XBusNet: Text-Guided Breast Ultrasound Segmentation via Multimodal Vision–Language Learning
Abstract
1. Introduction
- We propose XBusNet, a dual-branch, dual-prompt vision and language segmentation architecture that combines a CLIP ViT global branch conditioned by GFCP with a U-Net local branch with multi-head self-attention that is modulated via SFA driven by LFPs.
- We design a reproducible prompt pipeline that converts structured metadata into natural language prompts, including global prompts for lesion size and centroid and local prompts for shape, margin, and BI-RADS.
- We introduce a lightweight SFA mechanism in the local decoder to inject attribute-aware scaling and shifting, improving boundary focus while preserving fine detail.
- We provide a comprehensive evaluation protocol with five-fold cross-validation, size-stratified analysis, component ablations, and Grad-CAM overlays used as qualitative visualizations of model focus relative to BI-RADS descriptors.
2. Materials and Methods
2.1. Datasets
2.2. Pre-Processing and Prompt Construction
2.3. Training Setup
Hyperparameter Tuning and Overfitting Control
2.4. Evaluation Metrics
2.5. Implementation Details and Hardware
2.6. Overall Architecture
2.7. Global Feature Extractor (GFE)
2.7.1. Global Features and Prompts
2.7.2. GFE Computation
2.8. Local Feature Extractor (LFE)
2.8.1. Local Features and Prompts
2.8.2. LFE Computation
2.9. Semantic Feature Adjustment (SFA)
2.10. Feature Fusion and Prediction Head
3. Results
3.1. Overall Performance
3.1.1. Fold-Wise Performance
3.1.2. Comparison with Prior Methods
3.1.3. Qualitative Assessment
3.1.4. Statistical Analysis and Comparison
3.2. Ablation Study
3.3. Qualitative Visualizations
4. Discussion
Clinical Relevance
5. Conclusions
Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Cancer Society. Key Statistics for Breast Cancer. 2025. Available online: https://www.cancer.org/cancer/types/breast-cancer/about/how-common-is-breast-cancer.html (accessed on 5 May 2025).
- Nicholson, W.K.; Silverstein, M.; Wong, J.B.; Barry, M.J.; Chelmow, D.; Coker, T.R.; Davis, E.M.; Jaén, C.R.; Krousel-Wood, M.; Lee, S.A.; et al. Screening for Breast Cancer: US Preventive Services Task Force Recommendation Statement. JAMA 2024, 331, 1918–1930. [Google Scholar] [CrossRef]
- Sardanelli, F.; Boetes, C.; Borisch, B.; Deckerd, T.; Federicoe, M.; Gilbertf, F.J.; Helbichg, T.; Heywang-Köbrunnerh, S.H.; Kaiseri, W.A.; Kerin, M.J.; et al. Magnetic resonance imaging of the breast: Recommendations from the EUSOMA working group. Eur. J. Cancer 2010, 46, 1296–1316. [Google Scholar] [CrossRef]
- Carney, P.A.; Miglioretti, D.L.; Yankaskas, B.C.; Kerlikowske, K.; Rosenberg, R.; Rutter, C.M.; Geller, B.M.; Abraham, L.A.; Taplin, S.H.; Dignan, M.; et al. Individual and Combined Effects of Age, Breast Density, and Hormone Replacement Therapy Use on the Accuracy of Screening Mammography. Ann. Intern. Med. 2003, 138, 168–175. [Google Scholar] [CrossRef]
- Marcon, M.; Fuchsjäger, M.H.; Clauser, P.; Mann, R.M. ESR Essentials: Screening for breast cancer—General recommendations by EUSOBI. Eur. Radiol. 2024, 34, 6348–6357. [Google Scholar] [CrossRef]
- Evans, A.; Trimboli, R.M.; Athanasiou, A.; Balleyguier, C.; Baltzer, P.A.; Bick, U.; Camps Herrero, J.; Clauser, P.; Colin, C.; Cornford, E.; et al. Breast ultrasound: Recommendations for information to women and referring physicians by the European Society of Breast Imaging. Insights Imaging 2018, 9, 449–461. [Google Scholar] [CrossRef]
- Zhang, Y.; Xian, M.; Cheng, H.D.; Shareef, B.; Ding, J.; Xu, F.; Huang, K.; Zhang, B.; Ning, C.; Wang, Y. BUSIS: A Benchmark for Breast Ultrasound Image Segmentation. Healthcare 2022, 10, 729. [Google Scholar] [CrossRef]
- Shareef, B.M.; Xian, M.; Sun, S.; Vakanski, A.; Ding, J.; Ning, C.; Cheng, H.D. A Benchmark for Breast Ultrasound Image Classification. SSRN Working Paper. 2023. Available online: https://ssrn.com/abstract=4339660 (accessed on 20 May 2025).
