Increased Serum Signal Peptide-Complement C1r/C1s, Uegf, Bmp1 (CUB)-Epithelial Growth Factor Domain-Containing Protein-1 May Have a Role in the Pathophysiology of Late-Onset Fetal Growth Restriction
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| FGR | Intrauterine growth restriction |
| IMA | Serum ischemia-modified albumin |
| SCUBE-1 | Signal peptide-CUB (complement C1r/C1s, Uegf, and Bmp1)-epidermal growth factor-domain-containing protein 1 |
| FUA-PI | Fetal umbilical artery pulsatility index |
| FMCA-PI | Fetal middle cerebral artery pulsatility index |
| CPR | Fetal cerebroplacental ratio |
| MUA-PI | Maternal uterine artery pulsatility index |
| ROS | Reactive oxygen species |
| NICU | Neonatal intensive care unit |
References
- Society for Maternal-Fetal Medicine; Martins, J.G.; Biggio, J.R.; Abuhamad, A. Society for Maternal-Fetal Medicine Consult Series #52: Diagnosis and management of fetal growth restriction: (Replaces Clinical Guideline Number 3, April 2012). Am. J. Obstet. Gynecol. 2020, 223, B2–B17. [Google Scholar] [CrossRef] [PubMed]
- Lees, C.C.; Stampalija, T.; Baschat, A.; da Silva Costa, F.; Ferrazzi, E.; Figueras, F.; Hecher, K.; Kingdom, J.; Poon, L.C.; Salomon, L.J.; et al. ISUOG Practice Guidelines: Diagnosis and management of small-for-gestational-age fetus and fetal growth restriction. Ultrasound Obstet. Gynecol. 2020, 56, 298–312. [Google Scholar] [CrossRef] [PubMed]
- Savchev, S.; Figueras, F.; Sanz-Cortes, M.; Cruz-Lemini, M.; Triunfo, S.; Botet, F.; Gratacos, E. Evaluation of an optimal gestational age cut-off for the definition of early- and late-onset fetal growth restriction. Fetal Diagn. Ther. 2014, 36, 99–105. [Google Scholar] [CrossRef]
- Gordijn, S.J.; Beune, I.M.; Thilaganathan, B.; Papageorghiou, A.; Baschat, A.A.; Baker, P.N.; Silver, R.M.; Wynia, K.; Ganzevoort, W. Consensus definition of fetal growth restriction: A Delphi procedure. Ultrasound Obstet. Gynecol. 2016, 48, 333–339. [Google Scholar] [CrossRef]
- Figueras, F.; Caradeux, J.; Crispi, F.; Eixarch, E.; Peguero, A.; Gratacos, E. Diagnosis and surveillance of late-onset fetal growth restriction. Am. J. Obstet. Gynecol. 2018, 218, S790–S802.e791. [Google Scholar] [CrossRef]
- Cavoretto, P.I.; Farina, A.; Salmeri, N.; Syngelaki, A.; Tan, M.Y.; Nicolaides, K.H. First trimester risk of preeclampsia and rate of spontaneous birth in patients without preeclampsia. Am. J. Obstet. Gynecol. 2024, 231, 452.e1–452.e7. [Google Scholar] [CrossRef]
- Tedyanto, C.P.; Prasetyadi, F.O.H.; Dewi, S.; Noorlaksmiatmo, H. Maternal factors and perinatal outcomes associated with early-onset versus late-onset fetal growth restriction: A meta-analysis. J. Matern. Fetal Neonatal Med. 2025, 38, 2505774. [Google Scholar] [CrossRef]
- Blok, E.L.; Burger, R.J.; Bergeijk, J.E.V.; Bourgonje, A.R.; Goor, H.V.; Ganzevoort, W.; Gordijn, S.J. Oxidative stress biomarkers for fetal growth restriction in umbilical cord blood: A scoping review. Placenta 2024, 154, 88–109. [Google Scholar] [CrossRef]
