Auditory Electrophysiology of an Adolescent with Both Language and Learning Disorders
Abstract
1. Introduction
2. Detailed Case Description
3. Electrophysiological Hearing Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ADHD | Attention deficit hyperactivity disorder |
| Amp | Amplitude |
| dB | Decibels |
| ERPs | Event-related potentials |
| CAP | Central auditory processing |
| c-ABR | Click auditory brainstem response |
| DLD | Developmental language disorder |
| DSM-5 | Diagnostic and Statistical Manual of Mental Disorders |
| FFR | Frequency following response |
| Hz | Hertz |
| Lat | Latency |
| MLAEP | Medium latency auditory evoked potential |
| MMN | Mismatch negativity |
| MRT | Mean response time |
| ms | Milliseconds |
| P300 | Long-latency auditory evoked potential |
| LLAEP | Late latency auditory evoked potential |
| SPL | Sound Pressure Level |
| RAN | rapid automatic naming |
| RMS | root mean square |
| SLD | Specific learning disorder |
| SNR | Signal-to-noise ratio |
| UNIFESP | Federal University of São Paulo |
| WHO | World Health Organization |
| μv | Microvolts |
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Bishop, D.V.M.; Snowling, M.J.; Thompson, P.A.; Greenhalgh, T.; Adams, C.; Archibald, L. Phase 2 of CATALISE: A multinational and multidisciplinary Delphi consensus study of problems with language development: Terminology. J. Child Psychol. Psychiatry 2017, 58, 1068–1080. [Google Scholar] [CrossRef]
- Befi-Lopes, D.M.; Leão, L.F.A.; Soares, A.J.C. Relações entre idade linguística e consciência fonológica de crianças com transtorno do desenvolvimento da linguagem. Rev. CEFAC 2022, 24, e6521. [Google Scholar] [CrossRef]
- Snowling, M.J.; Hayiou-Thomas, M.E.; Nash, H.M.; Hulme, C. Dyslexia and Developmental Language Disorder: Comorbid disorders with distinct effects on reading comprehension. J. Child Psychol. Psychiatry 2020, 61, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Snowling, M.J.; Moll, K.; Hulme, C. Language difficulties are a shared risk factor for both reading disorder and mathematics disorder. J. Exp. Child Psychol. 2021, 202, 105009. [Google Scholar] [CrossRef] [PubMed]
- Shafer, V.L.; Schwartz, M.; Cohn, T.; De Diego-Balaguer, R. Deficits in aural attention in children with specific language impairment. NeuroReport 2005, 16, 1171–1175. [Google Scholar]
- Soares, A.J.C.; Sanches, S.G.G.; Neves-Lobo, I.F.; Carvallo, R.M.M.; Matas, C.G.; Cárnio, M.S. Long latency auditory evoked potentials and central auditory processing in children with reading and writing alterations: Preliminary data. Int. Arch. Otorhinolaryngol. 2011, 15, 486–491. [Google Scholar] [CrossRef]
- McPherson, D.L. Long latency auditory evoked potentials. In Late Potentials of the Auditory System; Hall, J.W., Swanepoel, W., Eds.; Singular Publishing Group, Inc.: San Diego, CA, USA, 1996; pp. 115–132. [Google Scholar]
- Ubiali, T.; Madruga-Rimoli, C.C.; Diniz-Hein, T.A.; Sanfins, M.D.; Masiero, B.S.; Colella-Santos, M.F. Effects of stimuli and contralateral noise levels on auditory cortical potentials recorded in school-age children. PLoS ONE 2025, 20, e0317661. [Google Scholar] [CrossRef]
- Pelaquim, A.; Sanfins, M.D.; Fornazieri, M.A. Changes in Auditory Evoked Potentials Increase the Chances of Adults Having Central Auditory Processing Disorder. Int. Arch. Otorhinolaryngol. 2023, 28, e134–e140. [Google Scholar] [CrossRef]
- Sanfins, M.D.; Madruga-Rimoli, C.C.; Ubiali, T.; Colella-Santos, M.F. Speech auditory brainstem response (speech ABR) in the differential diagnosis of scholastic difficulties. Braz. J. Otorhinolaryngol. 2016, 83, 112–116. [Google Scholar] [CrossRef]
