Advancing HBV Diagnostics: The Role of Ultrasensitive HBsAg Testing
Abstract
1. Introduction
2. Challenges in HBV Diagnosis
2.1. Global HBV Burden
2.2. Limitations of Current Diagnostic Tools
3. Paradigm Shift in HBV Treatment Goals
3.1. Treatment Endpoints
3.2. Functional Cure and Emerging Focus on HBsAg
4. HBsAg: A Key Biomarker in HBV Diagnosis
4.1. Current Landscape of HBsAg Assessment
4.2. Ultrasensitive HBsAg Assays
Assay Platforms
5. Clinical Role of Ultrasensitive HBsAg Assays
5.1. Improved Sensitivity and Specificity
5.2. Clinical Utility Across the HBV Infection Spectrum, Including OBI and HBV-R
5.3. Detecting Vaccine Breakthrough Infections
5.4. Assessing Treatment Response and Functional Cure
5.5. Performance Relative to NAT
6. Broader Implications of Ultrasensitive HBsAg Assays
6.1. Significance for the Immunosuppressed Population
6.2. Economic Impact
6.3. Role in Public Health
7. Future Scope in HBsAg Testing
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AASLD | American Association for the Study of Liver Diseases | 
| Anti-HBc | HBV core antigen | 
| Anti-HBs | Hepatitis B surface antibody | 
| cccDNA | Covalently closed circular DNA | 
| CHB | Chronic hepatitis B | 
| CI | Confidence interval | 
| CLIA | Chemiluminescent immunoassay | 
| DBS | Dried blood spot | 
| DNA | Deoxyribose nucleic acid | 
| EASL | European Association for the Study of the Liver | 
| ELISA | Enzyme-linked immunoassay | 
| EoT | End of treatment | 
| FDA | U.S. Food & Drug Administration | 
| HBeAg | HBV e antigen | 
| HBsAg | HBV surface antigen | 
| HBV | Hepatitis B virus | 
| HBV-R | HBV reactivation | 
| HCC | Hepatocellular carcinoma | 
| IgM | Immunoglobulin M | 
| LoD | Limit of detection | 
| NA | Nucleos(t)ide analog | 
| NAT | Nucleic acid testing | 
| OBI | Occult HBV infection | 
| PCR | Polymerase chain reaction | 
| PD-1 | Programmed death protein 1 | 
| PD-L1 | Programmed death ligand-1 | 
| WHO | World Health Organization | 
References
- World Health Organization. Hepatitis B. Available online: https://www.who.int/news-room/fact-sheets/detail/hepatitis-b (accessed on 4 January 2025).
- World Health Organization. Elimination of Hepatitis by 2030. Available online: https://www.who.int/health-topics/hepatitis/elimination-of-hepatitis-by-2030#tab=tab_1 (accessed on 4 January 2025).
- Gupta, E.; Bhugra, A.; Samal, J.; Khodare, A.; Singh, K.; Rastogi, A.; Sharma, M.K. Performance evaluation of an improved HBsAg assay (HBsAg NEXT) for the detection of HBsAg levels. J. Lab. Physicians 2023, 15, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Kondili, L.A.; Buti, M.; Riveiro-Barciela, M.; Maticic, M.; Negro, F.; Berg, T.; Craxì, A. Impact of the COVID-19 pandemic on hepatitis B and C elimination: An EASL survey. JHEP Rep. 2022, 4, 100531. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.C.; Huang, D.Q.; Nguyen, M.H. Global burden of hepatitis B virus: Current status, missed opportunities and a call for action. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 524–537. [Google Scholar] [CrossRef] [PubMed]
- Al-Busafi, S.A.; Alwassief, A. Global perspectives on the hepatitis B vaccination: Challenges, achievements, and the road to elimination by 2030. Vaccines 2024, 12, 288. [Google Scholar] [CrossRef]
- Vachon, A.; Osiowy, C. Novel biomarkers of hepatitis B virus and their use in chronic hepatitis B patient management. Viruses 2021, 13, 951. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines on the Management of Hepatitis B Virus Infection. J. Hepatol. 2025, 83, 502–583. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Hepatitis B Surveillance Guidance. Available online: https://www.cdc.gov/hepatitis/php/surveillance-guidance/hepatitis-b.html#:~:text=A%20person%20with%20a%20positive,the%20presence%20of%20HBV%20DNA (accessed on 22 October 2025).
