure: Age-specific considerations of medical therapy. Physiol. Res. 2024, 73, S597. [Google Scholar] [CrossRef]
- Deraz, S.E.; Esmat, O.D.; El-Hmid, R.G.A.; Amin, S.A. Evaluation of diastolic dysfunction in children with hypertrophic cardiomyopathy and its relationship with development of myocardial fibrosis. Egypt. Heart J. 2023, 75, 54. [Google Scholar] [CrossRef]
- Zhang, H.; Kuzmanov, U.; Urschel, S.; Wang, F.; Wang, S.; Gramolini, A.; Oudit, G. Distinct remodeling pattern between pediatric and adult heart failure: A focus on Ca2+ signaling pathway at proteomic level. Eur. Heart J. 2020, 41, ehaa946.3201. [Google Scholar] [CrossRef]
- Krishnamurthy, G.; Ratner, V.; Bacha, E.; Aspelund, G. Comorbid conditions in neonates with congenital heart disease. Pediatr. Crit. Care Med. 2016, 17, S367–S376. [Google Scholar] [CrossRef]
- Loescher, C.M.; Freundt, J.K.; Unger, A.; Hessel, A.L.; Kühn, M.; Koser, F.; Linke, W.A. Titin governs myocardial passive stiffness with major support from microtubules and actin and the extracellular matrix. Nat. Cardiovasc. Res. 2023, 2, 991–1002. [Google Scholar] [CrossRef]
- Mourani, P.M.; Sontag, M.K.; Younoszai, A.; Miller, J.I.; Kinsella, J.P.; Baker, C.D.; Poindexter, B.B.; Ingram, D.A.; Abman, S.H. Early pulmonary vascular disease in preterm infants at risk for bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 2015, 191, 87–95. [Google Scholar] [CrossRef]
- Naeije, R.; Badagliacca, R. The overloaded right heart and ventricular interdependence. Cardiovasc. Res. 2017, 113, 1474–1485. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y. Myocardial injury: Where inflammation and autophagy meet. Burn. Trauma 2023, 11, tkac062. [Google Scholar] [CrossRef]
- Walton, M.; Wagner, J.B. Pediatric beta blocker therapy: A comprehensive review of development and genetic variation to guide precision-based therapy in children, adolescents, and young adults. Genes 2024, 15, 379. [Google Scholar] [CrossRef]
- Kim, Y.J.; Shin, S.H.; Kim, E.K.; Kim, H.S. Short term effect of intravenous treprostinil in term and preterm infants with pulmonary hypertension. BMC Pediatr. 2024, 24, 83. [Google Scholar] [CrossRef]




| Variable | Overall n (%) | Cluster 0 n (%) | Cluster 1 n (%) | Cluster 2 n (%) | p-Value |
|---|---|---|---|---|---|
| Demographic features | |||||
| Sex Male | 1501 (51.7) | 459 (30.6%) | 683 (45.5%) | 359 (23.9) | 0.004 |
| Age Group | <0.001 | ||||
| Neonatal | 212 (7.3) | 1 (0.5) | 191 (90.1) | 20 (9.4) | |
| Infant and toddler | 1618 (55.7) | 32 (1.98) | 987 (61) | 599 (37.02) | |
| Child | 766 (26.4) | 539 (70.4) | 83 (10.8) | 144 (18.8) | |
| Teenager | 307 (10.6) | 301 (98) | 0 (0) | 6 (2) | |
