Sleep Trajectories in Amnestic and Non-Amnestic MCI: Longitudinal Insights from Subjective and Objective Assessments
Abstract
1. Introduction
Hypotheses of the Present Study
- Both MCI groups were expected to exhibit significantly poorer subjective and objective sleep quality than healthy controls, with differences clearer across longitudinal trajectories and to be more pronounced in naMCI.
- Sleep quality was expected to decline over time, most markedly in naMCI, then aMCI; healthy controls will remain relatively stable or show only minimal age-related changes.
- Significant group-by-time interaction effects were anticipated: MCI participants will exhibit steeper deterioration in sleep parameters over time than controls.
- Early objective sleep metrics (total sleep time, sleep efficiency, and wake after sleep onset) were expected to significantly predict subjective sleep quality changes (as measured by AIS, PSQI, and STOP-BANG) at the later time points.
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Inclusion Criteria
2.4. Exclusion Criteria
2.5. Ethics
2.6. Procedure
2.7. Instruments
2.7.1. Objective Assessment of Sleep
Actigraphy
2.7.2. Subjective Measures of Sleep
2.8. Statistical Analysis
3. Results
3.1. Objective Sleep Measures
3.2. Subjective Sleep Assessment
3.3. Mediation Analysis
4. Discussion
4.1. Objective Sleep Measures
4.2. Subjective Sleep Measures
4.3. The Interplay Between Objective Sleep Parameters and Longitudinal Changes in Subjective Sleep Perceptions
5. Conclusions
6. Limitations
7. Future Implications—Clinical Use
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ansart, M.; Epelbaum, S.; Bassignana, G.; Bône, A.; Bottani, S.; Cattai, T.; Couronné, R.; Faouzi, J.; Koval, I.; Louis, M.; et al. Predicting the progression of mild cognitive impairment using machine learning: A systematic, quantitative, and critical review. Med. Image Anal. 2021, 67, 101848. [Google Scholar] [CrossRef] [PubMed]
- Georgoudas, M.; Moraitou, D.; Poptsi, E.; Tsardoulias, E.; Kesanli, D.; Papaliagkas, V.; Tsolaki, M. The mixed role of sleep and time of day in working memory performance of older adults with mild cognitive impairment. Healthcare 2024, 12, 1622. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C.; Lopez, O.; Armstrong, M.J.; Getchius, T.S.D.; Ganguli, M.; Gloss, D.; Gronseth, G.S.; Marson, D.; Pringsheim, T.; Day, G.S.; et al. Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2018, 90, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Mo, W.; Liu, X.; Yamakawa, M.; Koujiya, E.; Takeya, Y.; Shigenobu, K.; Adachi, H.; Ikeda, M. Prevalence of sleep disturbances in people with mild cognitive impairment: A systematic review and meta-analysis. Psychiatry Res. 2024, 339, 116067. [Google Scholar] [CrossRef]
- Li, J.; Wu, Y.; Zhang, D. Sleep architecture and cognitive impairment: A meta-analysis of observational studies. J. Clin. Sleep Med. 2020, 16, 1041–1049. [Google Scholar] [CrossRef]
- Iraniparast, M.; Shi, Y.; Wu, Y.; Zeng, L.; Maxwell, C.J.; Kryscio, R.J.; St John, P.D.; SantaCruz, K.S.; Tyas, S.L. Cognitive reserve and mild cognitive impairment: Predictors and rates of reversion to intact cognition vs. progression to dementia. Neurology 2022, 98, e1114–e1123. [Google Scholar] [CrossRef]
- Petersen, R.C. Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 2004, 256, 183–194. [Google Scholar] [CrossRef]
- Kim, J.G.; Kim, H.; Hwang, J.; Kang, S.H.; Lee, C.-N.; Woo, J.; Kim, C.; Han, K.; Bin Kim, J.; Park, K.-W. Differentiating amnestic from non-amnestic mild cognitive impairment subtypes using graph theoretical measures of electroencephalography. Sci. Rep. 2022, 12, 6219. [Google Scholar] [CrossRef]