- Li, L.; Zhou, L.; Li, W.; Shi, F.; Feng, X.; Zhuang, J. Oxidative stress biomarkers in fetal growth restriction: A systematic review and meta-analysis. Arch. Gynecol. Obstet. 2025, 312, 1063–1084. [Google Scholar] [CrossRef]
- Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet. Gynecol. 2013, 122, 1122–1131. [Google Scholar] [CrossRef]
- Bar-Or, D.; Lau, E.; Winkler, J.V. A novel assay for cobalt-albumin binding and its potential as a marker for myocardial ischemia-a preliminary report. J. Emerg. Med. 2000, 19, 311–315. [Google Scholar] [CrossRef]
- Lin, Y.C.; Sahoo, B.K.; Gau, S.S.; Yang, R.B. The biology of SCUBE. J. Biomed. Sci. 2023, 30, 33. [Google Scholar] [CrossRef] [PubMed]
- Dinc, G.; Karahan, S.C.; Guven, S. Maternal Serum SCUBE-1: A Novel Ischemic Marker in Preeclampsia. J. Pers. Med. 2024, 14, 1102. [Google Scholar] [CrossRef] [PubMed]
- Cetin, E.C.; Guven, S.; Sal, H.; Guvendag Guven, E.S.; Mentese, A. Serum ischemia-modified albumin level returns to its premenopausal level with 1-year hormone therapy in healthy menopausal women. Menopause Rev. 2021, 20, 76–80. [Google Scholar] [CrossRef]
- Guven, S.; Kart, C.; Guvendag Guven, E.S.; Cetin, E.C.; Mentese, A. Is the measurement of serum ischemia-modified albumin the best test to diagnose ovarian torsion? Gynecol. Obstet. Investig. 2015, 79, 269–275. [Google Scholar] [CrossRef]
- Osmanagaoglu, M.A.; Karahan, S.C.; Aran, T.; Guven, S.; Turgut, E.; Mentese, A.; Bozkaya, H. The Diagnostic Value of beta-Human Chorionic Gonadotropin, Progesterone, and Ischemia-Modified Albumin and Their Combined Use in the Prediction of First Trimester Abortions. Int. Sch. Res. Not. 2014, 2014, 846531. [Google Scholar] [CrossRef]
- Osmanagaoglu, M.A.; Karahan, S.C.; Aran, T.; Guven, S.; Cora, A.; Kopuz, M.; Bozkaya, H. The effects of hormone therapy on ischemia modified albumin and soluble CD40 ligand levels in obese surgical menopausal women. Clin. Exp. Obstet. Gynecol. 2013, 40, 389–392. [Google Scholar]
- Aran, T.; Unsal, M.A.; Guven, S.; Kart, C.; Cetin, E.C.; Alver, A. Carbon dioxide pneumoperitoneum induces systemic oxidative stress: A clinical study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012, 161, 80–83. [Google Scholar] [CrossRef]
- Guven, S.; Karahan, S.C.; Kandemir, O.; Ucar, U.; Cora, A.O.; Bozkaya, H. Occult inflammation and/or ischemia may be responsible for the false positivity of biochemical Down syndrome screening test. J. Perinat. Med. 2010, 38, 367–371. [Google Scholar] [CrossRef]
- Aran, T.; Guven, S.; Unsal, M.A.; Alver, A.; Mentese, A.; Yulug, E. Serum ischemia-modified albumin as a novel marker of ovarian torsion: An experimental study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2010, 150, 72–75. [Google Scholar] [CrossRef]