| Birth Type | <0.001 | ||||
| Preterm birth | 315 (28.9) | 36 (11.4) | 225 (71.4) | 54 (17.1) | |
| Term birth | 762 (69.8) | 117 (15.4) | 445 (58.4) | 200 (26.2) | |
| Post-term birth | 14 (1.3) | 3 (21.4) | 3 (21.4) | 8 (57.2) | |
| BMI | <0.001 | ||||
| Underweight | 571 (26.9) | 210 (36.8) | 220 (38.5) | 141 (24.7) | |
| Normal | 1383 (65) | 415 (30) | 635 (45.9) | 333 (24.1) | |
| Overweight | 173 (8.1) | 31 (17.9) | 93 (53.8) | 49 (28.3) | |
| Clinical Features | |||||
| Blood Pressure | <0.001 | ||||
| Normal | 1987 (78.1) | 583 (29.3) | 839 (42.2) | 565 (28.5) | |
| Hypotension | 152 (5.9) | 47 (31) | 63 (41.4) | 42 (27.6) | |
| Hypertension | 406 (16) | 221 (54.4) | 106 (26.1) | 79 (19.5) | |
| Modified ROSS Classification | 0.001 | ||||
| I, II | 783 (37.5) | 282 (36) | 317 (40.5) | 184 (23.5) | |
| III, IV | 1308 (62.5) | 449 (34.3) | 458 (35) | 401 (30.7) | |
| Respiratory symptoms | 2185 (75.3) | 505 (23.1) | 1085 (49.7) | 595 (27.2) | <0.001 |
| Gastrointestinal symptoms | 717 (24.7) | 317 (44.2) | 179 (25) | 221 (30.8) | <0.001 |
| Systemic Venous Congestion | 2153 (74.2) | 525 (24.4) | 1000 (46.4) | 628 (29.2) | <0.001 |
| Interrupted feeding | 816 (28.1) | 1 (0.1) | 533 (65.3) | 282 (34.6) | <0.001 |
| Pallor | 867 (30) | 206 (23.8) | 355 (40.9) | 306 (35.3) | <0.001 |
| Restlessness | 613 (21.1) | 65 (10.6) | 326 (53.2) | 222 (36.2) | <0.001 |
| HF type and etiology | |||||
| AHF | 1801 (63.6) | 476 (26.4) | 801 (44.5) | 524 (29.1) | <0.001 |
| CHF | 1029 (36.4) | 371 (36.1) | 426 (41.4) | 232 (22.5) | |
| Congenital Heart Disease (CHD) | 1062 (36.6) | 150 (14.1) | 767 (72.2) | 145 (13.7) | <0.001 |
| Simple CHD | 331 (11.4) | 43 (13) | 244 (73.7) | 44 (13.3) | <0.001 |
| Complex CHD | 731 (21.2) | 107 (14.6) | 523 (71.5) | 101 (13.8) | <0.001 |
| ASD | 515 (17.7) | 125 (24.3) | 219 (42.5) | 171 (33.2) | <0.001 |
| VSD | 427 (14.7) | 109 (25.5) | 182 (42.6) | 136 (31.9) | 0.011 |
| PDA | 297 (10.2) | 73 (24.6) | 130 (43.8) | 94 (31.6) | 0.036 |
| Cardiomyopathy | 978 (33.7) | 429 (43.9) | 61 (6.2) | 488 (49.9) | <0.001 |
| HCM | 62 (2.1) | 27 (43.5) | 23 (37.1) | 12 (19.4) | 0.06 |
| DCM | 463 (16) | 149 (32.2) | 220 (47.5) | 94 (20.3) | 0.004 |
| RCM | 47 (1.61) | 13 (27.7) | 25 (53.2) | 9 (19.1) | 0.348 |
| ARVC | 57 (2) | 20 (35.1) | 27 (47.4) | 10 (17.5) | 0.294 |
| Cardiac and Radiological findings | |||||
| Myocardial densification insufficiency | 229 (7.9) | 72 (31.4) | 94 (41) | 63 (27.5) | 0.748 |
| Endocardial elasto-fibrillar hyperplasia | 155 (5.3) | 58 (37.4) | 64 (41.3) | 33 (21.3) | 0.091 |
| Infection | 850 (29.3) | 201 (23.6) | 442 (52) | 207 (24.4) | <0.001 |