- Wright, L.M.; De Marco, M.; Venneri, A. Current understanding of verbal fluency in Alzheimer’s disease: Evidence to date. Psychol. Res. Behav. Manag. 2023, 16, 1691–1705. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Holtzman, D.M.; Morris, J.C. Sleep and biomarkers in preclinical and early symptomatic Alzheimer’s disease. Lancet Neurol. 2020, 19, 361–370. [Google Scholar]
- Batzikosta, A.; Moraitou, D.; Steiropoulos, P.; Papantoniou, G.; Kougioumtzis, G.A.; Katsouri, I.G.; Sofologi, M.; Tsolaki, M. The relationships of specific cognitive control abilities with objective and subjective sleep parameters in mild cognitive impairment: Revealing the association between cognitive planning and sleep duration. Brain Sci. 2024, 14, 813. [Google Scholar] [CrossRef]
- Parhizkar, S.; Holtzman, D.M. The night’s watch: Exploring how sleep protects against neurodegeneration. Neuron 2025, 113, 817–837. [Google Scholar] [CrossRef] [PubMed]
- Corbali, O.; Levey, A.I. Glymphatic system in neurological disorders and implications for brain health. Front. Neurol. 2025, 16, 1543725. [Google Scholar] [CrossRef]
- Li, C.; Min, X.; Cheng, G.; Yan, Y.; Li, Z. Bidirectional relationship between nocturnal subjective sleep duration and cognitive performance in Chinese over 45 years old: A national representative longitudinal study. BMC Geriatr. 2022, 22, 823. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Petersen, R.C.; Caracciolo, B.; Brayne, C.; Gauthier, S.; Jelic, V.; Fratiglioni, L. Mild cognitive impairment: A concept in evolution. J. Intern. Med. 2014, 275, 214–228. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2022. [Google Scholar]
- Yesavage, J.A.; Brink, T.L.; Rose, T.L.; Lum, O.; Huang, V.; Adey, M.; Leirer, V.O. Development and validation of a geriatric depression screening scale: A preliminary report. J. Psychiatr. Res. 1982, 17, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Fountoulakis, K.N.; Tsolaki, M.; Iacovides, A.; Yesavage, J.; O’Hara, R.; Kazis, A.; Ierodiakonou, C. The validation of the short form of the geriatric depression scale (GDS) in Greece. Aging Clin. Exp. Res. 1999, 11, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.T.; Ward, C.H.; Mendelson, M.; Mock, J.; Erbaugh, J. An inventory for measuring depression. Arch. Gen. Psychiatry 1961, 4, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.T.; Epstein, N.; Brown, G.; Steer, R.A. An inventory for measuring clinical anxiety: Psychometric properties. J. Consult. Clin. Psychol. 1988, 56, 893–897. [Google Scholar] [CrossRef]
- Sinoff, G.; Ore, L.; Zlotogorsky, D.; Tamir, A. Short Anxiety Screening Test—A brief instrument for detecting anxiety in the elderly. Int. J. Geriatr. Psychiatry 1999, 14, 1062–1071. [Google Scholar] [CrossRef]
- Grammatikopoulos, I.A.; Sinoff, G.; Alegakis, A.; Kounalakis, D.; Antonopoulou, M.; Lionis, C. The short anxiety screening test in Greek: Translation and validation. Ann. Gen. Psychiatry 2010, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.L.; Mega, M.; Gray, K.; Rosenberg-Thompson, S.; Carusi, D.A.; Gornbein, J. The Neuropsychiatric Inventory: Comprehensive assessment of psychopathology in dementia. Neurology 1994, 44, 2308–2314. [Google Scholar] [CrossRef]
- Politis, A.M.; Mayer, L.S.; Passa, M.; Maillis, A.; Lyketsos, C.G. Validity and reliability of the newly translated Hellenic Neuropsychiatric Inventory (H-NPI) applied to Greek outpatients with Alzheimer’s disease: A study of disturbing behaviors among referrals to a memory clinic. Int. J. Geriatr. Psychiatry 2004, 19, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. Mini-mental state: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Fountoulakis, K.N.; Tsolaki, M.; Chantzi, H.; Kazis, A.D. Mini Mental State Examination (MMSE): A validation study in Greece. Am. J. Alzheimers Dis. Other Demen. 2000, 15, 342–345. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Poptsi, E.; Moraitou, D.; Eleftheriou, M.; Kounti-Zafeiropoulou, F.; Papasozomenou, C.; Agogiatou, C.; Bakoglidou, E.; Batsila, G.; Liapi, D.; Markou, N.; et al. Normative data for the Montreal Cognitive Assessment in Greek older adults with subjective cognitive decline, mild cognitive impairment, and dementia. J. Geriatr. Psychiatry Neurol. 2019, 32, 265–274. [Google Scholar] [CrossRef]
