Quantitative Coronary CT Angiography and Pericoronary Adipose Tissue in Acute Myocardial Infarction: Relationship with Dynamic Myocardial Perfusion SPECT
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Coronary CT Angiography Acquisition Protocol
2.4. Quantitative CT Analysis of Coronary Plaques
2.5. Quantitative CT Analysis of Pericoronary Adipose Tissue
2.6. Dynamic Myocardial Perfusion SPECT
2.7. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Quantitative CCTA Characteristics
3.3. Quantitative PCAT Characteristics
3.4. Dynamic SPECT Parameters
3.5. Relationship of Quantitative CCTA Characteristics with Dynamic SPECT Parameters
3.6. Relationship of Quantitative PCAT Characteristics with Dynamic SPECT Parameters
4. Discussion
4.1. Clinical Significance of the Quantitative CCTA and the Association with Dynamic SPECT in Patients with a First AMI
4.2. Clinical Significance of PCAT Analysis and the Association with Dynamic SPECT in Patients with a First AMI
4.3. Multimodality Imaging Framework and Clinical Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CT | Computed tomography |
| CCTA | Coronary computed tomography angiography |
| PCAT | Pericoronary adipose tissue |
| CACS | Coronary artery calcium score |
| MP | Myocardial perfusion |
| AMI | Acute myocardial infarction |
| MI | Myocardial infarction |
| MICAD | Myocardial infarction with obstructive coronary artery disease |
| MINOCA | Myocardial infarction with non-obstructive coronary artery disease |
| MBF | Myocardial blood flow |
| CFR | Coronary flow reserve |
| CZT | Cadmium-zinc-telluride |
| SPECT | Single-photon emission computed tomography |
| PV | Plaque volume |
| PB | Plaque burden |
| CAD | Coronary artery disease |
| FAI | Fat attenuation index |
| MACE | Major adverse cardiovascular events |
| ICA | Invasive coronary angiography |
| GRACE | Global registry of acute coronary events |
| ECG | Electrocardiogram |
| eGFR | Estimated Glomerular Filtration Rate |
| bpm | Beats per minute |
| TPV | Total plaque volume |
| PV-LA | Low-attenuation plaque volume |
| PV-FF | Fibrofatty plaque volume |
| PV-C | Calcified plaque volume |
| TPV-NC | Total non-calcified plaque volume |
| LAD | Left anterior descending artery |
| LCX | Left circumflex artery |
| RCA | Right coronary artery |
| ROI | Region of interest |
| SSS | Summed stress score |
| SRS | Summed rest score |
| SDS | Summed difference score |
| TPB | Total plaque burden |
| PB-LA | Low-attenuation plaque burden |
| PB-FF | Fibrofatty plaque burden |
| PB-C | Calcified plaque burden |
| TPB-NC | Total non-calcified plaque burden |
| PCI | Percutaneous coronary intervention |
| LAP | Low-attenuation plaque |
| SCCT | Society of cardiovascular computed tomography |
| ACS | Acute coronary syndrome |
| LV | Left ventricular |
| ESV | End-systolic volume |
| EDV | End-diastolic volume |
References
- Saha, T.; Soliman-Aboumarie, H. Review of Current Management of Myocardial Infarction. J. Clin. Med. 2025, 14, 6241. [Google Scholar] [CrossRef]