- Hornickel, J.; Kraus, N. Unstable representation of sound: A biological marker of dyslexia. J. Neurosci. 2013, 33, 3500–3504. [Google Scholar] [CrossRef]
- Tierney, A.; White-Schwoch, T.; MacLean, J.; Kraus, N. Individual Differences in Rhythm Skills: Links with Neural Consistency and Linguistic Ability. J. Cogn. Neurosci. 2017, 29, 855–868. [Google Scholar] [CrossRef] [PubMed]
- White-Schwoch, T.; Kraus, N. Physiologic discrimination of stop consonants relates to phonological skills in pre-readers: A biomarker for subsequent reading ability? Front. Hum. Neurosci. 2013, 7, 899. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.; Pinto, J.D.; Temp, D.A.; Broman, E.N.; Skarzynski, P.H.; Skarzynska, M.B.; Moraes, D.A.D.O.; Sanfins, M.D.; Biaggio, E.P.V. The effect of child development on the components of the Frequency Following Response: Child development and the Frequency Following Response. PLoS ONE 2022, 17, e0260739. [Google Scholar] [CrossRef] [PubMed]
- Thomson, J.M.; Goswami, U. Rhythmic processing in children with developmental dyslexia: Auditory and motor rhythms link to reading and spelling. J. Physiol. Paris 2008, 102, 120–129. [Google Scholar] [CrossRef]
- Patel, S.; Winston, M.; Guilfoyle, J.; Nicol, T.; Martin, G.; Nayar, K.; Kraus, N.; Losh, M. Neural Processing of Speech Sounds in ASD and First-Degree Relatives. J. Autism Dev. Disord. 2023, 53, 3257–3271. [Google Scholar] [CrossRef]
- Seabra, A.G.; Dias, N.M.; Capovilla, F.C. Avaliação Neuropsicológica Cognitiva: Leitura, Escrita e Aritmética; Editora Memnon: São Paulo, Brazil, 2013; Volume 3. [Google Scholar]
- Capovilla, F.C.; Seabra, A.G. Teste Contrastivo de Compreensão Auditiva e de Leitura. In Avaliação Neuropsicológica Cognitiva: Leitura, Escrita e Aritmética; Seabra, A.G., Dias, N.M., Capovilla, F.C., Eds.; Editora Memnon: São Paulo, Brazil, 2013; Volume 3, pp. 29–53. [Google Scholar]
- Wertzner, H.F. Fonologia. In ABFW: Teste de Linguagem Infantil nas Áreas de Fonologia, Vocabulário, Fluência e Pragmática, 3rd ed.; Wertzner, H.F., Ed.; Booktoy: São Paulo, Brazil, 2023; pp. 10–25. [Google Scholar]
- Pereira, M.; Dias, N.M.; Trevisan, B.T. A influência da consciência sintática no desempenho de leitura e escrita. Rev. Psicopedag. 2013, 30, 179–188. [Google Scholar]
- Dias, N.M.; Seabra, A.G.; Trevisan, B.T. Consciência fonológica e o desenvolvimento do sistema fonológico em crianças de escolas públicas e particulares. Rev. CEFAC 2013, 15, 780–792. [Google Scholar] [CrossRef]
- Trevisan, B.T.; Dias, N.M.; Seabra, A.G. Vocabulário e memória de trabalho predizem desempenho em leitura de crianças. Aval. Psicol. 2013, 12, 159–167. [Google Scholar]
- Botelho, A.P.; Coutinho, G. A contribuição da nomeação automatizada rápida para a velocidade e compreensão de leitura textual em crianças brasileiras do ensino fundamental. Rev. Pesq. Qual. 2018, 6, e2641. [Google Scholar]
- Soares, A.J.C.; Wertzner, H.F. Relationships among Reading Fluency, Rapid Automatized Naming and Phonemic Awareness in a Transparent Language. SunText Rev. Pediatr. Care 2023, 4, 141. [Google Scholar] [CrossRef]
- Saraiva, L.; Martins, M.; Cunha, V. Relação entre fluência e compreensão leitora em escolares com dificuldades de aprendizagem. Psicol. Teor. Pesqui. 2018, 34, e3427. [Google Scholar] [CrossRef]
- Stein, L.M.; Roazzi, A.; Leite, M. Habilidades de codificação e ortografia em crianças. In Avaliação da Escrita: Aspectos Ortográficos e Textuais; Stein, L.M., Roazzi, A., Leite, M., Eds.; Artmed: Porto Alegre, Brazil, 2016; pp. 45–60. [Google Scholar]
- World Health Organization. World Report on Hearing; World Health Organization: Geneva, Switzerland, 2021; 252p. Available online: https://www.who.int/publications/i/item/9789240020481 (accessed on 27 October 2025).