- D’Orsi, C.J.; Sickles, E.A.; Mendelson, E.B.; Morris, E.A. (Eds.) ACR BI-RADS Atlas: Breast Imaging Reporting and Data System, 5th ed.; American College of Radiology: Reston, VA, USA, 2013. [Google Scholar]
- Gu, J.; Jiang, T. Ultrasound radiomics in personalized breast management: Current status and future prospects. Front. Oncol. 2022, 12, 963612. [Google Scholar] [CrossRef]
- Noble, J.A.; Boukerroui, D. Ultrasound image segmentation: A survey. IEEE Trans. Med. Imaging 2006, 25, 987–1010. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Proceedings of the 18th International Conference, Munich, Germany, 5–9 October 2015; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. [Google Scholar] [CrossRef]
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Proceedings of the DLMIA/ML-CDS@MICCAI, Granada, Spain, 20 September 2018; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 11045, pp. 3–11. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar] [CrossRef]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al. Attention U-Net: Learning Where to Look for the Pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar] [CrossRef]
- Xie, Y.; Yang, B.; Guan, Q.; Zhang, J.; Wu, Q.; Xia, Y. Attention Mechanisms in Medical Image Segmentation: A Survey. arXiv 2023, arXiv:2305.17937. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation. arXiv 2021, arXiv:2102.04306. [Google Scholar] [CrossRef]
- Rodriguez, J.; Huang, K.; Xu, M. Multi-Task Breast Ultrasound Image Classification and Segmentation Using Swin Transformer and VMamba Models. In Proceedings of the 2024 7th International Conference on Pattern Recognition and Artificial Intelligence (PRAI), Hangzhou, China, 15–17 August 2024; pp. 858–863. [Google Scholar] [CrossRef]
- Shareef, B.; Xian, M.; Vakanski, A.; Wang, H. Breast Ultrasound Tumor Classification Using a Hybrid Multitask CNN-Transformer Network. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2023, Proceedings of the 26th International Conference, Vancouver, BC, Canada, 8–12 October 2023; Springer Nature: Cham, Switzerland, 2023; pp. 344–353. [Google Scholar]
- Guan, H.; Liu, M. Domain Adaptation for Medical Image Analysis: A Survey. IEEE Trans. Biomed. Eng. 2022, 69, 1173–1185. [Google Scholar] [CrossRef]
- Shareef, B.; Xian, M.; Vakanski, A. STAN: Small Tumor-Aware Network for Breast Ultrasound Image Segmentation. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Shareef, B.; Vakanski, A.; Freer, P.E.; Xian, M. ESTAN: Enhanced Small Tumor-Aware Network for Breast Ultrasound Image Segmentation. Healthcare 2022, 10, 2262. [Google Scholar] [CrossRef]
- Hsieh, Y.-H.; Hsu, F.-R.; Dai, S.-T.; Huang, H.-Y.; Chen, D.-R.; Shia, W.-C. Incorporating the Breast Imaging Reporting and Data System Lexicon with a Fully Convolutional Network for Malignancy Detection on Breast Ultrasound. Diagnostics 2022, 12, 66. [Google Scholar] [CrossRef]
- Oktay, O.; Ferrante, E.; Kamnitsas, K.; Heinrich, M.; Bai, W.; Caballero, J.; Cook, S.; de Marvao, A.; Dawes, T.; O’Regan, D.; et al. Anatomically Constrained Neural Networks (ACNN): Application to Cardiac Image Enhancement and Segmentation. IEEE Trans. Med. Imaging 2017, 37, 384–395. [Google Scholar] [CrossRef]