- Guven, S.; Karahan, S.C.; Bayram, C.; Ucar, U.; Ozeren, M. Elevated concentrations of serum ischaemia-modified albumin in PCOS, a novel ischaemia marker of coronary artery disease. Reprod. Biomed. Online 2009, 19, 493–500. [Google Scholar] [CrossRef]
- Guven, S.; Alver, A.; Mentese, A.; Ilhan, F.C.; Calapoglu, M.; Unsal, M.A. The novel ischemia marker ‘ischemia-modified albumin’ is increased in normal pregnancies. Acta Obstet. Gynecol. Scand. 2009, 88, 479–482. [Google Scholar] [CrossRef]
- Bayoglu Tekin, Y.; Baki Erin, K.; Yilmaz, A. Evaluation of SCUBE-1 levels as a placental dysfunction marker at gestational diabetes mellitus. Gynecol. Endocrinol. 2020, 36, 417–420. [Google Scholar] [CrossRef]
- Uyanikoglu, H.; Hilali, N.G.; Yardimciel, M.; Koyuncu, I. A new biomarker for the early diagnosis of ovarian torsion: SCUBE-1. Clin. Exp. Reprod. Med. 2018, 45, 94–99. [Google Scholar] [CrossRef]
- Mandalà, M. Oxidative Stress and Inflammation in Uterine–Vascular Adaptation During Pregnancy. Antioxidants 2025, 14, 1051. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, Y.; Yang, Y.; Du, Z.; Fan, Y.; Zhao, Y.; Yuan, S. Oxidative stress on vessels at the maternal-fetal interface for female reproductive system disorders: Update. Front. Endocrinol. 2023, 14, 1118121. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.F.; Thajeb, P.; Tu, C.F.; Chiang, F.T.; Chen, C.H.; Yang, R.B.; Chen, J.J. Plasma concentration of SCUBE1, a novel platelet protein, is elevated in patients with acute coronary syndrome and ischemic stroke. J. Am. Coll. Cardiol. 2008, 51, 2173–2180. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.F.; Su, Y.H.; Huang, Y.N.; Tsai, M.T.; Li, L.T.; Chen, Y.L.; Cheng, C.J.; Dai, D.F.; Yang, R.B. Localization and characterization of a novel secreted protein SCUBE1 in human platelets. Cardiovasc. Res. 2006, 71, 486–495. [Google Scholar] [CrossRef]
- Mifsud, W.; Sebire, N.J. Placental pathology in early-onset and late-onset fetal growth restriction. Fetal Diagn. Ther. 2014, 36, 117–128. [Google Scholar] [CrossRef]
- Voros, C.; Stavros, S.; Sapantzoglou, I.; Mavrogianni, D.; Daskalaki, M.A.; Theodora, M.; Antsaklis, P.; Drakakis, P.; Loutradis, D.; Daskalakis, G. The Role of Placental Mitochondrial Dysfunction in Adverse Perinatal Outcomes: A Systematic Review. J. Clin. Med. 2025, 14, 3838. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Liu, Y.; Cui, L.; Wu, W.B.; Quinn, M.J.; Menon, R.; Zhang, H.J. Hypoxic effects on the mitochondrial content and functions of the placenta in fetal growth restriction. Placenta 2021, 114, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Huang, Y.; Wang, G.; Tang, Z.; Shan, Y.; Shen, S.; Ni, X. Mitochondrial ROS Accumulation Contributes to Maternal Hypertension and Impaired Remodeling of Spiral Artery but Not IUGR in a Rat PE Model Caused by Maternal Glucocorticoid Exposure. Antioxidants 2023, 12, 987. [Google Scholar] [CrossRef] [PubMed]
