Machine Learning-Based Prediction of Decompensation in Hepatitis B Virus-Related Cirrhosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Population
2.3. Data Preprocessing
2.4. Feature Selection and Balancing Datasets
2.5. Machine Learning Models
2.6. Training
2.7. Validation
3. Results
3.1. Variceal Bleeding
3.2. Ascites
3.3. Jaundice
3.4. Multiple Complications
4. Discussion
4.1. Theoretical and Practical Implications
4.2. Limitations of Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AFP | alpha-fetoprotein |
| ALT | alanine aminotransferase |
| ANN | Artificial Neural Network |
| Anti-HBe | anti-hepatitis B e-antigen |
| Anti-HBs | anti-hepatitis B surface antibody |
| AST | aspartate transferase |
| AUROC | area under the receiver operating characteristic curve |
| CHB | chronic hepatitis B |
| CI | confidence interval |
| CNN | Convolutional Neural Network |
| DNN | Deep Neural Network |
| DT | Decision Tree |
| ETV | entecavir |
| HBeAg | hepatitis B e antigen |
| HBsAg | hepatitis B surface antigen |
| HBV | hepatitis B virus |
| HCC | hepatocellular carcinoma |
| HCV | hepatitis C virus |
| HE | hepatic encephalopathy |
| HRS | hepatorenal syndrome |
| ICD-9 | International Classification of Diseases, Ninth Revision Clinical Modification |
| ICD-10 | International Classification of Diseases, Tenth Revision Clinical Modification |
| LAM | lamivudine |
| LASSO | Least Absolute Shrinkage and Selection Operator |
| LR | Logistic Regression |
| ML | machine learning |
| PT | prothrombin time |
| RF | Random Forest |
| SBP | spontaneous bacterial peritonitis |
| SVM | Support Vector Machine |
| TDF | tenofovir |
| XGBoost | Extreme Gradient Boosting |
References
- Chen, C.-L.; Yang, J.-Y.; Lin, S.-F.; Sun, C.-A.; Bai, C.-H.; You, S.-L.; Chen, C.-J.; Kao, J.-H.; Chen, P.-J.; Chen, D.-S. Slow decline of hepatitis B burden in general population: Results from a population-based survey and longitudinal follow-up study in Taiwan. J. Hepatol. 2015, 63, 354–363. [Google Scholar] [CrossRef]
- Fattovich, G.; Bortolotti, F.; Donato, F. Natural history of chronic hepatitis B: Special emphasis on disease progression and prognostic factors. J. Hepatol. 2008, 48, 335–352. [Google Scholar] [CrossRef]
- Fattovich, G.; Stroffolini, T.; Zagni, I.; Donato, F. Hepatocellular carcinoma in cirrhosis: Incidence and risk factors. Gastroenterology 2004, 127 (Suppl. 1), S35–S50. [Google Scholar] [CrossRef]
- Peng, C.Y.; Chien, R.N.; Liaw, Y.F. Hepatitis B virus-related decompensated liver cirrhosis: Benefits of antiviral therapy. J. Hepatol. 2012, 57, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Sarvestany, S.S.; Kwong, J.C.; Azhie, A.; Dong, V.; Cerocchi, O.; Ali, A.F.; Karnam, R.S.; Kuriry, H.; Shengir, M.; Candido, E.; et al. Development and validation of an ensemble machine learning framework for detection of all-cause advanced hepatic fibrosis: A retrospective cohort study. Lancet Digit. Health 2022, 4, e188–e199. [Google Scholar] [CrossRef]
- Razmpour, F.; Daryabeygi-Khotbehsara, R.; Soleimani, D.; Asgharnezhad, H.; Shamsi, A.; Bajestani, G.S.; Nematy, M.; Pour, M.R.; Maddison, R.; Islam, S.M.S. Application of machine learning in predicting non-alcoholic fatty liver disease using anthropometric and body composition indices. Sci. Rep. 2023, 13, 4942. [Google Scholar] [CrossRef]