- Kounti, F.; Tsolaki, M.; Kiosseoglou, G. Functional Cognitive Assessment Scale (FUCAS): A new scale to assess executive cognitive function in daily life activities in patients with dementia and mild cognitive impairment. Hum. Psychopharmacol. 2006, 21, 305–311. [Google Scholar] [CrossRef]
- Reisberg, B.; Ferris, S.H.; de Leon, M.J.; Crook, T. The Global Deterioration Scale for assessment of primary degenerative dementia. Am. J. Psychiatry 1982, 139, 1136–1139. [Google Scholar] [CrossRef]
- Tsolaki, M.; Poptsi, E.; Aggogiatou, C.; Markou, N.; Zafeiropoulos, S. Computer-based cognitive training versus paper and pencil training: Which is more effective? A randomized controlled trial in people with mild cognitive impairment. JSM Alzheimers Dis. Relat. Dement. 2017, 4, 1032. [Google Scholar] [CrossRef]
- Yuan, H.; Hill, E.A.; Kyle, S.D.; Doherty, A. A systematic review of the performance of actigraphy in measuring sleep stages. J. Sleep Res. 2024, 33, e14143. [Google Scholar] [CrossRef]
- Lee, M.P.; Hoang, K.; Park, S.; Song, Y.M.; Joo, E.Y.; Chang, W.; Kim, J.H.; Kim, J.K. Imputing missing sleep data from wearables with neural networks in real-world settings. Sleep 2024, 47, zsad266. [Google Scholar] [CrossRef] [PubMed]
- Chinoy, E.D.; Cuellar, J.A.; Huwa, K.E.; Jameson, J.T.; Watson, C.H.; Bessman, S.C.; Hirsch, D.A.; Cooper, A.D.; Drummond, S.P.A.; Markwald, R.R. Performance of seven consumer sleep-tracking devices compared with polysomnography. Sleep 2021, 44, zsaa291. [Google Scholar] [CrossRef] [PubMed]
- Soldatos, C.R.; Dikeos, D.G.; Paparrigopoulos, T.J. Athens Insomnia Scale: Validation of an instrument based on ICD-10 criteria. J. Psychosom. Res. 2000, 48, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Chung, F.; Abdullah, H.R.; Liao, P. STOP-Bang questionnaire: A practical approach to screen for obstructive sleep apnea. Chest 2016, 149, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Miskedaki, A.; Bacopoulou, F.; Vlachakis, D.; Artemiadis, A.; Chrousos, G.P.; Darviri, C. Validation of the STOP-Bang Questionnaire in Greek Patients Suffering from Obstructive Sleep Apnea. Adv. Exp. Med. Biol. 2021, 1337, 77–82. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F., 3rd; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Perantoni, E.; Steiropoulos, P.; Siopi, D.; Amfilochiou, A.; Michailidis, V.; Christoforatou, K.; Tsara, V. Validation of the Greek version of Pittsburgh Sleep Quality Questionnaire in a sleep lab population. Eur. Respir. J. 2012, 40 (Suppl. 56), 903. [Google Scholar]
- Kotronoulas, G.C.; Papadopoulou, C.N.; Papapetrou, A.; Patiraki, E. Psychometric evaluation and feasibility of the Greek Pittsburgh Sleep Quality Index (GR-PSQI) in patients with cancer receiving chemotherapy. Support. Care Cancer 2011, 19, 1831–1840. [Google Scholar] [CrossRef]
- Petropoulakos, K.; Papakonstantinou, V.; Pentsi, S.; Souzou, E.; Dimitriadis, Z.; Billis, E.; Koumantakis, G.; Poulis, I.; Spanos, S. Validity and reliability of the Greek version of Pittsburgh Sleep Quality Index in chronic non-specific low back pain patients. Healthcare 2024, 12, 557. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows, Version 29.0; IBM Corp.: Armonk, NY, USA, 2022.
- JASP Team. JASP, Version 0.18.3; JASP: Amsterdam, The Netherlands, 2024.