- Steve, R.J.; Prakash, A.; Ponnuvel, S.; Dickson, C.J.; Nandan, K.; Singh, B.; Sam, G.A.; Goel, A.; Zachariah, U.G.; Eapen, C.E.; et al. Versatile performance edges of HBsAg Next assay in diagnosis and therapeutic monitoring of HBV infection. J. Clin. Virol. 2023, 160, 105378. [Google Scholar] [CrossRef]
- WHO Guidelines on Hepatitis B and C Testing. Geneva: World Health Organization; 2017 February. Available online: https://www.ncbi.nlm.nih.gov/books/NBK442276/table/ch7.t1/ (accessed on 22 October 2025).
- Centers for Disease Control and Prevention. Screening and Testing for Hepatitis B Virus Infection: CDC Recommendations—United States. 2023. Available online: https://www.cdc.gov/mmwr/volumes/72/rr/rr7201a1.htm?s_cid=rr7201a1_w (accessed on 22 October 2025).
- Moini, M.; Fung, S. HBsAg loss as a treatment endpoint for chronic HBV infection: HBV cure. Viruses 2022, 14, 657. [Google Scholar] [CrossRef]
- Pronier, C.; Candotti, D.; Boizeau, L.; Bomo, J.; Laperche, S.; Thibault, V. The contribution of more sensitive hepatitis B surface antigen assays to detecting and monitoring hepatitis B infection. J. Clin. Virol. 2020, 129, 104507. [Google Scholar] [CrossRef]
- Valsamakis, A. Molecular testing in the diagnosis and management of chronic hepatitis B. Clin. Microbiol. Rev. 2007, 20, 426–439, table of contents. [Google Scholar] [CrossRef]
- Polaris Observatory Collaborators. Global change in hepatitis C virus prevalence and cascade of care between 2015 and 2020: A modelling study. Lancet Gastroenterol. Hepatol. 2022, 7, 396–415. [Google Scholar] [CrossRef] [PubMed]
- Spearman, C.W.; Andersson, M.I.; Bright, B.; Davwar, P.M.; Desalegn, H.; Guingane, A.N.; Johannessen, A.; Kabagambe, K.; Lemoine, M.; Matthews, P.C.; et al. Hepatitis B in Africa Collaborative Network (HEPSANET). A new approach to prevent, diagnose, and treat hepatitis B in Africa. BMC Glob. Public Health 2023, 1, 24. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Clinical Testing and Diagnosis for Hepatitis B. Available online: https://www.cdc.gov/hepatitis-b/hcp/diagnosis-testing/index.html (accessed on 22 August 2025).
- World Health Organization. Training Workshop on Screening, Diagnosis and Treatment of Hepatitis B and C. Available online: https://cdn.who.int/media/docs/default-source/searo/hiv-hepatitis/training-modules/08-hbv-serological-markers.pdf?sfvrsn=b4ca38a4_2 (accessed on 22 October 2025).
