Margin Matters: Advances in Intraoperative Margin Assessment for Breast-Conserving Surgery
Abstract
1. Introduction
2. Materials and Methods
- Studies evaluating various intraoperative margin assessment techniques in patients undergoing breast-conserving surgery.
- Full-text original articles or review articles written in English and containing the standard sections (introduction, materials and methods, results, and discussion with conclusions).
- Studies included irrespective of tumour subtype, and both invasive breast carcinoma and ductal carcinoma in situ (DCIS) were eligible. Margin standards for invasive disease and DCIS were considered according to their respective guideline definitions during data extraction and synthesis.
- Articles not available in full text, conference abstracts, preprints, and case reports.
- Non-English publications.
- Studies not reporting relevant data on margin assessment techniques or their impact on oncological outcomes.
3. Results
3.1. Conventional Pathology Based Techniques
3.1.1. Frozen Section Analysis
3.1.2. Cavity Shaving
3.1.3. Specimen Radiography
3.1.4. Intraoperative Ultrasonography
3.2. Emerging and Device-Based Techniques
3.2.1. Radiofrequency Spectroscopy: MarginProbe Device
3.2.2. Flouresence Based Margin Assessment
3.2.3. Mass Spectrometry and Related Devices
3.2.4. Optical Coherence Tomography
3.2.5. AI Advances in Margin Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| AUC | Area Under the Curve |
| AUROC | Area Under the Receiver Operating Characteristic Curve |
| ALN | Axillary Lymph Nodes |
| BCaS | Breast Cancer Surgery |
| CSM | Cavity Shave Margins |
| FI | Fluorescence Imaging |
| FSA | Frozen Section Analysis |
| IDC | Invasive Ductal Carcinoma |
| MS | Mass Spectrometry |
| MSPen | MasSpec Pen |
| NPV | Negative Predictive Value |
| OCT | Optical Coherence Tomography |
| PPV | Positive Predictive Value |
| RCT | Randomized Controlled Trial |
| R0 | Complete (Negative) Resection |
| SBR | Signal-to-Background Ratio |
| SR | Specimen Radiography |
| US | Ultrasound |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Buchholz, T.A.; Somerfield, M.R.; Griggs, J.J.; El-Eid, S.; Hammond, M.E.H.; Lyman, G.H.; Mason, G.; Newman, L.A. Margins for breast-conserving surgery with whole-breast irradiation in stage I and II invasive breast cancer: American Society of Clinical Oncology endorsement of the Society of Surgical Oncology/American Society for Radiation Oncology consensus guideline. J. Clin. Oncol. 2014, 32, 1502–1506. [Google Scholar] [CrossRef] [PubMed]
- Wilke, L.G.; Czechura, T.; Wang, C.; Lapin, B.; Liederbach, E.; Winchester, D.P.; Yao, K. Repeat surgery after breast conservation for the treatment of stage 0 to II breast carcinoma: A report from the National Cancer Data Base, 2004–2010. JAMA Surg. 2014, 149, 1296–1305. [Google Scholar] [CrossRef]
- Pradipta, A.R.; Tanei, T.; Morimoto, K.; Shimazu, K.; Noguchi, S.; Tanaka, K. Emerging Technologies for Real-Time Intraoperative Margin Assessment in Future Breast-Conserving Surgery. Adv. Sci. 2020, 7, 1901519. [Google Scholar] [CrossRef]
- Anila, K.R.; Chandramohan, K.; Mathews, A.; Somanathan, T.; Jayasree, K. Role of frozen section in the intra-operative margin assessment during breast conserving surgery. Indian J. Cancer 2016, 53, 235–238. [Google Scholar] [CrossRef]
- Garcia, M.T.; Mota, B.S.; Cardoso, N.; Martimbianco, A.L.C.; Ricci, M.D.; Carvalho, F.M.; Gonçalves, R.; Junior, J.M.S.; Filassi, J.R. Accuracy of frozen section in intraoperative margin assessment for breast-conserving surgery: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0248768. [Google Scholar] [CrossRef]