| Cardiomegaly | 1794 (71.6) | 578 (32.2) | 638 (35.6) | 578 (32.2) | <0.001 |
| Pulmonary Congestion | 853 (36.6) | 294 (34.5) | 368 (43.1) | 191 (22.4) | <0.001 |
| Pulmonary Hypoperfusion | 14 (0.6) | 2 (14.3) | 4 (28.6) | 8 (57.1) | 0.032 |
| Prominent aortic node | 9 (0.4) | 5 (55.6) | 3 (33.3) | 1 (11.1) | 0.219 |
| Prominent pulmonary artery segment | 73 (3.1) | 23 (31.5) | 30 (41.1) | 20 (27.4) | 0.895 |
| Supraventricular tachycardia | 281 (1) | 116 (41.3) | 89 (31.7) | 76 (27) | <0.001 |
| Ventricular tachycardia | 169 (6.1) | 91 (53.8) | 35 (20.7) | 43 (25.4) | <0.001 |
| Malignant arrhythmias | 167 (6.1) | 73 (43.7) | 37 (22.2) | 57 (34.1) | <0.001 |
| Variable | Overall Median (IQR) | Cluster 0 Median (IQR) | Cluster 1 Median (IQR) | Cluster 2 Median (IQR) | p-Value |
|---|---|---|---|---|---|
| Gestational Week | 38.57 [37.00–39.86] | 39.00 [37.97–40.00] | 38.14 [36.29–39.57] | 39.00 [37.71–40.00] | <0.001 |
| Birth weight, kg | 3.20 [2.90–3.50] | 3.25 [3.00–3.56] | 3.10 [2.70–3.49] | 3.25 [3.00–3.53] | <0.001 |
| Weight, kg | 8.75 [5.50–20.23] | 30.00 [21.00–41.42] | 5.50 [4.00–8.00] | 7.95 [6.22–11.50] | <0.001 |
| Height, cm | 73.00 [60.00–119.00] | 140.00 [120.00–166.00] | 60.00 [54.00–70.00] | 70.00 [62.00–84.00] | <0.001 |
| SBP, mmHg | 91.00 [82.00–104.00] | 103.00 [94.00–112.00] | 85.00 [78.00–94.00] | 89.00 [81.00–97.00] | <0.001 |
| DBP, mmHg | 56.00 [48.00–65.00] | 65.00 [58.00–73.00] | 50.00 [43.00–59.00] | 53.00 [46.00–61.00] | <0.001 |
| HR, bpm | 135.00 [114.00–168.00] | 106.00 [90.00–122.00] | 145.00 [130.00–180.00] | 140.00 [125.00–175.00] | <0.001 |
| LA, mm | 19.00 [16.00–25.00] | 28.00 [22.00–37.00] | 17.00 [12.75–19.00] | 20.00 [17.00–24.00] | <0.001 |
| RA, mm | 23.00 [18.00–31.00] | 35.00 [28.00–44.00] | 19.00 [16.00–22.00] | 22.00 [18.00–26.00] | <0.001 |
| RV, mm | 14.00 [11.00–20.00] | 21.00 [17.00–29.00] | 13.00 [10.00–18.00] | 13.00 [10.00–17.00] | <0.001 |
| LVDd, mm | 34.00 [24.00–44.00] | 47.00 [38.00–57.00] | 24.00 [19.00–29.00] | 39.00 [33.00–45.00] | <0.001 |
| LVDs, mm | 22.00 [16.00–34.00] | 34.00 [24.00–47.00] | 16.00 [12.00–19.00] | 32.00 [26.00–38.00] | <0.001 |
| AO, mm | 13.00 [11.00–18.00] | 19.00 [18.00–22.00] | 11.00 [10.00–13.00] | 12.00 [11.00–14.00] | <0.001 |
| IVDd, mm | 5.00 [4.00–7.00] | 7.00 [6.00–8.00] | 4.00 [4.00–5.00] | 5.00 [4.00–6.00] | <0.001 |
| LVPWD, mm | 5.00 [4.00–6.00] | 6.00 [6.00–8.00] | 4.00 [3.00–5.00] | 5.00 [4.00–6.00] | <0.001 |
| LVEF, % | 54.00 [35.00–68.00] | 46.00 [32.00–60.00] | 67.00 [60.00–73.00] | 33.00 [26.00–43.00] | <0.001 |
| LVFS, % | 27.00 [18.00–36.00] | 23.00 [17.00–31.00] | 36.00 [31.00–40.00] | 17.00 [12.00–21.00] | <0.001 |