- Kuhns, M.C.; Holzmayer, V.; McNamara, A.L.; Sickinger, E.; Schultess, J.; Cloherty, G.A. Improved detection of early acute, late acute, and occult hepatitis B infections by an increased sensitivity HBsAg assay. J. Clin. Virol. 2019, 118, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Raimondo, G.; Locarnini, S.; Pollicino, T.; Levrero, M.; Zoulim, F.; Lok, A.S. Update of the statements on biology and clinical impact of occult hepatitis B virus infection. J. Hepatol. 2019, 71, 397–408. [Google Scholar] [CrossRef]
- Yip, T.C.; Wong, G.L. Current knowledge of occult hepatitis B infection and clinical implications. Semin. Liver Dis. 2019, 39, 249–260. [Google Scholar] [CrossRef]
- Seetharam, A.; Perrillo, R.; Gish, R. Immunosuppression in patients with chronic hepatitis B. Curr. Hepatol. Rep. 2014, 13, 235–244. [Google Scholar] [CrossRef]
- Pondé, R.A. The underlying mechanisms for the “simultaneous HBsAg and anti-HBs serological profile”. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 1325–1340. [Google Scholar] [CrossRef]
- Wang, C.; Xue, R.; Wang, X.; Xiao, L.; Xian, J. High-sensitivity HBV DNA test for the diagnosis of occult HBV infection: Commonly used but not reliable. Front. Cell. Infect. Microbiol. 2023, 13, 1186877. [Google Scholar] [CrossRef]
- Yan, Y.; Sun, H.; Chang, L.; Ji, H.; Jiang, X.; Song, S.; Xiao, Y.; Feng, K.; Nuermaimaiti, A.; Lu, Z.; et al. Circulating immune complexes and mutations of HBsAg are associated with the undetectable HBsAg in anti-HBs and HBeAg positive occult hepatitis B virus infection. Front. Microbiol. 2022, 13, 1063616. [Google Scholar] [CrossRef]
- Song, S.; Su, Q.; Yan, Y.; Ji, H.; Sun, H.; Feng, K.; Nuermaimaiti, A.; Halemubieke, S.; Mei, L.; Liu, X.; et al. Identification and characteristics of mutations promoting occult HBV infection by ultrasensitive HBsAg assay. J. Clin. Microbiol. 2025, 63, e0207124. [Google Scholar] [CrossRef]
- Poola, S.; Kratzer, M.; Sanaka, S.; Sewell, K.; Tillmann, H.L. Role of hepatitis B surface antibodies in risk for hepatitis B virus reactivation during anti-tumor necrosis factor therapy. Clin. Gastroenterol. Hepatol. 2023, 21, 1103–1104.e3. [Google Scholar] [CrossRef]
- Huang, W.; Du, L.; Tang, H. Hepatitis B virus reactivation: Overview and management. Future Virol. 2021, 16, 821–835. [Google Scholar] [CrossRef]
- Lan, T.Y.; Lin, Y.C.; Tseng, T.C.; Yang, H.C.; Kao, J.H.; Cheng, C.F.; Lee, T.J.; Huang, S.C.; Lu, C.H.; Li, K.J.; et al. Risk of hepatitis B virus (HBV) reactivation in HBsAg-negative, anti-HBc-negative patients receiving rituximab for autoimmune diseases in HBV endemic areas. Gut Liver 2023, 17, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Hammond, S.P.; Borchelt, A.M.; Ukomadu, C.; Ho, V.T.; Baden, L.R.; Marty, F.M. Hepatitis B virus reactivation following allogeneic hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 2009, 15, 1049–1059. [Google Scholar] [CrossRef] [PubMed]
- Smalls, D.J.; Kiger, R.E.; Norris, L.B.; Bennett, C.L.; Love, B.L. Hepatitis B virus reactivation: Risk factors and current management strategies. Pharmacotherapy 2019, 39, 1190–1203. [Google Scholar] [CrossRef]
- Martin, P.; Nguyen, M.H.; Dieterich, D.T.; Lau, D.T.; Janssen, H.L.A.; Peters, M.G.; Jacobson, I.M. Treatment algorithm for managing chronic hepatitis B virus infection in the United States: 2021 update. Clin. Gastroenterol. Hepatol. 2022, 20, 1766–1775. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. J. Hepatol. 2017, 67, 370–398. [Google Scholar] [CrossRef]
- Revill, P.A.; Chisari, F.V.; Block, J.M.; Dandri, M.; Gehring, A.J.; Guo, H.; Hu, J.; Kramvis, A.; Lampertico, P.; Janssen, H.L.A.; et al. A global scientific strategy to cure hepatitis B. Lancet Gastroenterol. Hepatol. 2019, 4, 545–558, Erratum in: Lancet Gastroenterol. Hepatol. 2019, 4, e7. [Google Scholar] [CrossRef]