- St John, E.R.; Al-Khudairi, R.; Ashrafian, H.; Athanasiou, T.; Takats, Z.; Hadjiminas, D.J.; Darzi, A.; Leff, D.R. Diagnostic Accuracy of Intraoperative Techniques for Margin Assessment in Breast Cancer Surgery: A Meta-analysis. Ann. Surg. 2017, 265, 300–310. [Google Scholar] [CrossRef]
- Boughey, J.C.; Hieken, T.J.; Jakub, J.W.; Degnim, A.C.; Grant, C.S.; Farley, D.R.; Thomsen, K.M.; Osborn, J.B.; Keeney, G.L.; Habermann, E.B. Impact of analysis of frozen-section margin on reoperation rates in women undergoing lumpectomy for breast cancer: Evaluation of the National Surgical Quality Improvement Program data. Surgery 2014, 156, 190–197. [Google Scholar] [CrossRef]
- Noguchi, M.; Minami, M.; Earashi, M.; Taniya, T.; Miyazaki, I.; Mizukami, Y.; Nonomura, A. Intraoperative histologic assessment of surgical margins and lymph node metastasis in breast-conserving surgery. J. Surg. Oncol. 1995, 60, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Nowikiewicz, T.; Śrutek, E.; Głowacka-Mrotek, I.; Tarkowska, M.; Żyromska, A.; Zegarski, W. Clinical outcomes of an intraoperative surgical margin assessment using the fresh frozen section method in patients with invasive breast cancer undergoing breast-conserving surgery–A single center analysis. Sci. Rep. 2019, 9, 13441. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, G.; Sattavan, S.; Vishvak Chanthar, K.M.M.; Kumar, A.; Sabaretnam, M.; Chand, G.; Mishra, A.; Agrawal, V. Cost-Efficacy Analysis of Use of Frozen Section Histology for Margin Assessment During Breast Conservation Surgery in Breast Cancer Patients. World J. Surg. 2023, 47, 2457–2463. [Google Scholar] [CrossRef]
- Grabenstetter, A.; Moo, T.A.; Hajiyeva, S.; Schüffler, P.J.D.; Khattar, P.; Friedlander, M.A.M.; McCormack, M.A.B.; Raiss, M.B.; Zabor, E.C.D.; Barrio, A.; et al. Accuracy of Intraoperative Frozen Section of Sentinel Lymph Nodes After Neoadjuvant Chemotherapy for Breast Carcinoma. Am. J. Surg. Pathol. 2019, 43, 1377–1383. [Google Scholar] [CrossRef]
- Altaf, F.J. Audit of breast frozen sections. Ann. Saudi Med. 2004, 24, 141–144. [Google Scholar] [CrossRef]
- Guski, H.; Winzer, K.J.; Aldinger, H.U.; Frohberg, H.D.; Bick, U. Möglichkeiten und Grenzen der Schnellschnittdiagnostik beim Mammakarzinom [Possibilities and limits of diagnostic frozen section in breast carcinoma]. Zentralblatt Chir. 1998, 123 (Suppl. S5), 19–22. [Google Scholar]
- Namdar, Z.M.; Omidifar, N.; Arasteh, P.; Akrami, M.; Tahmasebi, S.; Nobandegani, A.S.; Sedighi, S.; Zangouri, V.; Talei, A. How accurate is frozen section pathology compared to permanent pathology in detecting involved margins and lymph nodes in breast cancer? World J. Surg. Oncol. 2021, 19, 261. [Google Scholar] [CrossRef] [PubMed]
- Godazandeh, G.; Alizadeh-Navaei, R.; Shamshirian, A.; Heydari, K.; Shojaee, L. Diagnostic Value of Intraoperative Frozen Section in Breast-Conserving Surgery: A Systematic Review and Meta-analysis. Int. J. Cancer Manag. 2021, 14, e114082. [Google Scholar] [CrossRef]
- Wang, K.; Ren, Y.; He, J. Cavity Shaving plus Lumpectomy versus Lumpectomy Alone for Patients with Breast Cancer Undergoing Breast-Conserving Surgery: A Systematic Review and Meta-Analysis. PLoS ONE 2017, 12, e0168705. [Google Scholar] [CrossRef]