- Krittanawong, C.; Khawaja, M.; Tamis-Holland, J.E.; Girotra, S.; Rao, S.V. Acute Myocardial Infarction: Etiologies and Mimickers in Young Patients. J. Am. Heart Assoc. 2023, 12, e029971. [Google Scholar] [CrossRef]
- Khattab, E.; Karelas, D.; Pallas, T.; Kostakis, P.; Papadopoulos, C.H.; Sideris, S.; Patsourakos, N.; Kadoglou, N.P.E. MINOCA: A Pathophysiological Approach of Diagnosis and Treatment-A Narrative Review. Biomedicines 2024, 12, 2457. [Google Scholar] [CrossRef]
- Samaras, A.; Moysidis, D.V.; Papazoglou, A.S.; Rampidis, G.P.; Barmpagiannos, K.; Barmpagiannos, A.; Kalimanis, C.; Karagiannidis, E.; Fyntanidou, B.; Kassimis, G.; et al. Myocardial Infarction with Obstructive, Non-Obstructive, and Mimicking Conditions: Clinical Phenotypes, Diagnostic Imaging, Management, and Prognosis. J. Clin. Med. 2025, 14, 3006. [Google Scholar] [CrossRef]
- Knuuti, J.; Ballo, H.; Juarez-Orozco, L.E.; Saraste, A.; Kolh, P.; Rutjes, A.W.S.; Jüni, P.; Windecker, S.; Bax, J.J.; Wijns, W. The performance of non-invasive tests to rule-in and rule-out significant coronary artery stenosis in patients with stable angina: A meta-analysis focused on post-test disease probability. Eur. Heart J. 2018, 39, 3322–3330. [Google Scholar] [CrossRef]
- Vrints, C.; Andreotti, F.; Koskinas, K.C.; Rossello, X.; Adamo, M.; Ainslie, J.; Banning, A.P.; Budaj, A.; Buechel, R.R.; Chiariello, G.A.; et al. 2024 ESC Guidelines for the management of chronic coronary syndromes. Eur. Heart J. 2024, 45, 3415–3537, Erratum in Eur. Heart J. 2025, 46, 1565. [Google Scholar] [CrossRef]
- Williams, M.; Earls, J.; Hecht, H. Quantitative assessment of atherosclerotic plaque, recent progress and current limitations. J. Cardiovasc. Comput. Tomogr. 2022, 16, 124–137. [Google Scholar] [CrossRef]
- Nurmohamed, N.S.; Min, J.K.; Anthopolos, R.; Reynolds, H.R.; Earls, J.P.; Crabtree, T.; Mancini, G.B.J.; Leipsic, J.; Budoff, M.J.; Hague, C.J.; et al. Atherosclerosis quantification and cardiovascular risk: The ISCHEMIA trial. Eur. Heart J. 2024, 45, 3735–3747. [Google Scholar] [CrossRef]
- Antonopoulos, A.S.; Sanna, F.; Sabharwal, N.; Thomas, S.; Oikonomou, E.K.; Herdman, L.; Margaritis, M.; Shirodaria, C.; Kampoli, A.-M.; Akoumianakis, I.; et al. Detecting human coronary inflammation by imaging perivascular fat. Sci. Transl. Med. 2017, 9, eaal2658. [Google Scholar] [CrossRef]
- Goeller, M.; Achenbach, S.; Cadet, S.; Kwan, A.C.; Commandeur, F.; Slomka, P.J.; Gransar, H.; Albrecht, M.H.; Tamarappoo, B.K.; Berman, D.S.; et al. Pericoronary Adipose Tissue Computed Tomography Attenuation and High-Risk Plaque Characteristics in Acute Coronary Syndrome Compared With Stable Coronary Artery Disease. JAMA Cardiol. 2018, 3, 858–863. [Google Scholar] [CrossRef] [PubMed]
- Oikonomou, E.; Marwan, M.; Desai, M.; Mancio, J.; Alashi, A.; Centeno, E.H.; Thomas, S.; Herdman, L.; Kotanidis, C.; Thomas, K.E.; et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): A post-hoc analysis of prospective outcome data. Lancet 2018, 392, 929–939. [Google Scholar] [CrossRef]