- Lok, A.S.; Zoulim, F.; Dusheiko, G.; Ghany, M.G. Hepatitis B cure: From discovery to regulatory approval. Hepatology 2017, 66, 1296–1313. [Google Scholar] [CrossRef]
- Cornberg, M.; Lok, A.S.; Terrault, N.A.; Zoulim, F. Guidance for design and endpoints of clinical trials in chronic hepatitis B-Report from the 2019 EASL-AASLD HBV Treatment Endpoints Conference. J. Hepatol. 2020, 72, 539–557. [Google Scholar] [CrossRef]
- Degasperi, E.; Anolli, M.P.; Lampertico, P. Towards a functional cure for hepatitis B virus: A 2022 update on new antiviral strategies. Viruses 2022, 14, 2404. [Google Scholar] [CrossRef] [PubMed]
- Buster, E.H.; Flink, H.J.; Cakaloglu, Y.; Simon, K.; Trojan, J.; Tabak, F.; So, T.M.; Feinman, S.V.; Mach, T.; Akarca, U.S.; et al. Sustained HBeAg and HBsAg loss after long-term follow-up of HBeAg-positive patients treated with peginterferon alpha-2b. Gastroenterology 2008, 135, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Marcellin, P.; Bonino, F.; Yurdaydin, C.; Hadziyannis, S.; Moucari, R.; Kapprell, H.P.; Rothe, V.; Popescu, M.; Brunetto, M.R. Hepatitis B surface antigen levels: Association with 5-year response to peginterferon alfa-2a in hepatitis B e-antigen-negative patients. Hepatol. Int. 2013, 7, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Jeng, W.J.; Lok, A.S. Should treatment indications for chronic hepatitis B be expanded? Clin. Gastroenterol. Hepatol. 2021, 19, 2006–2014. [Google Scholar] [CrossRef]
- Terrault, N.A.; Lok, A.S.F.; McMahon, B.J.; Chang, K.M.; Hwang, J.P.; Jonas, M.M.; Brown, R.S., Jr.; Bzowej, N.H.; Wong, J.B. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology 2018, 67, 1560–1599. [Google Scholar] [CrossRef]
- Wong, G.L.H.; Gane, E.; Lok, A.S.F. How to achieve functional cure of HBV: Stopping NUCs, adding interferon or new drug development? J. Hepatol. 2022, 76, 1249–1262. [Google Scholar] [CrossRef]
- Likhitsup, A.; Lok, A.S. Understanding the natural history of hepatitis B virus infection and the new definitions of cure and the endpoints of clinical trials. Clin. Liver Dis. 2019, 23, 401–416. [Google Scholar] [CrossRef]
- Kumar, M.; Pahuja, S.; Khare, P.; Kumar, A. Current challenges and future perspectives of diagnosis of hepatitis B virus. Diagnostics 2023, 13, 368. [Google Scholar] [CrossRef]
- Takeda, K.; Maruki, M.; Yamagaito, T.; Muramatsu, M.; Sakai, Y.; Tobimatsu, H.; Kobayashi, H.; Mizuno, Y.; Hamaguchi, Y. Highly sensitive detection of hepatitis B virus surface antigen by use of a semiautomated immune complex transfer chemiluminescence enzyme immunoassay. J. Clin. Microbiol. 2013, 51, 2238–2244. [Google Scholar] [CrossRef]
- Karra, V.K.; Chowdhury, S.J.; Ruttala, R.; Polipalli, S.K.; Kar, P. Clinical significance of quantitative HBsAg titres and its correlation with HBV DNA levels in the natural history of hepatitis B virus infection. J. Clin. Exp. Hepatol. 2016, 6, 209–215. [Google Scholar] [CrossRef]
- Sickinger, E.; Braun, H.B.; Meyer, T.; Schmid, K.; Daghfal, D.; Oer, M.; Schultess, J. Performance characteristics of the high sensitivity Alinity i & ARCHITECT HBsAg Next Qualitative/Confirmatory assays. Diagn. Microbiol. Infect. Dis. 2020, 97, 115033. [Google Scholar]
- Prakash, A.; Ponnuvel, S.; Devadasan, J.D.C.; Nithyanandhan, K.; Baskaran, A.; Steve, R.J.; Kalpana, T.; Singh, B.; Goel, A.; Zachariah, U.G.; et al. ARCHITECT HBsAg Next assay is positioned better to resolve and refine challenging weak reactive clinical samples. J. Clin. Virol. 2023, 166, 105524. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines for the Prevention, Diagnosis, Care and Treatment for People with Chronic Hepatitis B Infection. Available online: https://www.who.int/publications/i/item/9789240090903 (accessed on 22 October 2025).