- Vanni, G.; Pellicciaro, M.; Renelli, G.; Materazzo, M.; Sadri, A.; Marsella, V.E.; Tacconi, F.; Bastone, S.A.; Longo, B.; Di Mauro, G.; et al. Cavity Shave Margins in Breast Conservative Surgery: A Strategy to Reduce Positive Margins and Surgical Time. Curr. Oncol. 2024, 31, 511–520. [Google Scholar] [CrossRef]
- Chagpar, A.B.; Killelea, B.K.; Tsangaris, T.N.; Butler, M.; Stavris, K.; Li, F.; Yao, X.; Bossuyt, V.; Harigopal, M.; Lannin, D.R.; et al. A Randomized, Controlled Trial of Cavity Shave Margins in Breast Cancer. N. Engl. J. Med. 2015, 373, 503–510. [Google Scholar] [CrossRef]
- Mook, J.; Klein, R.; Kobbermann, A.; Unzeitig, A.; Euhus, D.; Peng, Y.; Sarode, V.; Moldrem, A.; Leitch, A.M.; Andrews, V.; et al. Volume of excision and cosmesis with routine cavity shave margins technique. Ann. Surg. Oncol. 2012, 19, 886–891. [Google Scholar] [CrossRef]
- Dupont, E.; Tsangaris, T.; Garcia-Cantu, C.; Howard-McNatt, M.; Chiba, A.; Berger, A.C.; Levine, E.A.; Gass, J.S.; Gallagher, K.D.; Chagpar, A.B.; et al. Resection of Cavity Shave Margins in Stage 0-III Breast Cancer Patients Undergoing Breast Conserving Surgery: A Prospective Multicenter Randomized Controlled Trial. Ann. Surg. 2021, 273, 876–881. [Google Scholar] [CrossRef]
- Chen, K.; Zhu, L.; Chen, L.; Li, Q.; Li, S.; Qiu, N.; Yang, Y.; Su, F.; Song, E. Circumferential Shaving of the Cavity in Breast-Conserving Surgery: A Randomized Controlled Trial. Ann. Surg. Oncol. 2019, 26, 4256–4263. [Google Scholar] [CrossRef] [PubMed]
- Moo, T.A.; Choi, L.; Culpepper, C.; Olcese, C.; Heerdt, A.; Sclafani, L.; King, T.A.; Reiner, A.S.; Patil, S.; Brogi, E.; et al. Impact of margin assessment method on positive margin rate and total volume excised. Ann. Surg. Oncol. 2014, 21, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Funk, A.; Heil, J.; Harcos, A.; Gomez, C.; Stieber, A.; Junkermann, H.; Hennigs, A.; Rauch, G.; Sinn, H.-P.; Riedel, F.; et al. Efficacy of intraoperative specimen radiography as margin assessment tool in breast conserving surgery. Breast Cancer Res. Treat. 2020, 179, 425–433. [Google Scholar] [CrossRef]
- Ciccarelli, G.; Di Virgilio, M.R.; Menna, S.; Garretti, L.; Ala, A.; Giani, R.; Bussone, R.; Canavese, G.; Berardengo, E. Radiography of the surgical specimen in early stage breast lesions: Diagnostic reliability in the analysis of the resection margins. Radiol. Med. 2007, 112, 366–376. [Google Scholar] [CrossRef]
- Erguvan-Dogan, B.; Whitman, G.J.; Nguyen, V.A.; Dryden, M.J.; Stafford, R.J.; Hazle, J.; McAlee, K.R.; Phelps, M.J.; Ice, M.F.; Kuerer, H.M.; et al. Specimen radiography in confirmation of MRI-guided needle localization and surgical excision of breast lesions. AJR Am. J. Roentgenol. 2006, 187, 339–344. [Google Scholar] [CrossRef]
- Ihrai, T.; Quaranta, D.; Fouche, Y.; Machiavello, J.-C.; Raoust, I.; Chapellier, C.; Maestro, C.; Marcy, M.; Ferrero, J.-M.; Flipo, B. Intraoperative radiological margin assessment in breast-conserving surgery. Eur. J. Surg. Oncol. 2014, 40, 449–453. [Google Scholar] [CrossRef]
- Lange, M.; Reimer, T.; Hartmann, S.; Glass, Ä.; Stachs, A. The role of specimen radiography in breast-conserving therapy of ductal carcinoma in situ. Breast 2016, 26, 73–79. [Google Scholar] [CrossRef]
- Karanlik, H.; Ozgur, I.; Sahin, D.; Fayda, M.; Onder, S.; Yavuz, E. Intraoperative ultrasound reduces the need for re-excision in breast-conserving surgery. World J. Surg. Oncol. 2015, 13, 321. [Google Scholar] [CrossRef]