- Chen, Y.-Y.; Lin, C.-Y.; Yen, H.-H.; Su, P.-Y.; Zeng, Y.-H.; Huang, S.-P.; Liu, I.-L. Machine-learning algorithm for predicting fatty liver disease in a Taiwanese population. J. Pers. Med. 2022, 12, 1026. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.L.-H.; Hui, V.W.-K.; Tan, Q.; Xu, J.; Lee, H.W.; Yip, T.C.-F.; Yang, B.; Tse, Y.-K.; Yin, C.; Lyu, F.; et al. Novel machine learning models outperform risk scores in predicting hepatocellular carcinoma in patients with chronic viral hepatitis. JHEP Rep. 2022, 4, 100441. [Google Scholar] [CrossRef]
- Kim, H.Y.; Lampertico, P.; Nam, J.Y.; Lee, H.C.; Kim, S.U.; Sinn, D.H.; Seo, Y.S.; Lee, H.A.; Park, S.Y.; Lim, Y.S.; et al. An artificial intelligence model to predict hepatocellular carcinoma risk in Korean and Caucasian patients with chronic hepatitis B. J. Hepatol. 2022, 76, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Xiong, T.; Peng, J.; Xu, L.; Liao, M.; Zhang, Z.; Wu, Z.; Yuan, K.; Zeng, Y. Classification and prognosis prediction from histopathological images of hepatocellular carcinoma by a fully automated pipeline based on machine learning. Ann. Surg. Oncol. 2020, 27, 2359–2369. [Google Scholar] [CrossRef]
- Saito, A.; Toyoda, H.; Kobayashi, M.; Koiwa, Y.; Fujii, H.; Fujita, K.; Maeda, A.; Kaneoka, Y.; Hazama, S.; Nagano, H.; et al. Prediction of early recurrence of hepatocellular carcinoma after resection using digital pathology images assessed by machine learning. Mod. Pathol. 2021, 34, 417–425. [Google Scholar] [CrossRef]
- Farghaly, H.M.; Shams, M.Y.; Abd El-Hafeez, T. Hepatitis C Virus prediction based on machine learning framework: A real-world case study in Egypt. Knowl. Inf. Syst. 2023, 65, 2595–2617. [Google Scholar] [CrossRef]
- Edeh, M.O.; Dalal, S.; Dhaou, I.B.; Agubosim, C.C.; Umoke, C.C.; Richard-Nnabu, N.E.; Dahiya, N. Artificial intelligence-based ensemble learning model for prediction of hepatitis C disease. Front. Public Health 2022, 10, 892371. [Google Scholar] [CrossRef]
- Hirode, G.; Saab, S.; Wong, R.J. Trends in the burden of chronic liver disease among hospitalized US adults. JAMA Netw. Open 2020, 3, e201997. [Google Scholar] [CrossRef] [PubMed]
- Da, B.; Chen, H.; Wu, W.; Guo, W.; Zhou, A.; Yin, Q.; Gao, J.; Chen, J.; Xiao, J.; Wang, L.; et al. Development and validation of a machine learning-based model to predict survival in patients with cirrhosis after transjugular intrahepatic portosystemic shunt. EClinicalMedicine 2024, 79, 103001. [Google Scholar] [CrossRef] [PubMed]
- Guo, A.; Mazumder, N.R.; Ladner, D.P.; Foraker, R.E. Predicting mortality among patients with liver cirrhosis in electronic health records with machine learning. PLoS ONE 2021, 16, e0256428. [Google Scholar] [CrossRef]
- Kanwal, F.; Taylor, T.J.; Kramer, J.R.; Cao, Y.; Smith, D.; Gifford, A.L.; El-Serag, H.B.; Naik, A.D.; Asch, S.M. Development, validation, and evaluation of a simple machine learning model to predict cirrhosis mortality. JAMA Netw. Open 2020, 3, e2023780. [Google Scholar] [CrossRef]
- Guo, C.; Liu, Z.; Fan, H.; Wang, H.; Zhang, X.; Zhao, S.; Li, Y.; Han, X.; Wang, T.; Chen, X.; et al. Machine-learning-based plasma metabolomic profiles for predicting long-term complications of cirrhosis. Hepatology 2025, 81, 168–180. [Google Scholar] [CrossRef]
- Yao, F.; Luo, J.; Zhou, Q.; Wang, L.; He, Z. Development and validation of a machine learning-based prediction model for hepatorenal syndrome in liver cirrhosis patients using MIMIC-IV and eICU databases. Sci. Rep. 2025, 15, 2743. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Yu, H.; Zhang, Q.; Yang, Y.; Liu, X.; Wang, X.; Jiang, Y. Machine learning-based model for predicting the esophagogastric variceal bleeding risk in liver cirrhosis patients. Diagn. Pathol. 2023, 18, 29. [Google Scholar] [CrossRef]