- Suzuki, T.; Tamori, A.; Matsuura, K.; Inoue, T.; Kusumoto, S.; Hagiwara, S.; Sagi, H.; Kaneko, A.; Murakami, S.; Kawamra, H.; et al. Clinical usefulness of an ultra-high-sensitivity hepatitis B surface antigen assay to determine the cessation of treatment for HBV reactivation. Ann. Hepatol. 2025, 30, 101764. [Google Scholar] [CrossRef] [PubMed]
- Abu, N.; Mohd Bakhori, N.; Shueb, R.H. Lateral flow assay for hepatitis B detection: A review of current and new assays. Micromachines 2023, 14, 1239. [Google Scholar] [CrossRef]
- Martiskainen, I.; Talha, S.M.; Vuorenpää, K.; Salminen, T.; Juntunen, E.; Chattopadhyay, S.; Kumar, D.; Vuorinen, T.; Pettersson, K.; Khanna, N.; et al. Upconverting nanoparticle reporter-based highly sensitive rapid lateral flow immunoassay for hepatitis B virus surface antigen. Anal. Bioanal. Chem. 2021, 413, 967–978. [Google Scholar] [CrossRef]
- Amini, A.; Varsaneux, O.; Kelly, H.; Tang, W.; Chen, W.; Boeras, D.I.; Falconer, J.; Tucker, J.D.; Chou, R.; Ishizaki, A.; et al. Diagnostic accuracy of tests to detect hepatitis B surface antigen: A systematic review of the literature and meta-analysis. BMC Infect. Dis. 2017, 17, 698. [Google Scholar] [CrossRef]
- Aydin, S.; Emre, E.; Ugur, K.; Aydin, M.A.; Sahin, İ.; Cinar, V.; Akbulut, T. An overview of ELISA: A review and update on best laboratory practices for quantifying peptides and proteins in biological fluids. J. Int. Med. Res. 2025, 53, 3000605251315913. [Google Scholar] [CrossRef]
- Wu, J.T.Y.; Wong, L.S.Y.; Bowlby, E.E. An automated high-throughput screening enzyme linked immunosorbent assay for Johne’s disease antibodies in bovine serum. SLAS Technol. 2006, 11, 323–330. [Google Scholar] [CrossRef]
- Cinquanta, L.; Fontana, D.E.; Bizzaro, N. Chemiluminescent immunoassay technology: What does it change in autoantibody detection? Auto. Immun. Highlights 2017, 8, 9. [Google Scholar] [CrossRef]
- Nicolai, E.; Sarubbi, S.; Pelagalli, M.; Basile, V.; Terrinoni, A.; Minieri, M.; Cennamo, O.; Grelli, S.; Bernardini, S.; Pieri, M. Performance evaluation of the new chemiluminescence immunoassay CL-1200i for HBV, HIV panels. Diseases 2023, 11, 83. [Google Scholar] [CrossRef]
- Food and Drug Administration. ARCHITECT HBsAg Next Qualitative Reagent IFU. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf21/P210003C.pdf#:~:text=mIU%2FmL%20LoBa%201,analyte%20samples.%20b (accessed on 22 October 2025).