- Cury, R.C.; Leipsic, J.; Abbara, S.; Achenbach, S.; Berman, D.; Bittencourt, M.; Budoff, M.; Chinnaiyan, K.; Choi, A.D.; Ghoshhajra, B.; et al. CAD-RADS™ 2.0—2022 Coronary Artery Disease-Reporting and Data System: An Expert Consensus Document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Cardiology (ACC), the American College of Radiology (ACR), and the North America Society of Cardiovascular Imaging (NASCI). J. Cardiovasc. Comput. Tomogr. 2022, 16, 536–557. [Google Scholar] [CrossRef] [PubMed]
- Nieman, K.; García-García, H.M.; Hideo-Kajita, A.; Collet, C.; Dey, D.; Pugliese, F.; Weissman, G.; Tijssen, J.G.; Leipsic, J.; Opolski, M.P.; et al. Standards for quantitative assessments by coronary computed tomography angiography (CCTA): An expert consensus document of the society of cardiovascular computed tomography (SCCT). J. Cardiovasc. Comput. Tomogr. 2024, 18, 429–443. [Google Scholar] [CrossRef]
- Dasheeva, A.S.; Vorobyeva, D.A.; Suslova, T.E.; Maltseva, A.N.; Mochula, A.V.; Ryabov, V.V.; Mochula, O.V.; Zavadovsky, K.V. Quantitative computed tomography coronary angiography in patients with acute myocardial infarction: Association with cardiospecific biomarkers. Russ. J. Cardiol. 2024, 29, 80–88. [Google Scholar] [CrossRef]
- Zavadovsky, K.V.; Vorobyeva, D.A.; Mochula, O.V.; Mochula, A.V.; Maltseva, A.N.; Bayev, A.E.; Gulya, M.O.; Gimelli, A.; Ryabov, V.V. Myocardial Blood Flow and Flow Reserve in Patients With Acute Myocardial Infarction and Obstructive and Non-Obstructive Coronary Arteries: CZT SPECT Study. Front. Nucl. Med. 2022, 2, 935539. [Google Scholar] [CrossRef]
- Bell, J.S.; Weir-McCall, J.; Nicol, E.; Lip, G.Y.H.; Nørgaard, B.L.; Fairbairn, T.A. Plaque quantification from coronary computed tomography angiography in predicting cardiovascular events: A systematic review and meta-analysis. J. Cardiovasc. Comput. Tomogr. 2025, 19, 423–432. [Google Scholar] [CrossRef]
- Dundas, J.; Leipsic, J.; Fairbairn, T.; Ng, N.; Sussman, V.; Guez, I.; Rosenblatt, R.; Koweek, L.M.H.; Douglas, P.S.; Rabbat, M.; et al. Interaction of AI-Enabled Quantitative Coronary Plaque Volumes on Coronary CT Angiography, FFRCT, and Clinical Outcomes: A Retrospective Analysis of the ADVANCE Registry. Circ. Cardiovasc. Imaging 2024, 17, e016143. [Google Scholar] [CrossRef]
- Meah, M.N.; Tzolos, E.; Wang, K.L.; Bularga, A.; Dweck, M.R.; Curzen, N.; Kardos, A.; Keating, L.; Storey, R.F.; Mills, N.L.; et al. Plaque Burden and 1-Year Outcomes in Acute Chest Pain: Results From the Multicenter RAPID-CTCA Trial. JACC Cardiovasc. Imaging 2022, 15, 1916–1925. [Google Scholar] [CrossRef]
- Williams, M.; Kwiecinski, J.; Doris, M.; McElhinney, P.; D’Souza, M.S.; Cadet, S.; Adamson, P.D.; Moss, A.J.; Alam, S.; Hunter, A.; et al. Low-Attenuation Noncalcified Plaque on Coronary Computed Tomography Angiography Predicts Myocardial Infarction: Results From the Multicenter SCOT-HEART Trial (Scottish Computed Tomography of the HEART). Circulation 2020, 141, 1452–1462. [Google Scholar] [CrossRef]