- Kervadec, H.; Bouchtiba, J.; Desrosiers, C.; Granger, E.; Dolz, J.; Ben Ayed, I. Boundary loss for highly unbalanced segmentation. Med. Image Anal. 2021, 67, 101851. [Google Scholar] [CrossRef]
- Karimi, D.; Salcudean, S.E. Reducing the Hausdorff Distance in Medical Image Segmentation with Convolutional Neural Networks. arXiv 2019, arXiv:1904.10030. [Google Scholar] [CrossRef]
- Hu, X.; Li, F.; Samaras, D.; Chen, C. Topology-Preserving Deep Image Segmentation. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019. [Google Scholar]
- El Jurdi, R.; Petitjean, C.; Honeine, P.; Cheplygina, V.; Abdallah, F. High-level prior-based loss functions for medical image segmentation: A survey. Comput. Vis. Image Underst. 2021, 210, 103248. [Google Scholar] [CrossRef]
- Yu, Y.; Acton, S.T. Speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 2002, 11, 1260–1270. [Google Scholar] [CrossRef]
- Destrempes, F.; Cloutier, G. A Critical Review and Uniformized Representation of Statistical Distributions Modeling the Envelope of Ultrasonic Echoes. Ultrasound Med. Biol. 2010, 36, 1037–1051. [Google Scholar] [CrossRef]
- Muhtadi, S.; Razzaque, R.R.; Chowdhury, A.; Garra, B.S.; Alam, S.K. Texture quantified from ultrasound Nakagami parametric images is diagnostically relevant for breast tumor characterization. J. Med. Imaging 2023, 10 (Suppl. S2), S22410. [Google Scholar] [CrossRef]
- Christensen, A.M.; Rosado-Méndez, I.M.; Hall, T.J. A systematized review of quantitative ultrasound based on first-order speckle statistics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2024, 71, 872–886. [Google Scholar] [CrossRef]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.Y.; et al. Segment Anything. arXiv 2023, arXiv:2304.02643. [Google Scholar]
- Lüddecke, T.; Ecker, A.S. Image Segmentation Using Text and Image Prompts. arXiv 2021, arXiv:2112.10003. [Google Scholar]
- Liu, S.; Zeng, Z.; Ren, T.; Li, F.; Zhang, H.; Yang, J.; Jiang, Q.; Li, C.; Yang, J.; Su, H.; et al. Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection. arXiv 2023, arXiv:2303.05499. [Google Scholar]
- Ren, T.; Liu, S.; Zeng, A.; Lin, J.; Li, K.; Cao, H.; Chen, J.; Huang, X.; Chen, Y.; Yan, F.; et al. Grounded SAM: Assembling Open-World Models for Diverse Visual Tasks. arXiv 2024, arXiv:2401.14159. [Google Scholar] [CrossRef]
- Li, J.; Li, D.; Hoi, S.C.H.; Xiong, C. BLIP: Bootstrapping Language–Image Pre-training for Unified Vision–Language Understanding and Generation. In Proceedings of the 39th International Conference on Machine Learning, Baltimore, MD, USA, 17–23 July 2022; Volume 162, pp. 12888–12900. [Google Scholar]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Computer Vision–ECCV 2014, Proceedings of the 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Springer: Cham, Switzerland, 2014; pp. 740–755. [Google Scholar]
- Yu, L.; Poirson, P.; Yang, S.; Berg, A.C.; Berg, T.L. Modeling Context in Referring Expressions. In Computer Vision–ECCV 2016, Proceedings of the 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016; pp. 69–85. [Google Scholar]