- Honorio, D.R.; Ribeiro, A.; da Silva, T.L.M.; Tameirao, D.C.M.; Vilela, L.R.; Felicioni, F. Prenatal human brain development is not spared by IUGR: A systematic review. Early Hum. Dev. 2025, 201, 106199. [Google Scholar] [CrossRef]
- Nawathe, A.; David, A.L. Prophylaxis and treatment of foetal growth restriction. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 49, 66–78. [Google Scholar] [CrossRef]
- Villalain, C.; Herraiz, I.; Akolekar, R.; Figueras, F.; Crispi, F.; Rizzo, G.; Mappa, I.; Mendoza, M.; Del Moral, T.; Stampalija, T.; et al. Clinical practice guidance for the management of fetal growth restriction: An expert review. J. Matern. Fetal Neonatal Med. 2025, 38, 2526111. [Google Scholar] [CrossRef]
- Cobanoglu, U.; Birge, O.; Cetin, M.; Guven, E.S.G. Evaluation of Maternal Ischemia-Modified Albumin Levels during Pregnancy and Their Effect on Fetal Birth Weight. Medicina 2024, 60, 1530. [Google Scholar] [CrossRef]
- Zhong, X.; Sun, Y.; Lu, Y.; Xu, L. Immunomodulatory role of estrogen in ischemic stroke: Neuroinflammation and effect of sex. Front. Immunol. 2023, 14, 1164258. [Google Scholar] [CrossRef]
- Tal, R.; Taylor, H.S. Endocrinology of Pregnancy. In Endotext [Internet]; Feingold, K.R., Ahmed, S.F., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., et al., Eds.; MDText.com Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]

| Early-Onset vs. Late-Onset FGR | |
|---|---|
| Maternal factors | |
| Preeclampsia | OR 4.25, 95% CI 2.47–7.32 |
| Gestational diabetes | OR 1.00, 95% CI 0.51–1.96 |
| Cesarean delivery | OR 5.83, 95% CI 2.76–12.32 |
| Vaginal Delivery | OR 0.63, 95% CI 0.13–2.95 |
| Fetal factors | |
| APGAR score < 7 at five minutes | OR 6.35, 95% CI 2.98–13.56 |
| Neonatal resuscitation | OR 6.11, 95% CI 3.08–12.12 |
| NICU admission | OR 13.38, 95% CI 70–48.33 |
| Anemia | OR 117.68, 95% CI 3.23–4289.12 |
| Jaundice | OR 6.39, 95% CI 2.98–13.69 |
| NEC | OR 12.77, 95% CI 3.00–54.40 |
| Periventricular leukomalacia | OR 7.59, 95% CI 1.30–44.28 |
| Intra-ventricular hemorrhage | OR 5.09, 95% CI 2.19–11.82 |
| Respiratory distress syndrome | OR 7.08,95% CI 1.55–32.39 |
| Sepsis | OR 10.92, 95% CI 2.57–46.34 |
| Perinatal death | OR 10.01, 95% CI 5.76–17.39 |
| Umbilical cord pH < 7.1 | OR 1.57, 95% CI 0.94–2.61 |
| Hypoglycemia | OR 2.12, 95% CI 0.91–4.94 |
| KERRYPNX | Cases with FGR (n = 33) | Cases Without FGR (n = 33) | p |
|---|---|---|---|
| Age (years) a | 29.82 ± 5.66 | 30.15 ± 4.85 | >0.05 |
| Gravida (no.) b | 2.09 ± 1.23 | 2.55 ± 1.23 | >0.05 |
| Parity (no.) b | 0.91 ± 1.10 | 1.09 ± 1.40 | >0.05 |
| BMI (kg/m2) b | 27.04 ± 3.6 | 27.62 ± 2.9 | >0.05 |
| Gestational age at recruitment (weeks) b | 33.36 ± 2.97 | 33.39 ± 1.41 | >0.05 |
| Gestational age at delivery (weeks) b | 34.67 ± 3.67 | 38.48 ± 0.87 | <0.001 |
| Cesarean section (no.) c | 30 (90.9%) | 24 (72.7%) | >0.05 |
| Neonatal gender, male (no.) d | 14 (42.4%) | 19 (57.6%) | >0.05 |