- Zaheed, A.B.; Tapia, A.L.; Oryshkewych, N.; Wheeler, B.J.; Butters, M.A.; Buysse, D.J.; Leng, Y.; Barnes, L.L.; Lim, A.; Yu, L.; et al. Sleep trajectories across three cognitive-aging pathways in community older adults. Alzheimers Dement. 2025, 21, e70159. [Google Scholar] [CrossRef]
- Ghazi, S.N.; Behrens, A.; Berner, J.; Sanmartin Berglund, J.; Anderberg, P. Objective sleep monitoring at home in older adults: A scoping review. J. Sleep Res. 2024. advance online publication. [Google Scholar] [CrossRef] [PubMed]
- Skourti, E.; Simos, P.; Zampetakis, A.; Koutentaki, E.; Zaganas, I.; Alexopoulou, C.; Vgontzas, A.; Basta, M. Long-term associations between objective sleep quality and quantity and verbal memory performance in normal cognition and mild cognitive impairment. Front. Neurosci. 2023, 17, 1265016. [Google Scholar] [CrossRef]
- Ju, Y.S.; Ooms, S.J.; Sutphen, C.; Macauley, S.L.; Zangrilli, M.A.; Jerome, G.; Fagan, A.M.; Mignot, E.; Zempel, J.M.; Claassen, J.A.H.; et al. Slow wave sleep disruption increases cerebrospinal fluid amyloid-β levels. Brain 2017, 140, 2104–2111. [Google Scholar] [CrossRef] [PubMed]
- Lucey, B.P.; McCullough, A.; Landsness, E.C.; Toedebusch, C.D.; McLeland, J.S.; Zaza, A.M.; Fagan, A.M.; McCue, L.; Xiong, C.; Morris, J.C.; et al. Reduced non-rapid eye movement sleep is associated with tau pathology in early Alzheimer’s disease. Sci. Transl. Med. 2019, 11, eaau6550. [Google Scholar] [CrossRef] [PubMed]
- Hyndych, A.; El-Abassi, R.; Mader, E.C., Jr. The Role of Sleep and the Effects of Sleep Loss on Cognitive, Affective, and Behavioral Processes. Cureus 2025, 17, e84232. [Google Scholar] [CrossRef]
- Yi, T.; Gao, P.; Zhu, T.; Yin, H.; Jin, S. Glymphatic system dysfunction: A novel mediator of sleep disorders and headaches. Front. Neurol. 2022, 13, 885020. [Google Scholar] [CrossRef]
- Gumenyuk, V.; Murman, D.L.; Roth, T.; Korzyukov, O.; Miller, N.R.; Parker, S.M.; Rizzo, M. Discrepancies between subjective and objective evaluation of sleep: Potential marker for mild cognitive impairment. Sleep Med. Res. 2025, 16, 33–41. [Google Scholar] [CrossRef]
- Cui, L.; Wan, Y.; Lu, Y.; Meng, M.; Zhang, N. Sleep disturbances and their correlation with memory impairment in patients with Alzheimer’s disease and amnestic mild cognitive impairment. J. Alzheimers Dis. Rep. 2025, 9, 25424823241309063. [Google Scholar] [CrossRef] [PubMed]
- Saggu, S.; Bai, A.; Aida, M.; Rehman, H.; Pless, A.; Ware, D.; Deak, F.; Jiao, K.; Wang, Q. Monoamine alterations in Alzheimer’s disease and their implications in comorbid neuropsychiatric symptoms. GeroScience 2025, 47, 457–482. [Google Scholar] [CrossRef] [PubMed]
- Jellinger, K.A. Mild cognitive impairment in Parkinson’s disease: Current view. Front. Cogn. Res. 2024, 3, 1369538. [Google Scholar] [CrossRef]
- Astara, K.; Tsimpolis, A.; Kalafatakis, K.; Vavougios, G.D.; Xiromerisiou, G.; Dardiotis, E.; Christodoulou, N.G.; Samara, M.T.; Lappas, A.S. Sleep disorders and Alzheimer’s disease pathophysiology: The role of the glymphatic system. A scoping review. Mech. Ageing Dev. 2024, 217, 111899. [Google Scholar] [CrossRef] [PubMed]
- Sangalli, L.; Boggero, I. The impact of sleep components, quality and patterns on glymphatic system functioning in healthy adults: A systematic review. Sleep Med. 2022, 101, 322–349. [Google Scholar] [CrossRef] [PubMed]