- Agarwal, S.; Sharma, S.; Kumar, M.; Venishetty, S.; Bhardwaj, A.; Kaushal, K.; Gopi, S.; Mohta, S.; Gunjan, D.; Saraya, A.; et al. Development of a machine learning model to predict bleed in esophageal varices in compensated advanced chronic liver disease: A proof of concept. J. Gastroenterol. Hepatol. 2021, 36, 2935–2942. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.S.; Kalani, A.; Aby, E.S.; Le, L.; Luu, K.; Hauer, M.; Kamath, R.; Lindor, K.D.; Tabibian, J.H. Machine learning-based development and validation of a scoring system for screening high-risk esophageal varices. Clin. Gastroenterol. Hepatol. 2019, 17, 1894–1901.e1. [Google Scholar] [CrossRef]
- Müller, S.E.; Casper, M.; Ripoll, C.; Zipprich, A.; Horn, P.; Krawczyk, M.; Lammert, F.; Reichert, M.C. Machine learning models predicting decompensation in cirrhosis. J. Gastrointest. Liver Dis. 2025, 34, 71–80. [Google Scholar] [CrossRef]
- Ahn, J.C.; Rattan, P.; Starlinger, P.; Juanola, A.; Moreta, M.J.; Colmenero, J.; Aqel, B.; Keaveny, A.P.; Mullan, A.F.; Liu, K.; et al. AI-Cirrhosis-ECG (ACE) score for predicting decompensation and liver outcomes. JHEP Rep. 2025, 7, 101356. [Google Scholar] [CrossRef]
- Ch Sanjeev Kumar, D.; Ajit Kumar, B.; Satchidananda, D.; Ashish, G. An outliers detection and elimination framework in classification task of data mining. Decis. Anal. J. 2023, 6, 100164. [Google Scholar] [CrossRef]
- Niederhut, D. Safe handling instructions for missing data. In Proceedings of the 17th Python in Science Conference, Austin, TX, USA, 9–15 July 2018; Available online: https://proceedings.scipy.org/articles/Majora-4af1f417-008.pdf (accessed on 29 October 2025).
- Gholamy, A.; Kreinovich, V.; Kosheleva, O. Why 70/30 or 80/20 Relation Between Training and Testing Sets: A Pedagogical Explanation; Departmental Technical Reports (CS) 1209; University of Texas at El Paso: El Paso, TX, USA, 2018. [Google Scholar]
- Park, D.J.; Park, M.W.; Lee, H.; Kim, Y.J.; Kim, Y.; Park, Y.H. Development of machine learning model for diagnostic disease prediction based on laboratory tests. Sci. Rep. 2021, 11, 7567. [Google Scholar] [CrossRef]
- Hsieh, V.C.; Liu, M.Y.; Lin, H.C. AI-enabled clinical decision support system modeling for the prediction of cirrhosis complications. IRBM 2024, 45, 100854. [Google Scholar] [CrossRef]
- Pudjihartono, N.; Fadason, T.; Kempa-Liehr, A.W.; O’Sullivan, J.M. A review of feature selection methods for machine learning-based disease risk prediction. Front. Bioinform. 2022, 2, 927312. [Google Scholar] [CrossRef]
- Amin, R.; Yasmin, R.; Ruhi, S.; Rahman, M.H.; Reza, M.S. Prediction of chronic liver disease patients using integrated projection based statistical feature extraction with machine learning algorithms. Inform. Med. Unlocked 2023, 36, 101155. [Google Scholar] [CrossRef]
- Dritsas, E.; Trigka, M. Supervised machine learning models for liver disease risk prediction. Computers 2023, 12, 19. [Google Scholar] [CrossRef]
- Lin, Y.J.; Chen, R.J.; Tang, J.H.; Yu, C.S.; Wu, J.L.; Chen, L.C.; Chang, S.S. Machine-learning monitoring system for predicting mortality among patients with noncancer end-stage liver disease: Retrospective study. JMIR Med. Inform. 2020, 8, e24305. [Google Scholar] [CrossRef]
- Uddin, S.; Khan, A.; Ekramul Hossain, M.; Ali Moni, M. Comparing different supervised machine learning algorithms for disease prediction. BMC Med. Inform. Decis. Mak. 2019, 19, 281. [Google Scholar] [CrossRef]
- Khalilia, M.; Chakraborty, S.; Popescu, M. Predicting disease risks from highly imbalanced data using random forest. BMC Med. Inform. Decis. Mak. 2011, 11, 51. [Google Scholar] [CrossRef]