- Karadeniz Cakmak, G.; Emre, A.U.; Tascilar, O.; Bahadir, B.; Ozkan, S. Surgeon performed continuous intraoperative ultrasound guidance to decrease re-excisions and mastectomy rates in breast Cancer. Breast 2017, 33, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Wu, N.; Ding, H.; Ding, Q.; Dai, J.; Ling, L.; Chen, L.; Zha, X.; Liu, X.; Zhou, W.; et al. Intraoperative ultrasound guidance is associated with clear lumpectomy margins for breast cancer: A systematic review and meta-analysis. PLoS ONE 2013, 8, e74028. [Google Scholar] [CrossRef]
- Haloua, M.H.; Volders, J.H.; Krekel, N.M.; Cardozo, A.M.F.L.; de Roos, W.K.; de Widt-Levert, L.M.; van der Veen, H.; Rijna, H.; Bergers, E.; Jóźwiak, K.; et al. Intraoperative Ultrasound Guidance in Breast-Conserving Surgery Improves Cosmetic Outcomes and Patient Satisfaction: Results of a Multicenter Randomized Controlled Trial (COBALT). Ann. Surg. Oncol. 2016, 23, 30–37. [Google Scholar] [CrossRef]
- Eichler, C.; Hübbel, A.; Zarghooni, V.; Thomas, A.; Gluz, O.; Stoff-Khalili, M.; Warm, M. Intraoperative ultrasound: Improved resection rates in breast-conserving surgery. AntiCancer Res. 2012, 32, 1051–1056. [Google Scholar]
- Olsha, O.; Shemesh, D.; Carmon, M.; Sibirsky, O.; Abu Dalo, R.; Rivkin, L.; Ashkenazi, I. Resection margins in ultrasound-guided breast-conserving surgery. Ann. Surg. Oncol. 2011, 18, 447–452. [Google Scholar] [CrossRef]
- Ferrucci, M.; Milardi, F.; Passeri, D.; Cagol, M.; Del Bianco, P.; Grossi, U.; Marchet, A. Intraoperative ultrasound-guided breast-conserving surgery: A performance analysis on the basis of novel cancer lesion classification and patients’ cosmetic satisfaction. Surgery 2025, 180, 109037. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.; Díez, J.C.; Ramos, T.; Ruano, R.; Sancho, M.; González-Orús, J.M. Intraoperative ultrasound in conservative surgery for non-palpable breast cancer after neoadjuvant chemotherapy. Int. J. Surg. 2014, 12, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Schnabel, F.; Boolbol, S.K.; Gittleman, M.; Karni, T.; Tafra, L.; Feldman, S.; Police, A.; Friedman, N.B.; Karlan, S.; Holmes, D.; et al. A randomized prospective study of lumpectomy margin assessment with use of MarginProbe in patients with nonpalpable breast malignancies. Ann. Surg. Oncol. 2014, 21, 1589–1595. [Google Scholar] [CrossRef] [PubMed]
- Blohmer, J.U.; Tanko, J.; Kueper, J.; Groß, J.; Völker, R.; Machleidt, A. MarginProbe© reduces the rate of re-excision following breast conserving surgery for breast Cancer. Arch. Gynecol. Obstet. 2016, 294, 361–367. [Google Scholar] [CrossRef]
- Geha, R.C.; Taback, B.; Cadena, L.; Borden, B.; Feldman, S. A Single institution’s randomized double-armed prospective study of lumpectomy margins with adjunctive use of the MarginProbe in nonpalpable breast cancers. Breast J. 2020, 26, 2157–2162. [Google Scholar] [CrossRef]
- LeeVan, E.; Ho, B.T.; Seto, S.; Shen, J. Use of MarginProbe as an adjunct to standard operating procedure does not significantly reduce re-excision rates in breast conserving surgery. Breast Cancer Res. Treat. 2020, 183, 145–151. [Google Scholar] [CrossRef]
- Lauwerends, L.J.; van Driel, P.B.A.A.; Baatenburg de Jong, R.J.; Hardillo, J.A.; Koljenovic, S.; Puppels, G.; Mezzanotte, L.; Löwik, C.W.G.M.; Rosenthal, E.L.; Keereweer, S.; et al. Real-time fluorescence imaging in intraoperative decision making for cancer surgery. Lancet Oncol. 2021, 22, e186–e195. [Google Scholar] [CrossRef]
- Pop, F.C.; Veys, I.; Vankerckhove, S.; Barbieux, R.; Chintinne, M.; Moreau, M.; Donckier, V.; Larsimont, D.; Bourgeois, P.; Liberale, G. Absence of residual fluorescence in the surgical bed at near-infrared fluorescence imaging predicts negative margins at final pathology in patients treated with breast-conserving surgery for breast Cancer. Eur. J. Surg. Oncol. 2021, 47, 269–275. [Google Scholar] [CrossRef]