- Batzikosta, A.; Moraitou, D.; Steiropoulos, P.; Papantoniou, G.; Kougioumtzis, G.A.; Katsouri, I.G.; Sofologi, M.; Tsolaki, M. Examining specific theory-of-mind aspects in amnestic and non-amnestic mild cognitive impairment: Their relationships with sleep duration and cognitive planning. Brain Sci. 2025, 15, 57. [Google Scholar] [CrossRef]
- Schwarz, J.F.A.; Åkerstedt, T.; Lindberg, E.; Gruber, G.; Fischer, H.; Theorell-Haglöw, J. Age affects sleep microstructure more than sleep macrostructure. J. Sleep Res. 2017, 26, e12478. [Google Scholar] [CrossRef]
- López-Higes, R.; Rubio-Valdehita, S.; Fernandes, S.M.; Rodrigues, P.F.S. Differentiation between normal cognition and subjective cognitive decline in older adults using discrepancy scores derived from neuropsychological tests. Geriatrics 2024, 9, 83. [Google Scholar] [CrossRef] [PubMed]
- Basta, M.; Bouloukaki, I.; Skourti, E.; Zampetakis, A.; Alexopoulou, C.; Ganiaris, A.; Aligizaki, M.; Zaganas, I.; Simos, P.; Vgontzas, A. Long objective sleep duration is a marker of cognitive impairment in older adults: Findings from the Cretan Aging Cohort. J. Alzheimers Dis. Rep. 2024, 8, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.H.; Liang, D.X.; Zhang, Q.; Fu, Y.; Huang, L.-Y.; Sheng, Z.-H.; Tan, L.; Wang, Z.-T. Associations between sleep quality, plasma neurofilament light, and cognition in older adults without dementia. Transl. Psychiatry 2025, 15, 169. [Google Scholar] [CrossRef] [PubMed]
- Maimaitituerxun, R.; Wang, H.; Chen, W.; Xiang, J.; Xie, Y.; Xiao, F.; Wu, X.Y.; Chen, L.; Yang, J.; Liu, A.; et al. Association between sleep quality and mild cognitive impairment in Chinese patients with type 2 diabetes mellitus: A cross-sectional study. BMC Public Health 2025, 25, 1096. [Google Scholar] [CrossRef] [PubMed]
- Shieu, M.M.; Dunietz, G.L.; Paulson, H.L.; Chervin, R.D.; Braley, T.J. The association between obstructive sleep apnea risk and cognitive disorders: A population-based study. J. Clin. Sleep Med. 2022, 18, 1177–1185. [Google Scholar] [CrossRef]
- Lam, A.; D’Rozario, A.L.; Kong, S.; Ireland, C.; Mowszowski, L.; LaMonica, H.M.; Phillips, C.L.; Hoyos, C.M.; Grunstein, R.R.; Naismith, S.L. Screening for obstructive sleep apnea in the memory clinic: A comparison of questionnaires, pulse oximetry, and polysomnography. J. Alzheimers Dis. 2025, 103, 218–229. [Google Scholar] [CrossRef]
- Kerner, N.A.; Roose, S.P.; Pelton, G.H.; Ciarleglio, A.; Scodes, J.; Lentz, C.; Sneed, J.R.; Devanand, D.P. Association of obstructive sleep apnea with episodic memory and cerebral microvascular pathology: A preliminary study. Am. J. Geriatr. Psychiatry 2017, 25, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.S.; Park, S.; Lim, J.; Lee, J.H. Impact of high risk of obstructive sleep apnea on health-related quality of life: The Korean National Health and Nutrition Survey 2019–2021. J. Clin. Med. 2024, 13, 4360. [Google Scholar] [CrossRef]
- Brown, R.L.; Beverly Hery, C.M.; Prather, A.A.; Christian, L.M. Comparison of longitudinal PSQI and actigraphy-assessed sleep from pregnancy to postpartum. PLoS ONE 2025, 20, e0323489. [Google Scholar] [CrossRef]
- Chatzikostopoulos, A.; Moraitou, D.; Papaliagkas, V.; Tsolaki, M. Mapping the neuropsychiatric symptoms in Alzheimer’s disease using biomarkers, cognitive abilities, and personality traits: A systematic review. Diagnostics 2025, 15, 1082. [Google Scholar] [CrossRef]