- Lindner, C. Chapter 1—Automated Image Interpretation Using Statistical Shape Models. In Statistical Shape and Deformation Analysis: Methods, Implementation and Applications, 1st ed.; Zheng, G., Li, S., Szekely, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 3–32. [Google Scholar]
- Couronné, R.; Probst, P.; Boulesteix, A. Random forest versus logistic regression: A large-scale benchmark experiment. BMC Bioinform. 2018, 19, 270. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine learning: Algorithms, real-world applications and research directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.W.; Yip, T.C.-F.; Tse, Y.-K.; Wong, G.L.-H.; Kim, B.K.; Kim, S.U.; Park, J.Y.; Kim, D.Y.; Chan, H.L.-Y.; Ahn, S.H.; et al. Hepatic decompensation in cirrhotic patients receiving antiviral therapy for chronic hepatitis B. Clin. Gastroenterol. Hepatol. 2021, 19, 1950–1958.e7. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.L.; Rosmawati, M.; Lao, J.; Van Vlierberghe, H.; Anderson, F.H.; Thomas, N.; Dehertogh, D. Entecavir is superior to lamivudine in reducing hepatitis B virus DNA in patients with chronic hepatitis B infection. Gastroenterology 2002, 123, 1831–1838. [Google Scholar] [CrossRef]
- Chang, T.-T.; Gish, R.G.; de Man, R.; Gadano, A.; Sollano, J.; Chao, Y.-C.; Lok, A.S.; Han, K.-H.; Goodman, Z.; Zhu, J.; et al. A comparison of entecavir and lamivudine for HBeAg-positive chronic hepatitis B. N. Engl. J. Med. 2006, 354, 1001–1010. [Google Scholar] [CrossRef]
- Allard, N.L.; MacLachlan, J.H.; Dev, A.; Dwyer, J.; Srivatsa, G.; Spelman, T.; Thompson, A.J.; Cowie, B.C. Adherence in chronic hepatitis B: Associations between medication possession ratio and adverse viral outcomes. BMC Gastroenterol. 2020, 20, 140. [Google Scholar] [CrossRef] [PubMed]
- Fu, K.Y.; Hsieh, M.L.; Chen, J.A.; Hsieh, V.C.R. Association between medication adherence and disease outcomes in patients with hepatitis B-related cirrhosis: A population-based case-control study. BMJ Open 2022, 12, e059856. [Google Scholar] [CrossRef]
- Ma, Y.; Lu, Q.; Yuan, F.; Chen, H. Comparison of the effectiveness of different machine learning algorithms in predicting new fractures after PKP for osteoporotic vertebral compression fractures. J. Orthop. Surg. Res. 2023, 18, 62. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ye, S.; Xiao, X.; Sun, C.; Wang, G.; Wang, G.; Zhang, B. Machine learning for tuning, selection, and ensemble of multiple risk scores for predicting type 2 diabetes. Risk Manag. Health Policy 2019, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Abellana, D.P.M.; Lao, D.M. A new univariate feature selection algorithm based on the best–worst multi-attribute decision-making method. Decis. Anal. J. 2023, 7, 100240. [Google Scholar] [CrossRef]

| Prediction Endpoint | Study | Subjects | Method | Results |
|---|---|---|---|---|
| One-year survival | Da et al. (2024) [15] | Cirrhosis patients after transjugular intrahepatic portosystemic shunt | Random Forest | The Random Forest model better predicted 1-year survival compared to existing prognostic scores (e.g., MELD), with an AUC of 0.82 (0.72–0.91). |
| All-cause mortality | Guo et al. (2021) [16] | Cirrhosis patients | Deep Neural Networks (DNN), Random Forest, Logistic Regression | The DNN model achieved an AUC of 0.88, 0.86, and 0.85 for 90, 180, and 365-day mortality, respectively. |
| Kanwal et al. (2020) [17] | Cirrhosis patients | Gradient Descent Boosting, Logistic Regression with Least Absolute Shrinkage and Selection Operator (LASSO) regularization, Partial Path Logistic Model | The Gradient Descent Boosting model achieved an AUC of 0.81 (0.80–0.82), outperforming logistic regression with LASSO regularization (AUC: 0.78) and the Partial Path Logistic model (AUC: 0.78). | |