- Wang, Y.; Jiao, W.; Yin, Z.; Zhao, W.; Zhao, K.; Zhou, Y.; Fang, R.; Dong, B.; Chen, B.; Wang, Z. Application of near-infrared fluorescence imaging in the accurate assessment of surgical margins during breast-conserving surgery. World J. Surg. Oncol. 2022, 20, 357. [Google Scholar] [CrossRef]
- Shipp, D.W.; Rakha, E.A.; Koloydenko, A.A.; Macmillan, R.D.; Ellis, I.O.; Notingher, I. Intra-operative spectroscopic assessment of surgical margins during breast conserving surgery. Breast Cancer Res. 2018, 20, 69. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Guo, S.; Wang, S.; Kang, Y.; Yao, Q.; Wang, J.; Gao, X.; Wang, H.; Du, J.; Peng, X. Lighting-up breast cancer cells by a near-infrared fluorescent probe based on KIAA1363 enzyme-targeting. Chem. Commun. 2017, 53, 4857–4860. [Google Scholar] [CrossRef] [PubMed]
- Thapa, P.; Singh, V.; Gupta, K.; Shrivastava, A.; Kumar, V.; Kataria, K.; Mishra, P.R.; Mehta, D.S. Point-of-care devices based on fluorescence imaging and spectroscopy for tumor margin detection during breast cancer surgery: Towards breast conservation treatment. Lasers Surg. Med. 2023, 55, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Wilson, K.E.; Bachawal, S.V.; Willmann, J.K. Intraoperative Resection Guidance with Photoacoustic and Fluorescence Molecular Imaging Using an Anti-B7-H3 Antibody-Indocyanine Green Dual Contrast Agent. Clin. Cancer Res. 2018, 24, 3572–3582. [Google Scholar] [CrossRef]
- Keating, J.; Tchou, J.; Okusanya, O.; Fisher, C.; Batiste, R.; Jiang, J.; Kennedy, G.; Nie, S.; Singhal, S. Identification of breast cancer margins using intraoperative near-infrared imaging. J. Surg. Oncol. 2016, 113, 508–514. [Google Scholar] [CrossRef]
- Cho, S.S.; Teng, C.W.; De Ravin, E.; Singh, Y.B.; Lee, J.Y.K. Assessment and Comparison of Three Dimensional Exoscopes for Near-Infrared Fluorescence-Guided Surgery Using Second-Window Indocyanine-Green. J. Korean Neurosurg. Soc. 2022, 65, 572–581. [Google Scholar] [CrossRef]
- Achterberg, F.B.; Bijlstra, O.D.; Slooter, M.D.; Mulder, B.G.S.; Boonstra, M.C.; Bouwense, S.A.; Bosscha, K.; Coolsen, M.M.E.; Derksen, W.J.M.; Gerhards, M.F.; et al. ICG-Fluorescence Imaging for Margin Assessment During Minimally Invasive Colorectal Liver Metastasis Resection. JAMA Netw. Open 2024, 7, e246548. [Google Scholar] [CrossRef]
- Egloff-Juras, C.; Bezdetnaya, L.; Dolivet, G.; Lassalle, H.P. NIR fluorescence-guided tumor surgery: New strategies for the use of indocyanine green. Int. J. Nanomed. 2019, 14, 7823–7838. [Google Scholar] [CrossRef]
- Basu, S.S.; Stopka, S.A.; Abdelmoula, W.M.; Randall, E.C.; Lopez, B.G.-C.; Regan, M.S.; Calligaris, D.; Lu, F.F.; Norton, I.; Mallory, M.A.; et al. Interim clinical trial analysis of intraoperative mass spectrometry for breast cancer surgery. npj Breast Cancer 2021, 7, 116. [Google Scholar] [CrossRef] [PubMed]
- Chagovets, V.V.; Starodubtseva, N.L.; Tokareva, A.O.; Frankevich, V.E.; Rodionov, V.V.; Kometova, V.V.; Chingin, K.; Kukaev, E.N.; Chen, H.; Sukhikh, G.T. Validation of Breast Cancer Margins by Tissue Spray Mass Spectrometry. Int. J. Mol. Sci. 2020, 21, 4568. [Google Scholar] [CrossRef]
- Garza, K.Y.; King, M.E.; Nagi, C.; DeHoog, R.J.; Zhang, J.; Sans, M.; Krieger, A.; Feider, C.L.; Bensussan, A.V.; Keating, M.F.; et al. Intraoperative Evaluation of Breast Tissues During Breast Cancer Operations Using the MasSpec Pen. JAMA Netw. Open 2024, 7, e242684. [Google Scholar] [CrossRef]