- Jerger, J. Clinical experience with impedance audiometry. Arch. Otolaryngol. 1970, 92, 311–324. [Google Scholar] [CrossRef]
- Jasper, H.A. The ten-twenty system of the International Federation. Electroencephalogr. Clin. Neurophysiol. 1958, 10, 371–375. [Google Scholar]
- Sanfins, M.D.; Colella-Santos, M.F.; Ferrazoli, N.; Rezende, A.; Donadon, C.; Gos, E.; Skarżyński, P.H. Latency and Interpeak Interval Values of Auditory Brainstem Response in 73 Individuals with Normal Hearing. Med. Sci. Monit. 2022, 28, e937847. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.W. Auditory Middle Latency Response (AMLR). In Handbook of Auditory Evoked Responses: Principles, Procedures & Protocols, 2nd ed.; Hall, J.W., Ed.; Pearson Education: San Diego, CA, USA, 2015. [Google Scholar]
- Sanfins, M.D.; Colella-Santos, M.F. A review of the clinical applicability of speech-evoked auditory brainstem responses. J. Hear. Sci. 2016, 6, 9–16. [Google Scholar] [CrossRef]
- Wong, P.C.; Skoe, E.; Russo, N.M.; Dees, T.; Kraus, N. Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nat. Neurosci. 2007, 10, 420–422. [Google Scholar] [CrossRef]
- Peterein, J.L.; Neely, J.G. Auditory Brainstem Response Testing in Neurodiagnosis: Structure versus Function. J. Am. Acad. Audiol. 2012, 23, 269–275. [Google Scholar] [CrossRef]
- Jiang, Z.D. Maturation of the Auditory Brainstem in Low Risk-Preterm Infants: A Comparison with Age-Matched Full Term Infants up to 6 Years. Early Hum. Dev. 1995, 42, 49–65. [Google Scholar] [CrossRef]
- Bhutta, A.T.; Cleves, M.A.; Casey, P.H.; Cradock, M.M.; Anand, K.J. Cognitive and Behavioral Outcomes of School-Aged Children Who Were Born Preterm: A Meta-Analysis. JAMA 2002, 288, 728–737. [Google Scholar] [CrossRef]
- Purdy, S.C.; Kelly, A.S.; Davies, M.G. Auditory Brainstem Response, Middle Latency Response, and Late Cortical Evoked Potentials in Children with Learning Disabilities. J. Am. Acad. Audiol. 2002, 13, 367–382. [Google Scholar] [CrossRef]
- Musiek, F.E.; Baran, J.A.; Pinheiro, M.L. Neuroaudiology: Case Studies; Singular: San Diego, Brazil, 1994; p. 279. [Google Scholar]
- Skarżyński, P.H.; Kolodziejak, A.; Sanfins, M.D. Eletrofisiologia da Audição. In Manual de Eletrofisiologia e Eletroacústica: Um Guia para Clínicos; Menezes, P.L., Ed.; Booktoy: Ribeirão Preto, Brazil, 2022; pp. 27–37. [Google Scholar]
- Yvert, B.; Crouzeix, A.; Bertrand, O.; Seither-Preisler, A.; Pantev, C. Multiple supratemporal sources of magnetic and electric auditory evoked middle latency components in humans. Cereb. Cortex 2001, 11, 411–423. [Google Scholar] [CrossRef]
- Veuillet, E.; Magnan, A.; Ecalle, J.; Thai-Van, H.; Collet, L. Auditory processing disorder in children with reading disabilities: Effect of audiovisual training. Brain 2007, 130 Pt 11, 2915–2928. [Google Scholar] [CrossRef]
- Arehole, S. A preliminary study of the relationship between long latency response and learning disorder. Br. J. Audiol. 1995, 29, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Arehole, S.; Augustine, L.E.; Simhadri, R. Middle latency response in children with learning disabilities: Preliminary findings. J. Commun. Disord. 1995, 28, 21–38. [Google Scholar] [CrossRef] [PubMed]
- Weihing, J.; Schochat, E.; Musiek, F. Ear and electrode effects reduce within-group variability in middle latency response amplitude measures. Int. J. Audiol. 2012, 51, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Pelaquim, A.; Sanfins, M.D.; Fornazieri, M.A. Standardization of Latency and Amplitude Values of Short, Middle and Long Latency Auditory Evoked Potentials in Adults. Int. Arch. Otorhinolaryngol. 2023, 27, e278–e285. [Google Scholar] [CrossRef]