- Huang, Y.; Yang, X.; Liu, L.; Zhou, H.; Chang, A.; Zhou, X.; Chen, R.; Yu, J.; Chen, J.; Chen, C.; et al. Segment Anything Model for Medical Images? arXiv 2024, arXiv:2304.14660. [Google Scholar] [CrossRef]
- Tu, Z.; Gu, L.; Wang, X.; Jiang, B. Ultrasound SAM Adapter: Adapting SAM for Breast Lesion Segmentation in Ultrasound Images. arXiv 2024, arXiv:2404.14837. [Google Scholar] [CrossRef]
- Ma, J.; He, Y.; Li, F.; Han, L.; You, C.; Wang, B. Segment anything in medical images. Nat. Commun. 2024, 15, 1022. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, D. Customized Segment Anything Model for Medical Image Segmentation. arXiv 2023, arXiv:2304.13785. [Google Scholar] [CrossRef]
- Sun, X.; Wei, B.; Jiang, Y.; Mao, L.; Zhao, Q. CLIP-TNseg: A Multi-Modal Hybrid Framework for Thyroid Nodule Segmentation in Ultrasound Images. arXiv 2024, arXiv:2412.05530. [Google Scholar] [CrossRef]
- Chen, Y.; Wei, M.; Zheng, Z.; Hu, J.; Shi, Y.; Xiong, S.; Zhu, X.X.; Mou, L. CausalCLIPSeg: Unlocking CLIP’s Potential in Referring Medical Image Segmentation with Causal Intervention. arXiv 2025, arXiv:2503.15949. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar] [CrossRef]
- Jain, S.; Wallace, B.C. Attention is not Explanation. In Proceedings of the NAACL-HLT, Minneapolis, MN, USA, 2–7 June 2019; pp. 3543–3556. [Google Scholar]
- Adebayo, J.; Gilmer, J.; Muelly, M.; Goodfellow, I.; Hardt, M.; Kim, B. Sanity Checks for Saliency Maps. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), Montreal, QC, Canada, 3–8 December 2018. [Google Scholar]
- Pawłowska, A.; C´wierz-Pien´kowska, A.; Domalik, A.; Jagus´, D.; Kasprzak, P.; Matkowski, R.; Fura, Ł.; Nowicki, A.; Z˙ ołek, N. Curated benchmark dataset for ultrasound based breast lesion analysis. Sci. Data 2024, 11, 148. [Google Scholar] [CrossRef] [PubMed]
- Al-Dhabyani, W.; Gomaa, M.; Khaled, H.; Fahmy, A. Dataset of breast ultrasound images. Data Brief 2020, 28, 104863. [Google Scholar] [CrossRef]
- Li, C.; Liu, X.; Li, W.; Wang, C.; Liu, H.; Liu, Y.; Chen, Z.; Yuan, Y. U-KAN makes strong backbone for medical image segmentation and generation. In Proceedings of the Thirty-Ninth AAAI Conference on Artificial Intelligence and Thirty-Seventh Conference on Innovative Applications of Artificial Intelligence and Fifteenth Symposium on Educational Advances in Artificial Intelligence, Philadelphia, PA, USA, 25 February–4 March 2025; AAAI Press: Washington, DC, USA, 2025. AAAI’25/IAAI’25/EAAI’25. [Google Scholar] [CrossRef]
- Xu, M.; Wang, Y.; Huang, K. Anatosegnet: Anatomy Based CNN-Transformer Network for Enhanced Breast Ultrasound Image Segmentation. In Proceedings of the 2025 IEEE 22nd International Symposium on Biomedical Imaging (ISBI), Houston, TX, USA, 14–17 April 2025; pp. 1–5. [Google Scholar]




| Method | Dice | IoU | FPR | FNR |
|---|---|---|---|---|
| U-Net [12] | 0.604 ± 0.038 [0.564, 0.643] | 0.500 ± 0.032 [0.463, 0.537] | 0.019 ± 0.015 | 0.342 ± 0.069 |
| U-ResNet | 0.721 ± 0.040 [0.687, 0.754] | 0.621 ± 0.049 [0.588, 0.654] | 0.010 ± 0.007 | 0.264 ± 0.078 |
| U-KAN [53] | 0.752 ± 0.028 [0.739, 0.766] | 0.614 ± 0.037 [0.599, 0.630] | 0.009 ± 0.001 | 0.305 ± 0.036 |
| AnatoSegNet [54] | 0.733 ± 0.072 [0.702, 0.763] | 0.627 ± 0.084 [0.596, 0.658] | 0.015 ± 0.013 | 0.216 ± 0.034 |