- Zhang, J.; Rector, J.; Lin, J.Q.; Young, J.H.; Sans, M.; Katta, N.; Giese, N.; Yu, W.; Nagi, C.; Suliburk, J.; et al. Nondestructive tissue analysis for ex vivo and in vivo cancer diagnosis using a handheld mass spectrometry system. Sci. Transl. Med. 2017, 9, eaan3968. [Google Scholar] [CrossRef] [PubMed]
- Balog, J.; Sasi-Szabó, L.; Kinross, J.; Lewis, M.R.; Muirhead, L.J.; Veselkov, K.; Mirnezami, R.; Dezső, B.; Damjanovich, L.; Darzi, A.; et al. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci. Transl. Med. 2013, 5, 194ra93. [Google Scholar] [CrossRef]
- St John, E.R.; Balog, J.; McKenzie, J.S.; Rossi, M.; Covington, A.; Muirhead, L.; Bodai, Z.; Rosini, F.; Speller, A.V.M.; Shousha, S.; et al. Rapid evaporative ionisation mass spectrometry of electrosurgical vapours for the identification of breast pathology: Towards an intelligent knife for breast cancer surgery. Breast Cancer Res. 2017, 19, 59. [Google Scholar] [CrossRef]
- Marcus, D.; Phelps, D.L.; Savage, A.; Balog, J.; Kudo, H.; Dina, R.; Bodai, Z.; Rosini, F.; Ip, J.; Amgheib, A.; et al. Point-of-Care Diagnosis of Endometrial Cancer Using the Surgical Intelligent Knife (iKnife)-A Prospective Pilot Study of Diagnostic Accuracy. Cancers 2022, 14, 5892. [Google Scholar] [CrossRef]
- Nguyen, F.T.; Zysk, A.M.; Chaney, E.J.; Kotynek, J.G.; Oliphant, U.J.; Bellafiore, F.J.; Rowland, K.M.; Johnson, P.A.; Boppart, S.A. Intraoperative evaluation of breast tumor margins with optical coherence tomography. Cancer Res. 2009, 69, 8790–8796. [Google Scholar] [CrossRef] [PubMed]
- Gubarkova, E.; Kiseleva, E.; Moiseev, A.; Vorontsov, D.; Kuznetsov, S.; Plekhanov, A.; Karabut, M.; Sirotkina, M.; Gelikonov, G.; Gamayunov, S.; et al. Intraoperative Assessment of Breast Cancer Tissues after Breast-Conserving Surgery Based on Mapping the Attenuation Coefficients in 3D Cross-Polarization Optical Coherence Tomography. Cancers 2023, 15, 2663. [Google Scholar] [CrossRef]
- Ha, R.; Friedlander, L.C.; Hibshoosh, H.; Hendon, C.; Feldman, S.; Ahn, S.; Schmidt, H.; Akens, M.K.; Fitzmaurice, M.; Wilson, B.C.; et al. Optical Coherence Tomography: A Novel Imaging Method for Post-lumpectomy Breast Margin Assessment-A Multi-reader Study. Acad. Radiol. 2018, 25, 279–287. [Google Scholar] [CrossRef]
- Schmidt, H.; Connolly, C.; Jaffer, S.; Oza, T.; Weltz, C.R.; Port, E.R.; Corben, A. Evaluation of surgically excised breast tissue microstructure using wide-field optical coherence tomography. Breast J. 2020, 26, 917–923. [Google Scholar] [CrossRef]
- Erickson-Bhatt, S.J.; Nolan, R.M.; Shemonski, N.D.; Adie, S.G.; Putney, J.; Darga, D.; McCormick, D.T.; Cittadine, A.J.; Zysk, A.M.; Marjanovic, M.; et al. Real-time Imaging of the Resection Bed Using a Handheld Probe to Reduce Incidence of Microscopic Positive Margins in Cancer Surgery. Cancer Res. 2015, 75, 3706–3712. [Google Scholar] [CrossRef] [PubMed]
- Kanagasingam, Y.; Xiao, D.; Vignarajan, J.; Preetham, A.; Tay-Kearney, M.L.; Mehrotra, A. Evaluation of Artificial Intelligence-Based Grading of Diabetic Retinopathy in Primary Care. JAMA Netw. Open 2018, 1, e182665. [Google Scholar] [CrossRef] [PubMed]
- Koya, S.K.; Brusatori, M.; Yurgelevic, S.; Huang, C.; Werner, C.W.; Kast, R.E.; Shanley, J.; Sherman, M.; Honn, K.V.; Maddipati, K.R.; et al. Accurate identification of breast cancer margins in microenvironments of ex-vivo basal and luminal breast cancer tissues using Raman spectroscopy. Prostaglandins Other Lipid Mediat. 2020, 151, 106475. [Google Scholar] [CrossRef] [PubMed]