| PAP, mmHg | 42.00 [29.00–60.25] | 42.00 [30.00–61.00] | 49.00 [34.00–70.00] | 33.00 [22.00–45.50] | <0.001 |
| Variable | Overall Median (IQR) | Cluster 0 Median (IQR) | Cluster 1 Median (IQR) | Cluster 2 Median (IQR) | p-Value |
|---|---|---|---|---|---|
| BNP, pg/mL | 935.00 [182.00–3509.25] | 820.00 [211.50–2251.00] | 466.50 [110.00–1938.25] | 3234.00 [1039.00–5000.00] | <0.001 |
| NT-proBNP, pg/mL | 5690.50 [1753.00–18,004.75] | 4293.00 [1179.00–10,660.00] | 3823.50 [1026.75–13,389.75] | 14,448.00 [5327.50–30,000.00] | <0.001 |
| CK-MB, µg/L | 7.30 [2.80–23.16] | 5.70 [2.12–20.00] | 6.85 [3.20–23.26] | 10.20 [3.58–27.00] | <0.001 |
| cTnI, µg/L | 0.06 [0.01–0.28] | 0.04 [0.01–0.19] | 0.06 [0.02–0.23] | 0.14 [0.03–0.48] | <0.001 |
| ALT, U/L | 26.00 [17.60–46.27] | 23.00 [14.55–41.00] | 27.00 [18.00–43.35] | 28.00 [18.00–56.28] | <0.001 |
| AST, U/L | 43.60 [31.48–65.78] | 35.00 [25.00–55.00] | 44.90 [33.60–64.00] | 49.00 [37.00–84.00] | <0.001 |
| ALB, g/L | 39.40 [34.90–43.10] | 39.80 [35.10–43.20] | 39.10 [34.20–42.90] | 39.40 [35.90–43.10] | 0.02 |
| ALP, U/L | 189.00 [134.00–264.00] | 179.65 [123.23–228.25] | 203.00 [142.00–289.00] | 188.30 [134.38–259.25] | <0.001 |
| Cr, µmol/L | 30.30 [23.00–45.00] | 45.80 [36.00–59.45] | 25.00 [20.00–33.00] | 28.20 [22.00–38.00] | <0.001 |
| BUN, mg/dL | 4.50 [3.07–6.22] | 5.30 [4.15–7.04] | 3.60 [2.50–5.28] | 4.75 [3.22–6.59] | <0.001 |
| UA, µmol/L | 311.00 [218.00–430.00] | 393.15 [296.73–519.00] | 246.60 [180.00–332.30] | 343.55 [253.00–473.35] | <0.001 |
| Sodium, mmol/L | 138.00 [135.00–140.00] | 138.00 [136.00–140.00] | 138.00 [135.00–140.00] | 137.00 [134.00–139.00] | <0.001 |
| WBC, ×109/L | 9.09 [6.88–11.91] | 8.30 [6.50–11.00] | 9.62 [7.27–12.50] | 9.18 [6.90–12.20] | <0.001 |
| RBC, ×1012/L | 4.22 [3.70–4.73] | 4.60 [4.17–5.01] | 4.04 [3.50–4.63] | 4.08 [3.63–4.46] | <0.001 |
| PLT, ×109/L | 303.00 [221.00–389.00] | 256.00 [197.00–321.25] | 326.00 [240.00–420.00] | 334.00 [244.00–412.00] | <0.001 |
| Hb, g/dL | 116.00 [102.00–130.00] | 127.00 [117.00–138.75] | 112.00 [99.00–126.00] | 108.00 [96.00–119.00] | <0.001 |
| MCV, fL | 85.00 [80.00–90.00] | 85.00 [81.00–88.00] | 86.00 [80.00–94.00] | 83.00 [78.00–88.00] | <0.001 |
| MCH, pg | 28.00 [26.00–30.00] | 28.00 [27.00–30.00] | 28.00 [26.00–31.00] | 27.00 [25.00–29.00] | <0.001 |
| MCHC, g/dL | 328.00 [318.00–337.00] | 330.00 [321.00–338.00] | 327.00 [317.00–337.00] | 325.00 [314.00–336.00] | <0.001 |
| PT, s | 14.00 [12.00–16.00] | 14.00 [12.00–16.00] | 13.00 [12.00–15.00] | 14.00 [13.00–17.00] | <0.001 |
| APTT, s | 34.00 [29.00–40.00] | 32.00 [28.00–36.00] | 35.00 [29.00–42.00] | 33.00 [28.00–39.00] | <0.001 |