- Charles, G.; Hansenne, M. Le potentiel lent P300. Intérêt clinique dans trois pathologies mentales et neurobiologie: Une revue. Encephale 1992, 18, 225–236. [Google Scholar]
- Anderson, S.; Kraus, N. Sensory-cognitive interaction in the neural encoding of speech in noise: A review. J. Am. Acad. Audiol. 2010, 21, 575–585. [Google Scholar] [CrossRef]
- Chandrasekaran, B.; Hornickel, J.; Skoe, E.; Nicol, T.; Kraus, N. Context-dependent encoding in the human auditory brainstem relates to hearing speech in noise: Implications for developmental dyslexia. Neuron 2009, 64, 311–319. [Google Scholar] [CrossRef]
- Saville, C.W.N.; Dean, R.O.; Daley, D.; Intriligator, J.; Boehm, S.; Feige, B.; Klein, C. Electrocortical correlates of intra-subject variability in reaction times: Average and single-trial analyses. Biol. Psychol. 2011, 87, 74–83. [Google Scholar] [CrossRef]
- Hornickel, J.; Zecker, S.G.; Bradlow, A.R.; Kraus, N. Assistive listening devices drive neuroplasticity in children with dyslexia. Proc. Natl. Acad. Sci. USA 2012, 109, 16731–16736. [Google Scholar] [CrossRef]
- Lam, S.-Y.; White-Schwoch, T.; Zecker, S.G.; Hornickel, J.; Kraus, N. Neural stability: A reflection of automaticity in reading. Neuropsychologia 2016, 80, 31–40. [Google Scholar] [CrossRef]
- Snowling, M.J.; Nash, H.M.; Gooch, D.C.; Hayiou-Thomas, M.E.; Hulme, C.; Wellcome Language and Reading Project Team. Developmental Outcomes for Children at High Risk of Dyslexia and Children with Developmental Language Disorder. Child Dev. 2019, 90, e548–e564. [Google Scholar] [CrossRef]




| Procedure | Electrode Placement | Intensity | Collection Filter | Analysis Filter | Equipment | Transducer |
|---|---|---|---|---|---|---|
| c-ABR | M1, M2, Fz | 80 dB HL | 1–30 Hz | no filter | NeuroAudioTM—Neurosoft, Ivanovo, Rússia | Insert (ER-3A) |
| MLAEP | M1, M2, C3, C4, Fz | 70 dB HL | 20–1500 Hz | 20–200 Hz | NeuroAudioTM—Neurosoft, Ivanovo, Rússia | Insert (ER-3A) |
| ERP-P300 | M1, M2, Cz, Fz | 75 dB HL | 1–30 Hz | no filter | NeuroAudioTM—Neurosoft, Ivanovo, Rússia | Insert (ER-3A) |
| FFR | M1, M2, Cz | 80 dB SPL | 100–2000 Hz | no filter | Navigator ProTM—Natus, Middleton, WI, USA | Insert (ER-3A) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares, A.J.C.; Andrade, A.N.d.; Skarzynki, P.H.; Mello, C.B.d.; Sanfins, M.D. Auditory Electrophysiology of an Adolescent with Both Language and Learning Disorders. Diagnostics 2025, 15, 2779. https://doi.org/10.3390/diagnostics15212779
Soares AJC, Andrade ANd, Skarzynki PH, Mello CBd, Sanfins MD. Auditory Electrophysiology of an Adolescent with Both Language and Learning Disorders. Diagnostics. 2025; 15(21):2779. https://doi.org/10.3390/diagnostics15212779
Chicago/Turabian StyleSoares, Aparecido J. Couto, Adriana Neves de Andrade, Piotr Henryk Skarzynki, Claudia Berlim de Mello, and Milaine Dominici Sanfins. 2025. "Auditory Electrophysiology of an Adolescent with Both Language and Learning Disorders" Diagnostics 15, no. 21: 2779. https://doi.org/10.3390/diagnostics15212779
APA StyleSoares, A. J. C., Andrade, A. N. d., Skarzynki, P. H., Mello, C. B. d., & Sanfins, M. D. (2025). Auditory Electrophysiology of an Adolescent with Both Language and Learning Disorders. Diagnostics, 15(21), 2779. https://doi.org/10.3390/diagnostics15212779