| BUSSAM [43] | 0.833 ± 0.020 [0.815, 0.850] | 0.735 ± 0.026 [0.713, 0.755] | 0.014 ± 0.003 | 0.101 ± 0.024 |
| CLIP-TNseg [46] | 0.839 ± 0.019 [0.826, 0.852] | 0.765 ± 0.020 [0.750, 0.778] | 0.189 ± 0.002 | 0.134 ± 0.017 |
| XBusNet (Ours) | 0.876 ± 0.014 [0.863, 0.889] | 0.815 ± 0.013 [0.800, 0.829] | 0.099 ± 0.002 | 0.078 ± 0.012 |
| Model/Length | 0–110 | 111–250 | 250+ | |||
|---|---|---|---|---|---|---|
| Dice | IoU | Dice | IoU | Dice | IoU | |
| U-Net [12] | 0.3668 | 0.2750 | 0.6461 | 0.5251 | 0.6739 | 0.5625 |
| [0.3211, 0.5105] | [0.2467, 0.4135] | [0.5992, 0.6948] | [0.4928, 0.5843] | [0.5776, 0.7310] | [0.4779, 0.6246] | |
| U-ResNet | 0.6238 | 0.5327 | 0.7859 | 0.6863 | 0.7305 | 0.6217 |
| [0.5364, 0.7157] | [0.4451, 0.6092] | [0.7371, 0.8129] | [0.6385, 0.7153] | [0.5932, 0.7400] | [0.4885, 0.6393] | |
| U-Kan [53] | 0.7256 | 0.5817 | 0.7584 | 0.6216 | 0.7312 | 0.5892 |
| [0.7052, 0.7653] | [0.5574, 0.6274] | [0.7442, 0.7786] | [0.6049, 0.6457] | [0.7117, 0.7723] | [0.5685, 0.6398] | |
| AnatoSegNet [54] | 0.6303 | 0.5215 | 0.7843 | 0.6822 | 0.7207 | 0.6131 |
| [0.5375, 0.7161] | [0.4425, 0.6097] | [0.7411, 0.8056] | [0.6293, 0.7026] | [0.6539, 0.7841] | [0.5492, 0.6807] | |
| BUSSAM [43] | 0.7846 | 0.6714 | 0.8465 | 0.7510 | 0.8426 | 0.7495 |
| [0.7364, 0.8271] | [0.6171, 0.7205] | [0.8255, 0.8659] | [0.7241, 0.7762] | [0.8034, 0.8765] | [0.7026, 0.7911] | |
| CLIP-TNseg [46] | 0.7689 | 0.7026 | 0.8587 | 0.7867 | 0.8447 | 0.7621 |
| [0.7375, 0.8133] | [0.6725, 0.7450] | [0.8462, 0.8750] | [0.7732, 0.8057] | [0.8169, 0.8605] | [0.7255, 0.7777] | |
| XBusNet (Ours) | 0.8507 | 0.7925 | 0.8947 | 0.8388 | 0.8553 | 0.7774 |
| [0.8136, 0.8852] | [0.7545, 0.8280] | [0.8776, 0.9098] | [0.8204, 0.8561] | [0.8291, 0.8796] | [0.7469, 0.8069] | |
| Fold | Dice | IoU | FPR | FNR |
|---|---|---|---|---|
| 0 | 0.8846 | 0.8241 | 0.0984 | 0.0670 |
| 1 | 0.8910 | 0.8302 | 0.1280 | 0.0659 |
| 2 | 0.8583 | 0.7987 | 0.1077 | 0.0835 |
| 3 | 0.8649 | 0.8033 | 0.0857 | 0.0771 |
| 4 | 0.8836 | 0.8181 | 0.0771 | 0.0944 |
| Mean | 0.8766 | 0.8150 | 0.0994 | 0.0776 |
| LFE | GFE | SFA | Dice | IoU |
|---|---|---|---|---|
| Yes | Yes | Yes | 0.8766 | 0.8150 |
| No | Yes | No | 0.8572 | 0.7865 |
| Yes | No | Yes | 0.8453 | 0.7772 |
| Yes | Yes | No | 0.8600 | 0.8068 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mallina, R.; Shareef, B. XBusNet: Text-Guided Breast Ultrasound Segmentation via Multimodal Vision–Language Learning. Diagnostics 2025, 15, 2849. https://doi.org/10.3390/diagnostics15222849
Mallina R, Shareef B. XBusNet: Text-Guided Breast Ultrasound Segmentation via Multimodal Vision–Language Learning. Diagnostics. 2025; 15(22):2849. https://doi.org/10.3390/diagnostics15222849
Chicago/Turabian StyleMallina, Raja, and Bryar Shareef. 2025. "XBusNet: Text-Guided Breast Ultrasound Segmentation via Multimodal Vision–Language Learning" Diagnostics 15, no. 22: 2849. https://doi.org/10.3390/diagnostics15222849
APA StyleMallina, R., & Shareef, B. (2025). XBusNet: Text-Guided Breast Ultrasound Segmentation via Multimodal Vision–Language Learning. Diagnostics, 15(22), 2849. https://doi.org/10.3390/diagnostics15222849