- Mayer, G.; Frohnhofen, H.; Jokisch, M.; Hermann, D.M.; Gronewold, J. Associations of sleep disorders with all-cause MCI/dementia and different types of dementia—Clinical evidence, potential pathomechanisms and treatment options: A narrative review. Front. Neuroscience 2024, 18, 1372326. [Google Scholar] [CrossRef] [PubMed]
- Cavaillès, C.; Artero, S.; Maller, J.J.; Jaussent, I.; Dauvilliers, Y. Insomnia, early and late rising are associated with small hippocampal volume and large white matter hyperintensity burden. Alz. Res. Ther. 2025, 17, 75. [Google Scholar] [CrossRef]
- Ungvari, Z.; Fekete, M.; Lehoczki, A.; Munkácsy, G.; Fekete, J.T.; Zábó, V.; Purebl, G.; Varga, P.; Ungvari, A.; Győrffy, B. Sleep disorders increase the risk of dementia, Alzheimer’s disease, and cognitive decline: A meta-analysis. GeroScience 2025, 47, 4899–4920. [Google Scholar] [CrossRef] [PubMed]
- Facci, L.; Sandrini, L.; Bottini, G. Attentional functioning in healthy older adults and aMCI patients: Results from the Attention Network Test with a focus on sex differences. Brain Sci. 2025, 15, 770. [Google Scholar] [CrossRef]
- Walton, T.F.; Ree, M.J.; Fueggle, S.N.; Bucks, R.S. A scoping review of sleep discrepancy methodology: What are we measuring and what does it mean? Sleep. Med. 2025, 126, 32–66. [Google Scholar] [CrossRef] [PubMed]
- Akre, S.; Cohen, Z.D.; Welborn, A.; Zbozinek, T.D.; Balliu, B.; Craske, M.G.; Bui, A.A.T. Comparing self-reported and physiological sleep quality from consumer devices to depression and neurocognitive performance. NPJ Digit. Med. 2025, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- DiNapoli, E.A.; Gebara, M.A.; Kho, T.; Butters, M.A.; Gildengers, A.G.; Albert, S.M.; Dew, M.A.; Erickson, K.I.; Reynolds, C.F., 3rd; Karp, J.F. Subjective-objective sleep discrepancy in older adults with MCI and subsyndromal depression. J. Geriatr. Psychiatry Neurol. 2017, 30, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Stankeviciute, L.; Blackman, J.; Tort-Colet, N.; Fernández-Arcos, A.; Sánchez-Benavides, G.; Suárez-Calvet, M.; Iranzo, Á.; Molinuevo, J.L.; Gispert, J.D.; Coulthard, E.; et al. Memory performance mediates subjective sleep quality associations with cerebrospinal fluid Alzheimer’s disease biomarker levels and hippocampal volume among individuals with mild cognitive symptoms. J. Sleep Res. 2023, 32, e14108. [Google Scholar] [CrossRef] [PubMed]
- Bergamo, G.; Liguori, C. Are sleep disturbances modifiable risk factors for mild cognitive impairment and dementia? A systematic review of large studies. Sleep Breath. 2025, 29, 269. [Google Scholar] [CrossRef] [PubMed]
- Antonioni,, A.; Della Valle,, A.; Raho, E.M.; Cesnik, E.; Capone, J.G.; Flacco, M.E.; Casoni, F.; Proserpio, P.; Ferini-Strambi, L. Sleep Disturbances Across Dementias and Cognitive Decline: Study Protocol for a Systematic Review and Network Meta-Analysis of Polysomnographic Findings. J. Clin. Med. 2025, 14, 7437. [Google Scholar] [CrossRef] [PubMed]
- Herzog, R.; Crosbie, F.; Aloulou, A.; Hanif, U.; Chennaoui, M.; Léger, D.; Andrillon, T. A continuous approach to explain insomnia and subjective-objective sleep discrepancy. Commun. Biol. 2025, 8, 423. [Google Scholar] [CrossRef]
- Altuna, M.; García-Sebastián, M.; Ecay-Torres, M.; Saldias, J.; Cañada, M.; Estanga, A.; López, C.; Tainta, M.; Iriondo, A.; Arriba, M.; et al. Prevalence and misperception: Exploring the gap between objective and subjective assessment of sleep apnea in a population at increased risk for dementia. J. Clin. Med. 2025, 14, 2607. [Google Scholar] [CrossRef]