- Winnberg, O.; Brolin, E.; Y-Hassan, S.; Henareh, L.; Sörensson, P.; Collste, O.; Ekenbäck, C.; Lundin, M.; Caidahl, K.; Agewall, S.; et al. Incremental value of coronary computed tomography angiography in addition to invasive coronary angiography in MINOCA. Int. J. Cardiovasc. Imaging 2025, 41, 1151–1160. [Google Scholar] [CrossRef]
- Diaz-Zamudio, M.; Fuchs, T.A.; Slomka, P.; Otaki, Y.; Arsanjani, R.; Gransar, H.; Germano, G.; Berman, D.S.; Kaufmann, P.A.; Dey, D. Quantitative plaque features from coronary computed tomography angiography to identify regional ischemia by myocardial perfusion imaging. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 499–507. [Google Scholar] [CrossRef]
- Liu, T.; Yuan, X.; Wang, C.; Sun, M.; Jin, S.; Dai, X. Quantification of plaque characteristics detected by dual source computed tomography angiography to predict myocardial ischemia as assessed by single photon emission computed tomography myocardial perfusion imaging. Quant. Imaging Med. Surg. 2019, 9, 711–721. [Google Scholar] [CrossRef]
- Mochula, A.V.; Mochula, O.V.; Maltseva, A.N.; Suleymanova, A.S.; Cygikalo, A.A.; Ryabov, V.V.; Zavadovsky, K.V. Association of coronary microvascular dysfunction and cardiac muscle injury in acute myocardial infarction: Results of comparison of dynamic SPECT and cardiac MRI. Kardiologiia 2023, 63, 37–44. [Google Scholar] [CrossRef]
- Mochula, A.V.; Mochula, O.V.; Maltseva, A.N.; Suleymanova, A.S.; Kapilevich, N.A.; Ryabov, V.V.; Zavadovsky, K.V. Quantitative assessment of myocardial blood flow by dynamic single photon emission computed tomography: Relationship with ECG changes and biochemical markers of damage in patients with acute myocardial infarction. Sib. J. Clin. Exp. Med. 2023, 38, 66–74. [Google Scholar] [CrossRef]
- Zhang, H.; Caobelli, F.; Che, W.; Huang, Y.; Zhang, Y.; Fan, X.; Hu, X.; Xu, C.; Fei, M.; Zhang, J.; et al. The prognostic value of CZT SPECT myocardial blood flow (MBF) quantification in patients with ischemia and no obstructive coronary artery disease (INOCA): A pilot study. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 1940–1953. [Google Scholar] [CrossRef]
- Dil, S.; Ryabov, V.; Maslov, L.; Mochula, O.; Mochula, A.; Kercheva, M.; Zavadovsky, K.; Vyshlov, E. Assessing coronary microvascular dysfunction in refractory no-reflow: Insights from dynamic myocardial perfusion scintigraphy and cardiac MRI. Microvasc. Res. 2025, 162, 104862. [Google Scholar] [CrossRef]
- Mochula, A.V.; Kopeva, K.V.; Maltseva, A.N.; Grakova, E.V.; Gulya, M.; Smorgon, A.V.; Gusakova, A.; Zavadovsky, K.V. The myocardial flow reserve in patients with heart failure with preserved ejection fraction. Heart Vessels 2023, 38, 348–360. [Google Scholar] [CrossRef]
- Němečková, E.; Krása, K.; Malý, M. The Perivascular Fat Attenuation Index: Bridging Inflammation and Cardiovascular Disease Risk. J. Clin. Med. 2025, 14, 4753. [Google Scholar] [CrossRef]
- Chan, K.; Wahome, E.; Tsiachristas, A.; Antonopoulos, A.S.; Patel, P.; Lyasheva, M.; Kingham, L.; West, H.; Oikonomou, E.K.; Volpe, L.; et al. Inflammatory risk and cardiovascular events in patients without obstructive coronary artery disease: The ORFAN multicentre, longitudinal cohort study. Lancet 2024, 403, 2606–2618. [Google Scholar] [CrossRef] [PubMed]