- Wong, D.K.; Chen, C.; Mak, L.Y.; Fung, J.; Seto, W.K.; Yuen, M.F. Detection of the hepatitis B surface antigen in patients with occult hepatitis B by use of an assay with enhanced sensitivity. J. Clin. Microbiol. 2022, 60, e0220421. [Google Scholar] [CrossRef] [PubMed]
- Lou, S.; Taylor, R.; Pearce, S.; Kuhns, M.; Leary, T. An ultra-sensitive Abbott ARCHITECT(®) assay for the detection of hepatitis B virus surface antigen (HBsAg). J. Clin. Virol. 2018, 105, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Yonezawa, H.; Tanaka, S.; Tanaka, M.; Kobayashi, R.; Takahashi, S. Efficient implementation of hepatitis B surface antigen confirmatory neutralization tests. J. Infect. Chemother. 2024, 30, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Costa, V.; Zhao, Z.; Racine-Brzostek, S.E.; Lalazar, G.; Yang, H.S. An interesting case of isolated false-reactive hepatitis B surface antigen. Case Rep. Hepatol. 2021, 2021, 9928098. [Google Scholar] [CrossRef]
- Meier, M.A.; Calabrese, D.; Suslov, A.; Terracciano, L.M.; Heim, M.H.; Wieland, S. Ubiquitous expression of HBsAg from integrated HBV DNA in patients with low viral load. J. Hepatol. 2021, 75, 840–847. [Google Scholar] [CrossRef]
- Kuhns, M.C.; Holzmayer, V.; Anderson, M.; McNamara, A.L.; Sauleda, S.; Mbanya, D.; Duong, P.T.; Dung, N.T.T.; Cloherty, G.A. Molecular and serological characterization of hepatitis B virus (HBV)-Positive samples with very low or undetectable levels of HBV surface antigen. Viruses 2021, 13, 2053. [Google Scholar] [CrossRef]
- Kuhns, M.C.; McNamara, A.L.; Holzmayer, V.; Cloherty, G.A. Molecular and serological characterization of hepatitis B vaccine breakthrough infections in serial samples from two plasma donors. Virol. J. 2019, 16, 43. [Google Scholar] [CrossRef]
- Bourdin, J.; Sellier, P.; Salmona, M.; Lascoux-Combe, C.; Delaugerre, C.; Maylin, S. Does the ultrasensitive HBsAg Next assay enhance Hepatitis B diagnosis? An evaluation of analytical performances. J. Clin. Virol. 2024, 174, 105707. [Google Scholar] [CrossRef]
- Matsumoto, A.; Imaizumi, M.; Tanaka, Y.; Nishiguchi, S.; Yatsuhashi, H.; Ishida, T.; Moriyama, K.; Aoyagi, K.; Tanaka, E. Novel and highly sensitive immunoassay for total hepatitis B surface antigen, including that complexed with hepatitis B surface antibody. J. Gastroenterol. 2016, 52, 376–384. [Google Scholar] [CrossRef]
- Hirode, G.; Choi, H.S.J.; Chen, C.H.; Su, T.H.; Seto, W.K.; Van Hees, S.; Papatheodoridi, M.; Lens, S.; Wong, G.; Brakenhoff, S.M.; et al. Off-therapy response after nucleos(t)ide analogue withdrawal in patients with chronic hepatitis B: An international, multicenter, multiethnic cohort (RETRACT-B Study). Gastroenterology 2022, 162, 757–771.e4. [Google Scholar] [CrossRef]
- Chen, C.H.; Chiu, Y.C.; Lu, S.N.; Lee, C.M.; Wang, J.H.; Hu, T.H.; Hung, C.H. Serum hepatitis B surface antigen levels predict treatment response to nucleos(t)ide analogues. World J. Gastroenterol. 2014, 20, 7686–7695. [Google Scholar] [CrossRef]