| PO2, mmHg | 78.00 [46.20–110.70] | 75.10 [43.06–108.00] | 72.00 [48.00–100.00] | 91.10 [49.05–135.00] | <0.001 |
| PCO2, mmHg | 37.00 [31.10–44.12] | 35.00 [30.10–40.10] | 40.50 [33.30–49.40] | 35.00 [29.32–40.80] | <0.001 |
| Variable | Overall n (%) | Cluster 0 n (%) | Cluster 1 n (%) | Cluster 2 n (%) | p-Value |
|---|---|---|---|---|---|
| ACEIs | 1300 (44.8) | 447 (34.4) | 314 (24.2) | 539 (41.4) | <0.001 |
| BBs | 486 (16.7) | 265 (54.5) | 94 (19.3) | 127 (26.2) | <0.001 |
| Diuretics | 2504 (86.2) | 758 (30.3) | 1016 (40.6) | 730 (29.2) | <0.001 |
| IA | 2371 (81.7) | 640 (27) | 987 (41.6) | 744 (31.4) | <0.001 |
| Antibiotics | 2008 (69.2) | 405 (20.2) | 1091 (54.3) | 512 (25.5) | <0.001 |
| Hormones | 1355 (46.7) | 284 (21) | 573 (42.3) | 498 (36.7) | <0.001 |
| IVIG | 862 (29.7) | 157 (18.2) | 304 (35.3) | 401 (46.5) | <0.001 |
| Variable | Cluster 0 | Cluster 1 | Cluster 2 | p-Value |
|---|---|---|---|---|
| Total Patients n (%) | 873 (30.1) | 1261 (43.4) | 769 (26.5) | <0.001 |
| Number of Deaths | 22 (19.1) | 64 (55.7) | 29 (25.2) | |
| Death Rate (%) (95% CI) | 2.5 (1.7–3.7) | 5.1 (4.0–6.5) | 3.8 (2.6–5.4) | |
| Length of Stay count (Patients) n (%) | 865 (30.1) | 1252 (43.6) | 757 (26.3) | <0.001 |
| <3 days | 47 (5.4) | 71 (5.7) | 36 (4.8) | |
| 3–7 days | 199 (23) | 213 (17) | 91 (12) | |
| 7–14 days | 310 (35.8) | 463 (37) | 308 (40.7) | |
| 15–30 days | 241 (27.9) | 372 (29.7) | 244 (32.2) | |
| >30 days | 68 (7.9) | 133 (10.6) | 78 (10.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akram, M.J.; Nawaz, A.; Liu, L.; Zhang, J.; Huang, H.; Pan, B.; Yuan, Y.; Tian, J. Machine Learning Reveals Novel Pediatric Heart Failure Phenotypes with Distinct Mortality and Hospitalization Outcomes. Diagnostics 2025, 15, 2893. https://doi.org/10.3390/diagnostics15222893
Akram MJ, Nawaz A, Liu L, Zhang J, Huang H, Pan B, Yuan Y, Tian J. Machine Learning Reveals Novel Pediatric Heart Failure Phenotypes with Distinct Mortality and Hospitalization Outcomes. Diagnostics. 2025; 15(22):2893. https://doi.org/10.3390/diagnostics15222893
Chicago/Turabian StyleAkram, Muhammad Junaid, Asad Nawaz, Lingjuan Liu, Jinpeng Zhang, Haixin Huang, Bo Pan, Yuxing Yuan, and Jie Tian. 2025. "Machine Learning Reveals Novel Pediatric Heart Failure Phenotypes with Distinct Mortality and Hospitalization Outcomes" Diagnostics 15, no. 22: 2893. https://doi.org/10.3390/diagnostics15222893
APA StyleAkram, M. J., Nawaz, A., Liu, L., Zhang, J., Huang, H., Pan, B., Yuan, Y., & Tian, J. (2025). Machine Learning Reveals Novel Pediatric Heart Failure Phenotypes with Distinct Mortality and Hospitalization Outcomes. Diagnostics, 15(22), 2893. https://doi.org/10.3390/diagnostics15222893