| Guo et al. (2025) [18] | Participants with 1 or more of the chronic liver disease risk factors | Gradient-Boosting | The ML model predicted a 10-year risk of cirrhosis-related admission, death, or HCC presentation with AUCs of 0.84 and 0.861 in the training and validation cohorts, respectively. | |
| HRS | Yao et al. (2025) [19] | Cirrhosis patients | LASSO regression, Extreme-Gradient Boosting, Random Forest | The ML model showed high predictive performance for the development of HRS, with AUCs of 0.832 in the training set and 0.8415 in the validation set. |
| Esophageal varices/variceal bleeding | Hou et al. (2023) [20] | Cirrhosis patients. | Artificial Neural Network | The model was able to accurately predict the risk of variceal bleeding with an AUC of 0.959. |
| Agarwal et al. (2021) [21] | Patients with compensated advanced chronic liver disease | Extreme-Gradient Boosting | The ML model predicted future variceal bleeding, achieving an accuracy of 98.7%, 93.7%, 85.7% in the derivation, internal validation, and external validation set. | |
| Dong et al. (2019) [22] | Cirrhosis patients | Random Forest | The derived ML-based scoring system achieved AUCs of 0.84 and 0.82 in the training and validation sets, superior to existing non-invasive indices. | |
| Decompensation (ascites, HE, jaundice, variceal bleeding, or SBP) | Müller et al. (2025) [23] | Cirrhosis patients. | Decision Tree, Random Forest, Support Vector Machines, Neural Networks | Random Forest model achieved an AUC of 0.87 and an accuracy of 70.5% on test data for retrospective prediction. |
| Ahn et al. (2025) [24] | Cirrhosis patients | AI-Cirrhosis-ECG (ACE) Score (Convolutional Neural Network model using ECG features). | The ACE score accurately identifies hepatic decompensation with an AUC of 0.933. |
| Algorithm | Hyperparameters | Definition | Value Range |
|---|---|---|---|
| SVM | C | Regularization parameter | 1.0 |
| kernel | Radial basis function kernel algorithm | RBF | |
| degree | Degree of the polynomial kernel function | 3 | |
| gamma | Kernel coefficient for ‘RBF’ | SCALE | |
| tol | Tolerance for stopping criterion | 0.001 | |
| cache_size | Size of the kernel cache | 200 | |
| decision_function_shape | One-versus-rest function | OVR | |
| LR | penalty | Specify the norm of the penalty | L2 |
| tol | Tolerance for stopping criteria | 0.0001 | |
| C | Inverse of regularization strength | 1.0 | |
| solver | Algorithm to use in the optimization problem | LBFGS | |
| max_iter | Number of iterations | 1000 | |
| multi_class | A binary problem is fit for each label | OVR | |
| DT | criterion | Quality of a split for supporting the impurity criteria | GINI |
| splitter | Strategy used to choose the split at each node | BEST | |
| min_samples_split | The minimum number of samples required to split an internal node | 2 | |
| min_samples_leaf | The minimum number of samples required to be at a leaf node | 1 | |
| RF | n_estimators | Number of trees | 100 |
| criterion | Quality of a split for supporting the impurity criteria | GINI | |
| min_samples_split | The minimum number of samples required to split an internal node | 2 | |
| min_samples_leaf | The minimum number of samples required to be at a leaf node | 1 | |
| max_features | The number of features to consider when looking for the best split (square root of number of features) | SQRT | |
| bootstrap | Using bootstrap samples when building trees | TRUE |