- van Bömmel, F.; Stein, K.; Heyne, R.; Petersen, J.; Buggisch, P.; Berg, C.; Zeuzem, S.; Stallmach, A.; Sprinzl, M.; Schott, E.; et al. A multicenter randomized-controlled trial of nucleos(t)ide analogue cessation in HBeAg-negative chronic hepatitis B. J. Hepatol. 2023, 78, 926–936. [Google Scholar] [CrossRef]
- Kusumoto, S.; Tanaka, Y.; Suzuki, R.; Watanabe, T.; Nakata, M.; Sakai, R.; Fukushima, N.; Fukushima, T.; Moriuchi, Y.; Itoh, K.; et al. Ultra-high sensitivity HBsAg assay can diagnose HBV reactivation following rituximab-based therapy in patients with lymphoma. J. Hepatol. 2020, 73, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Bazinet, M.; Anderson, M.; Pântea, V.; Placinta, G.; Moscalu, I.; Cebotarescu, V.; Cojuhari, L.; Jimbei, P.; Iarovoi, L.; Smesnoi, V.; et al. Analysis of HBsAg Immunocomplexes and cccDNA Activity During and Persisting After NAP-Based Therapy. Hepatol. Commun. 2021, 5, 1873–1887. [Google Scholar] [CrossRef] [PubMed]
- Bessone, F.; Dirchwolf, M. Management of hepatitis B reactivation in immunosuppressed patients: An update on current recommendations. World J. Hepatol. 2016, 8, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Pol, S. Management of HBV in immunocompromised patients. Liver Int. 2013, 33, 182–187. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Y.; Chen, C.; Fang, W.; Cai, X.; Zhang, X.; Zhao, M.; Zhang, B.; Jiang, W.; Lin, Z.; et al. Hepatitis B virus reactivation in cancer patients with positive hepatitis B surface antigen undergoing PD-1 inhibition. J. Immunother. Cancer 2019, 7, 322. [Google Scholar] [CrossRef]
- Kuhns, M.C.; Holzmayer, V.; McNamara, A.L.; Rodgers, M.A.; Olivo, A.C.; Harris, B.; Vallari, A.; Oliveras, S.S.; Kaptue, L.; Mbanya, D.; et al. Molecular and Serological Characterization of Hepatitis B Early Acute and Occult Specimens Incrementally Detected by a New Increased Sensitivity HBsAg Assay (663). In Proceedings of the AASLD The Liver Meeting 2019, Boston, MA, USA, 8–12 November 2019. [Google Scholar]
- Hou, J.; Xie, Q.; Zhang, W.; Hua, R.; Tang, H.; Gane, E.J.; Amado, L.E.M.; Yang, S.S.; Peng, C.Y.; Yuen, M.F.; et al. OS-030 Efficacy and safety of xalnesiran with and without an immunomodulator in virologically suppressed participants with chronic hepatitis B: End of study results from the phase 2, randomized, controlled, adaptive, open-label platform study (PIRANGA). J. Hepatol. 2024, 80, S26. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Success Story: Costs and Effectiveness of Hepatitis B Screening and Vaccination. Available online: https://www.cdc.gov/neema/php/successstories/cost-effectiveness-of-hepatitis-b-screening-vaccination.html (accessed on 22 August 2025).
- Howell, J.; Seaman, C.; Wallace, J.; Xiao, Y.; Scott, N.; Davies, J.; de Santis, T.; Adda, D.; El-Sayed, M.; Feld, J.J.; et al. Pathway to global elimination of hepatitis B: HBV cure is just the first step. Hepatology 2023, 78, 976–990. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/recommendations-testing-blood-donations-hepatitis-b-surface-antigen (accessed on 22 August 2025).