- Santilli, A.M.L.; Jamzad, A.; Sedghi, A.; Kaufmann, M.; Logan, K.; Wallis, J.; Ren, K.Y.M.; Janssen, N.; Merchant, S.; Engel, J.; et al. Domain adaptation and self-supervised learning for surgical margin detection. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 861–869. [Google Scholar] [CrossRef]
- To, T.; Lu, T.; Jorns, J.M.; Patton, M.; Schmidt, T.G.; Yen, T.; Yu, B.; Ye, D.H. Deep learning classification of deep ultraviolet fluorescence images toward intra-operative margin assessment in breast Cancer. Front. Oncol. 2023, 13, 1179025. [Google Scholar] [CrossRef]
- Zhu, D.; Wang, J.; Marjanovic, M.; Chaney, E.J.; Cradock, K.A.; Higham, A.M.; Liu, Z.G.; Gao, Z.; Boppart, S.A. Differentiation of breast tissue types for surgical margin assessment using machine learning and polarization-sensitive optical coherence tomography. Biomed. Opt. Express 2021, 12, 3021–3036. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.A.; Kirchoff, K.E.; Butler, L.R.; Holloway, A.D.; Kapadia, M.R.; Kuzmiak, C.M.; Downs-Canner, S.M.; Spanheimer, P.M.; Gallagher, K.K.; Gomez, S.M. Analysis of Specimen Mammography with Artificial Intelligence to Predict Margin Status. Ann. Surg. Oncol. 2023, 30, 7107–7115. [Google Scholar] [CrossRef]
- Hubbard, T.J.E.; Shams, O.; Gardner, B.; Gibson, F.; Rowlands, S.; Harries, T.; Stone, N. A systematic scoping review exploring variation in practice in specimen mammography for Intraoperative Margin Analysis in Breast Conserving Surgery and the role of artificial intelligence in optimising diagnostic accuracy. Eur. J. Radiol. 2024, 181, 111777. [Google Scholar] [CrossRef] [PubMed]


| Study (Author, Year) | Technique | Design and Sample | Key Results | Conclusion |
|---|---|---|---|---|
| Nowikiewicz et al., 2019 [10] | Frozen Section | Retrospective cohort, 1102 patients |
| The use of frozen section during breast-conserving surgery reduced reoperations for residual tumour but significantly increased the duration of surgery. |
| Agarwal et al., 2023 [11] | Frozen Section | Cohort, 328 patients |
| Use of frozen section histology enables one-step oncologically complete breast-conserving surgery in most patients, significantly reduces costs by avoiding reoperations, and prevents patient anxiety and delays in adjuvant treatment. |
| Chagpar et al., 2015 [19] | Cavity Shave | RCT, 235 patients |
| CSM halves margin positivity and reoperation rates. |
| Dupont et al., 2021 [21] | Cavity Shave | Multicentre RCT, 396 patients |
| Confirms CSM effectiveness across multiple centres. |
| Funk et al., 2020 [24] | Specimen Radiography | Multicentre, 470 cases |
| SR helps identify positive margins and reduces the need for secondary surgeries through targeted re-excisions. |
| Ihrai et al., 2014 [27] | Specimen Radiography | Prospective,170 patients |
| SR effective for intraop margin confirmation with an additional time saving and economic impact. |
| Karanlik et al., 2015 [29] | IOUSG | Prospective cohort, 164 patients |
| IOUS reduces reoperation and aligns well with pathology. |
| Haloua et al., 2016 [32] | IOUSG | RCT, 134 patients |
| IOUS improves margin control and reduces tissue removal. |
| Eichler et al., 2012 [33] | IOUSG | Retrospective, 250 patients |
| Increase in R0 resection rates when intraoperative ultrasound was used to evaluate surgical margins. |
| Olsha et al., 2011 [34] | IOUSG (specimen US) | Prospective cohort, 45 patients |