- Savo, M.T.; De Amicis, M.; Cozac, D.A.; Cordoni, G.; Corradin, S.; Cozza, E.; Amato, F.; Lassandro, E.; Da Pozzo, S.; Tansella, D.; et al. Comparative Prognostic Value of Coronary Calcium Score and Perivascular Fat Attenuation Index in Coronary Artery Disease. J. Clin. Med. 2024, 13, 5205. [Google Scholar] [CrossRef]
- Chatterjee, D.; Shou, B.L.; Matheson, M.B.; Ostovaneh, M.R.; Rochitte, C.; Chen, M.Y.; Dewey, M.; Ortman, J.; Cox, C.; Lima, J.A.; et al. Perivascular fat attenuation for predicting adverse cardiac events in stable patients undergoing invasive coronary angiography. J. Cardiovasc. Comput. Tomogr. 2022, 16, 483–490. [Google Scholar] [CrossRef]
- van Rosendael, S.E.; Kamperidis, V.; Maaniitty, T.; de Graaf, M.A.; Saraste, A.; McKay-Goodall, G.E.; Jukema, J.W.; Knuuti, J.; Bax, J.J. Pericoronary adipose tissue for predicting long-term outcomes. Eur. Heart J. Cardiovasc. Imaging 2024, 25, 1351–1359. [Google Scholar] [CrossRef]
- Kwan, A.C.; Tzolos, E.; Klein, E.; Han, D.; Lin, A.; Kuronuma, K.; Chen, B.; Tomasino, G.F.; Gransar, H.; Slomka, P.J.; et al. Pericoronary Adipose Tissue Attenuation in Patients with Future Acute Coronary Syndromes: The ICONIC Study. Radiol. Cardiothorac. Imaging 2025, 7, e240200. [Google Scholar] [CrossRef]
- Diau, J.L.; Lange, R.A. Coronary Inflammation and Cardiovascular Events in Patients Without Obstructive Coronary Artery Disease. Curr. Cardiol. Rep. 2025, 27, 68. [Google Scholar] [CrossRef]
- Tan, N.; Marwick, T.H.; Dey, D.; Chan, W.; Nerlekar, N. Association of Pericoronary Adipose Attenuation with Major Adverse Cardiovascular Events and High-Risk Plaque. JACC Cardiovasc. Imaging 2025, 18, 884–894. [Google Scholar] [CrossRef]
- Sun, Q.; Jing, M.; Xi, H.; Ren, W.; Zhu, H.; Wang, Y.; Liu, Q.; Zhou, J. Different plaque types and its association with the volume and attenuation of pericoronary adipose tissue as assessed by coronary computed tomography angiography. Clin. Radiol. 2025, 84, 106814. [Google Scholar] [CrossRef]
- Balcer, B.; Dykun, I.; Schlosser, T.; Forsting, M.; Rassaf, T.; Mahabadi, A.A. Pericoronary fat volume but not attenuation differentiates culprit lesions in patients with myocardial infarction. Atherosclerosis 2018, 276, 182–188. [Google Scholar] [CrossRef]
- Tan, N.; Dey, D.; Marwick, T.H.; Nerlekar, N. Pericoronary Adipose Tissue as a Marker of Cardiovascular Risk: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2023, 81, 913–923. [Google Scholar] [CrossRef]
- Nomura, C.H.; Assuncao-Jr, A.N.; Guimarães, P.O.; Liberato, G.; Morais, T.C.; Fahel, M.G.; Giorgi, M.C.P.; Meneghetti, J.C.; Parga, J.R.; Dantas-Jr, R.N.; et al. Association between perivascular inflammation and downstream myocardial perfusion in patients with suspected coronary artery disease. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 599–605. [Google Scholar] [CrossRef]