| Decompensation | Compensation | Total | |||||||
|---|---|---|---|---|---|---|---|---|---|
| User (1) | Nonuser (2) | Subtotal (1) + (2) = (3) | 80% for Training (4) | 20% for Validation (5) | Matched 1 Training Set (6) | Matched 1 Validation Set (7) | Training (4) + (6) | Validation (5) + (7) | |
| Variceal bleeding | |||||||||
| LAM | 42 | 366 | 408 | 326 | 82 | 326 | 82 | 652 | 164 |
| ETV | 101 | 366 | 467 | 374 | 93 | 374 | 93 | 748 | 186 |
| Ascites | |||||||||
| LAM | 9 | 102 | 111 | 89 | 22 | 89 | 22 | 178 | 44 |
| ETV | 37 | 102 | 139 | 111 | 28 | 111 | 28 | 222 | 56 |
| Jaundice | |||||||||
| LAM | 13 | 62 | 75 | 60 | 15 | 60 | 15 | 120 | 30 |
| ETV | 46 | 62 | 108 | 86 | 22 | 86 | 22 | 172 | 44 |
| Multiple complications | |||||||||
| LAM | 11 | 190 | 201 | 161 | 40 | 161 | 40 | 322 | 80 |
| ETV | 63 | 190 | 253 | 202 | 51 | 202 | 51 | 404 | 102 |
| Lamivudine (LAM) | Entecavir (ETV) | |
|---|---|---|
| Variceal bleeding | n = 326, n = 326 (8 features selected) | n = 374, n = 374 (11 features selected) |
| AUROC: SVM/LR (0.71) > RF > DT Accuracy: SVM (0.70) > LR > RF > DT | AUROC: SVM/RF (0.79) > LR > DT Accuracy: SVM (0.72) > RF > LR/DT | |
| Ascites | n = 89, n = 89 (10 features selected) | n = 111, n = 111 (10 features selected) |
| AUROC: RF (0.76) > SVM > LR > DT Accuracy: SVM (0.73) > LR/RF > DT | AUROC: LR (0.93) > SVM/RF > DT Accuracy: LR (0.88) > SVM > RF > DT | |
| Jaundice | n = 60, n = 60 (9 features selected) | n = 86, n = 86 (9 features selected) |
| AUC: RF (0.91) > SVM > LR > DT Accuracy: RF (0.87) > SVM > DT > LR | AUROC: RF (0.81) > SVM > LR > DT Accuracy: RF (0.73) > SVM > DT > LR | |
| Multiple complications | n = 161, n = 161 (12 features selected) | n = 202, n = 202 (13 features selected) |
| AUROC: LR (0.74) > SVM > RF > DT Accuracy: RF/SVM (0.71) > LR > DT | AUROC: SVM (0.85) > LR > RF > DT Accuracy: SVM (0.77) > RF > LR > DT |
| Variceal Bleeding | Ascites | Jaundice | Multiple Complications | |
|---|---|---|---|---|
| Lamivudine (LAM) | ||||
| Model | SVM | RF | RF | LR |
| Features | 8 | 10 | 9 | 12 |
| AUROC (95% CI) | 0.71 (0.63–0.79) | 0.76 (0.62–0.91) | 0.91 (0.80–0.99) | 0.74 (0.63–0.85) |
| Accuracy | 0.70 | 0.70 | 0.87 | 0.68 |
| Ranking | 3 | 2 | 1 | 4 |
| Entecavir (ETV) | ||||
| Model | SVM | LR | RF | SVM |
| Features | 11 | 10 | 9 | 13 |
| AUROC (95% CI) | 0.79 (0.72–0.85) | 0.93 (0.86–0.99) | 0.81 (0.68–0.94) | 0.85 (0.77–0.93) |
| Accuracy | 0.72 | 0.88 | 0.73 | 0.77 |
| Ranking | 4 | 1 | 3 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.-C.; Hsieh, M.-L.; Liu, M.-Y.; Kuo, C.-C.; Shieh, S.-H.; Hsieh, M.-S.; Hsieh, V.C.-R. Machine Learning-Based Prediction of Decompensation in Hepatitis B Virus-Related Cirrhosis. Diagnostics 2025, 15, 2790. https://doi.org/10.3390/diagnostics15212790
Lin H-C, Hsieh M-L, Liu M-Y, Kuo C-C, Shieh S-H, Hsieh M-S, Hsieh VC-R. Machine Learning-Based Prediction of Decompensation in Hepatitis B Virus-Related Cirrhosis. Diagnostics. 2025; 15(21):2790. https://doi.org/10.3390/diagnostics15212790
Chicago/Turabian StyleLin, Hsueh-Chun, Meng-Lun Hsieh, Meng-Yu Liu, Chin-Chi Kuo, Shwn-Huey Shieh, Ming-Shun Hsieh, and Vivian Chia-Rong Hsieh. 2025. "Machine Learning-Based Prediction of Decompensation in Hepatitis B Virus-Related Cirrhosis" Diagnostics 15, no. 21: 2790. https://doi.org/10.3390/diagnostics15212790
APA StyleLin, H.-C., Hsieh, M.-L., Liu, M.-Y., Kuo, C.-C., Shieh, S.-H., Hsieh, M.-S., & Hsieh, V. C.-R. (2025). Machine Learning-Based Prediction of Decompensation in Hepatitis B Virus-Related Cirrhosis. Diagnostics, 15(21), 2790. https://doi.org/10.3390/diagnostics15212790