| Neonatal birth weight (g) a | 2051.96 ± 466.89 | 3295.93 ± 345.80 | <0.001 |
| 5-min APGAR score (no.) b | 7.32 ± 1.42 | 8.30 ± 1.24 | >0.05 |
| Place of residence (no.) d | |||
| Village | 27 (81.8%) | 14 (42.4%) | 0.001 |
| City | 6 (18.2%) | 19 (57.6%) | |
| Socioeconomic status (no.) c | |||
| Good | 7 (21.2%) | 14 (42.4%) | 0.086 |
| Moderate | 13 (39.4%) | 13 (39.4%) | |
| Poor | 13 (39.4%) | 6 (18.2%) | |
| Pregnancy complications that developed during follow-up (no.) c | |||
| Gestational diabetes | 2 (6.1%) | 2 (6.1%) | 0.249 |
| Gestational hypertension | 2 (6.1%) | - | |
| Pre-eclampsia | 1 (3.0%) | - | |
| Preterm labor | 2 (6.1%) | - | |
| Premature rapture of membrane | 1 (3.0%) | - | |
| Absent | 25 (75.8%) | 31 (93.9%) | |
| NICU requirement (no.) c | 22 (66.7%) | 1 (3.0%) | <0.001 |
| Fetal complications (no.) c | |||
| Respiratory distress syndrome | 8 (24.2%) | - | <0.001 |
| Jaundice | 4 (12.1%) | 2 (6.1%) | |
| Anemia | 2 (6.1%) | - | |
| Necrotizing enterocolitis | 1 (3.0%) | - | |
| Newborn transient tachypnea | 7 (21.2%) | 1 (3.0%) | |
| Absent | 11 (33.3%) | 30 (9.9%) |
| Patients with FGR (n = 33) | Control Group (n = 33) | p | |
|---|---|---|---|
| Serum IMA (ABSU) a | 0.74 ± 0.64 | 0.73 ± 0.06 | 0.501 |
| Serum SCUBE-1 (ng/mL) b | 3.45 ± 2.54 | 1.62 ± 0.50 | <0.001 |
| FUA-PI (no.) b | 1.29 ± 0.35 | 0.91 ± 0.11 | <0.001 |
| FMCA-PI (no.) a | 1.52 ± 0.32 | 1.61 ± 0.34 | 0.273 |
| FCPR (no.) a | 1.45 ± 0.50 | 1.77 ± 0.37 | 0.005 |
| Right MUA-PI (no.) b | 0.99 ± 0.41 | 0.69 ± 0.25 | 0.140 |
| Left MUA-PI (no.) b | 1.00 ± 0.39 | 0.69 ± 0.21 | 0.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinc, G.; Karahan, S.C.; Guven, S. Increased Serum Signal Peptide-Complement C1r/C1s, Uegf, Bmp1 (CUB)-Epithelial Growth Factor Domain-Containing Protein-1 May Have a Role in the Pathophysiology of Late-Onset Fetal Growth Restriction. Diagnostics 2025, 15, 2891. https://doi.org/10.3390/diagnostics15222891
Dinc G, Karahan SC, Guven S. Increased Serum Signal Peptide-Complement C1r/C1s, Uegf, Bmp1 (CUB)-Epithelial Growth Factor Domain-Containing Protein-1 May Have a Role in the Pathophysiology of Late-Onset Fetal Growth Restriction. Diagnostics. 2025; 15(22):2891. https://doi.org/10.3390/diagnostics15222891
Chicago/Turabian StyleDinc, Gulseren, Suleyman Caner Karahan, and Suleyman Guven. 2025. "Increased Serum Signal Peptide-Complement C1r/C1s, Uegf, Bmp1 (CUB)-Epithelial Growth Factor Domain-Containing Protein-1 May Have a Role in the Pathophysiology of Late-Onset Fetal Growth Restriction" Diagnostics 15, no. 22: 2891. https://doi.org/10.3390/diagnostics15222891
APA StyleDinc, G., Karahan, S. C., & Guven, S. (2025). Increased Serum Signal Peptide-Complement C1r/C1s, Uegf, Bmp1 (CUB)-Epithelial Growth Factor Domain-Containing Protein-1 May Have a Role in the Pathophysiology of Late-Onset Fetal Growth Restriction. Diagnostics, 15(22), 2891. https://doi.org/10.3390/diagnostics15222891