- Chen, M.; Liu, B.; Li, X.; Li, D.; Fan, L. Relationship between peri-coronary inflammation and coronary vascular function in patients with suspected coronary artery disease. Front. Cardiovasc. Med. 2024, 11, 1303529. [Google Scholar] [CrossRef] [PubMed]
- Wen, D.; Li, J.; Ren, J.; Zhao, H.; Li, J.; Zheng, M. Pericoronary adipose tissue CT attenuation and volume: Diagnostic performance for hemodynamically significant stenosis in patients with suspected coronary artery disease. Eur. J. Radiol. 2021, 140, 109740. [Google Scholar] [CrossRef]
- Sugiyama, T.; Kanaji, Y.; Hoshino, M.; Hada, M.; Misawa, T.; Nagamine, T.; Teng, Y.; Nogami, K.; Ueno, H.; Matsuda, K.; et al. Relationship of OCT-defined plaque characteristics with CCTA-derived coronary inflammation and CMR-derived global coronary flow reserve in patients with acute coronary syndrome. PLoS ONE 2023, 18, e0286196. [Google Scholar] [CrossRef] [PubMed]
- Bergamaschi, L.; Pavon, A.G.; Angeli, F.; Tuttolomondo, D.; Belmonte, M.; Armillotta, M.; Sansonetti, A.; Foà, A.; Paolisso, P.; Baggiano, A.; et al. The Role of Non-Invasive Multimodality Imaging in Chronic Coronary Syndrome: Anatomical and Functional Pathways. Diagnostics 2023, 13, 2083. [Google Scholar] [CrossRef] [PubMed]





| Parameter | Whole Sample, n = 31 | Group 1, n = 10 MINOCA | Group 2, n = 31 MICAD | p-Value |
|---|---|---|---|---|
| Male sex, n (%) | 19 (61.3%) | 5 (50.0%) | 14 (66.6%) | 0.03 |
| Age, years | 62 (56; 70) | 68 (57; 79) | 62 (56; 68) | 0.35 |
| Hypertension, n (%) | 24 (77.4%) | 10 (100%) | 14 (66.6%) | 0.61 |
| Dyslipidemia, n (%) | 25 (80.6%) | 10 (100%) | 15 (71.4%) | 0.08 |
| Obesity, n (%) | 12 (38.7%) | 3 (30.0%) | 9 (42.8%) | 0.13 |
| Smoking, n (%) | 13 (41.9%) | 3 (30.0%) | 10 (47.6%) | 0.36 |
| Type 2 diabetes mellitus, n (%) | 4 (12.9%) | 0 (0%) | 4 (19.0%) | 0.06 |
| eGFR, mL/min/1.73 m2, Me (Q25; Q75) | 72.0 (54.0; 89.0) | 64.5 (53.0; 72.0) | 77.0 (65.0; 92.0) | 0.7 |
| Stroke, n (%) | 2 (6.5%) | 0 (0%) | 2 (9.5%) | 0.27 |
| STEMI, n (%) | 23 (74.2%) | 6 (60.0%) | 17 (80.9%) | 0.03 |
| GRACE, % | 2.0 (2.0; 5.0) | 2.0 (2.0; 4.0) | 2.2 (2.0; 5.0) | 0.60 |
| Thrombolysis in hospital, n (%) | 12 (38.7%) | 1 (10.0%) | 11 (52.4%) | 0.01 |
| TIMI 2 flow, n (%) | 6 (19.4%) | 5 (50.0%) | 1 (4.8%) | 0.0075 |
| PCI, n (%) | 16 (51%) | 0 (0%) | 16 (76%) | 0.0001 |
| LVEF, % | 60 (53; 65) | 65 (64; 69) | 57 (52; 63) | 0.01 |
| ESV, mL | 42.5 (32; 53) | 33 (25; 41) | 45 (36; 58) | 0.07 |
| EDV, mL | 103 (86; 119) | 95 (80; 106) | 105 (93; 123) | 0.009 |
| Length of hospital stay, days | 11 ± 2 | 11 ± 2 | 11 ± 2 | 0.9 |
| Parameter | Whole Sample, n = 31 | Group 1, n = 10 MINOCA | Group 2, n = 31 MICAD | p-Value |
|---|---|---|---|---|
| TPV, mm3 | 514.1 (349.8; 992.7) | 408.8 (167; 756.3) | 542.4 (355.2; 1070.2) | 0.02 |
| PV-LA, mm3 | 31.6 (17.5; 68.1) | 31.6 (14.8; 41.6) | 32.8 (18.8; 74.2) | 0.29 |
| PV-FF, mm3 | 416.6 (275.9; 877.7) | 307.2 (143.9; 679.7) | 459.1 (302.9; 928.6) | 0.03 |
| TPV-NC, mm3 | 439.3 (293; 918) | 338.7 (164.5; 739.4) | 479.9 (349.8; 1001) | 0.02 |
| PV-C, mm3 | 22.8 (10.9; 58.5) | 16.9 (13; 48.6) | 28.8 (10.9; 58.5) | 0.43 |