| HC | aMCI | naMCI | |
|---|---|---|---|
| Mean (SD) | Mean (SD) | Mean (SD) | |
| Age | 70.28 (5.02) | 71.09 (4.98) | 69.07 (4.18) |
| Education | 11.98 (3.09) | 12.41 (3.18) | 12.57 (3.39) |
| Gender (f/m) | 36/10 | 51/24 | 39/19 |
| Pathway | Estimate | Std. Error | z-Value | p | 95% CI Lower | 95% CI Upper |
|---|---|---|---|---|---|---|
| Direct effects | ||||||
| SE (2nd assessment) → AIS (3rd assessment) | 0.084 | 0.036 | 2.333 | 0.020 | 0.013 | 0.155 |
| TST (2nd assessment) → AIS (3rd assessment) | −0.003 | 0.003 | −0.927 | 0.354 | −0.010 | 0.003 |
| WASO (2nd assessment) → AIS (3rd assessment) | −0.003 | 0.007 | −0.431 | 0.666 | −0.016 | 0.010 |
| TST (2nd assessment) → PSQI (3rd assessment) | −0.001 | 0.003 | −0.344 | 0.731 | −0.007 | 0.005 |
| WASO (2nd assessment) → PSQI (3rd assessment) | 0.008 | 0.006 | 1.401 | 0.161 | −0.003 | 0.020 |
| SE (2nd assessment) → PSQI (3rd assessment) | 0.047 | 0.032 | 1.501 | 0.133 | −0.014 | 0.109 |
| TST (2nd assessment) → STOP-BANG (3rd assessment) | 0.003 | 0.003 | 1.183 | 0.237 | −0.002 | 0.008 |
| WASO (2nd assessment) → STOP-BANG (3rd assessment) | 0.001 | 0.005 | 0.213 | 0.832 | −0.009 | 0.012 |
| SE (2nd assessment) → STOP-BANG (3rd assessment) | 0.005 | 0.029 | 0.161 | 0.878 | −0.051 | 0.060 |
| Indirect effects | ||||||
| TST (2nd assessment) → AIS (2nd assessment) → AIS (3rd assessment) | −0.011 | 0.005 | −2.098 | 0.036 | −0.021 | −7.060 × 10−4 |
| SE (2nd assessment) → SE (3rd assessment) → AIS (3rd assessment) | −0.083 | 0.035 | −2.315 | 0.021 | −0.151 | −0.013 |
| WASO (2nd assessment) → PSQI (2nd assessment) → PSQI (3rd assessment) | −0.016 | 0.007 | −2.217 | 0.027 | −0.030 | −0.002 |
| SE (2nd assessment) → PSQI (2nd assessment) → PSQI (3rd assessment) | −0.102 | 0.039 | −2.593 | 0.010 | −0.178 | −0.025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batzikosta, A.; Moraitou, D.; Steiropoulos, P.; Masoura, E.; Papantoniou, G.; Katsouri, I.-G.; Sofologi, M.; Tsentidou, G.; Tsolaki, M. Sleep Trajectories in Amnestic and Non-Amnestic MCI: Longitudinal Insights from Subjective and Objective Assessments. Diagnostics 2025, 15, 2815. https://doi.org/10.3390/diagnostics15212815
Batzikosta A, Moraitou D, Steiropoulos P, Masoura E, Papantoniou G, Katsouri I-G, Sofologi M, Tsentidou G, Tsolaki M. Sleep Trajectories in Amnestic and Non-Amnestic MCI: Longitudinal Insights from Subjective and Objective Assessments. Diagnostics. 2025; 15(21):2815. https://doi.org/10.3390/diagnostics15212815
Chicago/Turabian StyleBatzikosta, Areti, Despina Moraitou, Paschalis Steiropoulos, Elvira Masoura, Georgia Papantoniou, Ioanna-Giannoula Katsouri, Maria Sofologi, Glykeria Tsentidou, and Magda Tsolaki. 2025. "Sleep Trajectories in Amnestic and Non-Amnestic MCI: Longitudinal Insights from Subjective and Objective Assessments" Diagnostics 15, no. 21: 2815. https://doi.org/10.3390/diagnostics15212815
APA StyleBatzikosta, A., Moraitou, D., Steiropoulos, P., Masoura, E., Papantoniou, G., Katsouri, I.-G., Sofologi, M., Tsentidou, G., & Tsolaki, M. (2025). Sleep Trajectories in Amnestic and Non-Amnestic MCI: Longitudinal Insights from Subjective and Objective Assessments. Diagnostics, 15(21), 2815. https://doi.org/10.3390/diagnostics15212815