| Specimen US reliably predicts final margins and IOUSG helps reduce reoperation rates after breast-conserving surgery. |
| Study (Author, Year) | Technique | Design and Sample | Key Results | Conclusion |
|---|---|---|---|---|
| Schnabel et al., 2014 [37] | Radiofrequency Spectroscopy | Randomised Clinical Trial, 596 patients |
| MarginProbe aids intraoperative margin assessment and reduces reoperation. |
| Blohmer et al., 2016 [38] | Radiofrequency Spectroscopy | Prospective Clinical Trial, 150 patients |
| Device is effective regardless of tumour type, patient factors. |
| Wang et al., 2022 [43] | Fluorescence based margin assessment | Imaging study, 43 patients |
| Fluorescence shows promise as a real-time margin detection tool. |
| Shipp et al., 2018 [44] | Fluorescence based margin assessment | 107 patients, 121 specimens |
| This multimodal approach may offer an objective tool for intraoperative margin assessment, helping reduce unnecessary reoperations. |
| Fan et al., 2017 [45] | Fluorescence based margin assessment | In vivo probe testing |
| Selectively lights up invasive tissue in thick samples. |
| Wilson et al., 2018 [47] | Fluorescence based margin assessment | Tissue analysis |
| High sensitivity and resolution support intraoperative use. |
| Chagovets et al., 2020 [53] | Mass Spectrometry and related devices | Validation Study, 50 samples |
| Fast, accurate tool for intraoperative assessment. |
| Zhang et al., 2017 [55] | Mass Spectrometry and related devices | Animal and human validation |
| Promising for real-time tissue classification. |
| Balog et al., 2013 [56] | Mass Spectrometry and related devices | 302 patients |
| Reliable tools for rapid intraoperative diagnosis. |
| Nguyen et al., 2009 [59] | Optical Coherence Tomography | Lumpectomy margins, Clinical Trial of 37 patients |
| OCT is viable for high-resolution intraoperative guidance. |
| Gubarkova et al., 2023 [60] | Optical Coherence Tomography | Diagnostic imaging with 68 freshly excised human breast specimens |
| Reliable tumour-stroma differentiation in surgery. |
| Chen et al., 2023 [69] | AI Advances in margin assessment | 821 paired mammograms |
| AI may improve margin assessment from specimen imaging. |
| Santilli et al., 2021 [66] | AI Advances in margin assessment | Transfer learning model with 62 patients |
| AI boosts iKnife performance in data-limited settings. |
| Zhu et al., 2021 [68] | AI Advances in margin assessment | Image classification with 720 images from 41 patients |
| Polarisation information significantly improves breast tissue differentiation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, V.; Khalid, U.; Dimov, R. Margin Matters: Advances in Intraoperative Margin Assessment for Breast-Conserving Surgery. Diagnostics 2025, 15, 2804. https://doi.org/10.3390/diagnostics15212804
Ivanov V, Khalid U, Dimov R. Margin Matters: Advances in Intraoperative Margin Assessment for Breast-Conserving Surgery. Diagnostics. 2025; 15(21):2804. https://doi.org/10.3390/diagnostics15212804
Chicago/Turabian StyleIvanov, Valentin, Usman Khalid, and Rosen Dimov. 2025. "Margin Matters: Advances in Intraoperative Margin Assessment for Breast-Conserving Surgery" Diagnostics 15, no. 21: 2804. https://doi.org/10.3390/diagnostics15212804
APA StyleIvanov, V., Khalid, U., & Dimov, R. (2025). Margin Matters: Advances in Intraoperative Margin Assessment for Breast-Conserving Surgery. Diagnostics, 15(21), 2804. https://doi.org/10.3390/diagnostics15212804