| TPB, % | 21.8 (17.2; 33.8) | 13.2 (10.8; 27) | 23 (18.4; 37) | 0.001 |
| PB-LA, % | 1.7 (1; 4) | 1.2 (0.9; 1.9) | 1.8 (1.1; 4.9) | 0.11 |
| PB-FF, % | 18.3 (13.3; 29.2) | 11.3 (6.8; 25.3) | 18.7 (16.3; 31.6) | 0.001 |
| TPB-NC, % | 19.8 (14; 30.9) | 12 (10.7; 26.2) | 19.9 (17.9; 33.3) | 0.001 |
| PB-C, % | 1.5 (0.5; 3.3) | 0.8 (0.6; 1.5) | 1.9 (0.4; 3.7) | 0.19 |
| Parameter | Whole Sample, n = 31 | Group 1, n = 10 MINOCA | Group 2, n = 31 MICAD | p-Value |
|---|---|---|---|---|
| RCA PCAT volume, cm3 | 0.95 (0.6; 1.65) | 0.58 (0.5; 1.2) | 1.1 (0.71; 1.89) | 0.01 |
| LAD PCTA volume, cm3 | 0.74 (0.5; 1.62) | 0.57 (0.48; 0.67) | 1.27 (0.6; 1.79) | 0.002 |
| LCX PCAT volume, cm3 | 0.44 (0.31; 0.68) | 0.35 (0.28; 0.44) | 0.53 (0.32; 0.73) | 0.04 |
| RCA PCAT attenuation, HU | −72.7 (−78.1; −67.7) | −72.1 (−73.3; −67.7) | −73.7 (−81.8; −68.5) | 0.2 |
| LAD PCAT attenuation, HU | −70 (−75.8; −63.5) | −68.5 (−74.5; −61.1) | −70 (−77; −63.9) | 0.3 |
| LCX PCAT attenuation, HU | −64.25 (−70; −58.3) | −66.3 (−70.2; −61) | −64 (−68.7; −58) | 0.21 |
| Parameter | Whole Sample, n = 31 | Group 1, n = 10 MINOCA | Group 2, n = 31 MICAD | p-Value |
|---|---|---|---|---|
| SSS | 6.5 (5; 12) | 5 (4; 5) | 9 (5; 13) | <0.001 |
| SRS | 4 (2; 7) | 2 (1; 3) | 6 (3; 11) | <0.001 |
| SDS | 3 (2; 5) | 3 (2; 4) | 4 (2; 5) | 0.09 |
| SMBF, mL/min/g | 1.03 (0.89; 1.77) | 2.02 (1.73; 2.18) | 0.97 (0.8; 1.04) | <0.001 |
| RMBF, mL/min/g | 0.75 (0.54; 1.15) | 0.88 (0.57; 1.24) | 0.74 (0.45; 1.11) | 0.27 |
| CFR | 1.33 (0.98; 1.99) | 1.85 (1.33; 2.22) | 1.23 (0.98; 1.86) | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dasheeva, A.; Vorobeva, D.; Kopeva, K.; Maltseva, A.; Mochula, A.; Vorozhtsova, I.; Grakova, E.; Zavadovsky, K. Quantitative Coronary CT Angiography and Pericoronary Adipose Tissue in Acute Myocardial Infarction: Relationship with Dynamic Myocardial Perfusion SPECT. Diagnostics 2025, 15, 2840. https://doi.org/10.3390/diagnostics15222840
Dasheeva A, Vorobeva D, Kopeva K, Maltseva A, Mochula A, Vorozhtsova I, Grakova E, Zavadovsky K. Quantitative Coronary CT Angiography and Pericoronary Adipose Tissue in Acute Myocardial Infarction: Relationship with Dynamic Myocardial Perfusion SPECT. Diagnostics. 2025; 15(22):2840. https://doi.org/10.3390/diagnostics15222840
Chicago/Turabian StyleDasheeva, Ayana, Darya Vorobeva, Kristina Kopeva, Alina Maltseva, Andrew Mochula, Irina Vorozhtsova, Elena Grakova, and Konstantin Zavadovsky. 2025. "Quantitative Coronary CT Angiography and Pericoronary Adipose Tissue in Acute Myocardial Infarction: Relationship with Dynamic Myocardial Perfusion SPECT" Diagnostics 15, no. 22: 2840. https://doi.org/10.3390/diagnostics15222840
APA StyleDasheeva, A., Vorobeva, D., Kopeva, K., Maltseva, A., Mochula, A., Vorozhtsova, I., Grakova, E., & Zavadovsky, K. (2025). Quantitative Coronary CT Angiography and Pericoronary Adipose Tissue in Acute Myocardial Infarction: Relationship with Dynamic Myocardial Perfusion SPECT. Diagnostics, 15(22), 2840. https://doi.org/10.3390/diagnostics15222840