- Association for the Advancement of Blood & Biotherapies. Available online: https://www.aabb.org/news-resources/news/article/2025/07/16/regulatory-update--new-fda-draft-guidance-outlines-recommendations-for-testing-blood-donations-for-hbsag (accessed on 22 August 2025).
- Holzmayer, V.; Anderson, M.; Ndembi, N.; Mbanya, D.; Moy, J.; Cloherty, G. Modified ARCHITECT(®) serologic assays enable plasma-level performance from dried blood spot samples. Biotechniques 2022, 73, 193–203. [Google Scholar] [CrossRef]
- Kramvis, A.; Chang, K.M.; Dandri, M.; Farci, P.; Glebe, D.; Hu, J.; Janssen, H.L.A.; Lau, D.T.Y.; Penicaud, C.; Pollicino, T.; et al. A roadmap for serum biomarkers for hepatitis B virus: Current status and future outlook. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 727–745. [Google Scholar] [CrossRef]
- Kikuchi, M.; Lindstrom, P.; Tejada-Strop, A.; Mixson-Hayden, T.; Kamili, S.; Sawabe, M. Dried blood spot is the feasible matrix for detection of some but not all hepatitis B virus markers of infection. BMC Res. Notes 2022, 15, 287. [Google Scholar] [CrossRef]
- Ghany, M.G.; Lok, A.S. Functional cure of hepatitis B requires silencing covalently closed circular and integrated hepatitis B virus DNA. J. Clin. Investig. 2022, 132, e163175. [Google Scholar] [CrossRef]
- Grudda, T.; Hwang, H.S.; Taddese, M.; Quinn, J.; Sulkowski, M.S.; Sterling, R.K.; Balagopal, A.; Thio, C.L. Integrated hepatitis B virus DNA maintains surface antigen production during antiviral treatment. J. Clin. Investig. 2022, 132, e161818. [Google Scholar] [CrossRef]
| HBsAg | Total Anti-HBc | IgM Anti-HBc | Anti-HBs | Interpretation | 
|---|---|---|---|---|
| Negative | Negative | Negative | 
 | |
| Positive | Positive | Positive | Negative | 
 | 
| Positive | Positive | Negative | Negative | Chronic infection [18,19] | 
| Negative | Positive | Negative | Positive | Resolved infection, immunity achieved [18,19] | 
| Negative | Positive | Negative | Possible interpretations: 
 | |
| Negative | Positive | Positive | Positive | Recent infection, recovered, immunity achieved [18,19] | 
| Negative | Negative | Negative | Positive | 
 | 
| Type | Description | 
|---|---|
| Sterilizing/complete cure [35,36] | Undetectable serum HBsAg and elimination of HBV DNA, including intrahepatic cccDNA and integrated genomic HBV DNA | 
| Functional cure [35,36,37] | Sustained HBsAg loss and undetectable HBV DNA in serum (6 months post-treatment), with or without seroconversion to anti-HBs, resolution of the residual liver injury, and persistence of low levels of intrahepatic cccDNA and HBV DNA integration | 
| Partial cure [35,36] | Less stringent endpoint, refers to detectable HBsAg but persistently undetectable serum HBV DNA after completing a finite course of treatment | 
| Platform | Sensitivity | Specificity | Throughput | Operational Feasibility | 
|---|---|---|---|---|
| Lateral flow assay [52,53] | Moderate-high | Moderate | Single-sample assays with results in ~15–30 min | 
 | 
| ELISA [52,54,55,56,57,58] | Moderate-high | High | Batch testing on 96-well plates; hundreds of samples per run | 
 | 
| CLIA [3,10,57,58] | Very high | Very high | Fully automated analyzers can process hundreds of tests per hour | 
 | 
| Study | Comparison of Ultrasensitive vs. Standard HBsAg Assays | 
|---|---|
| Lou et al. [61] | 
 | 
| Sickinger et al. [48] | 
 | 
| Kuhns et al. [66] | 
 | 
| Kuhns et al. [65] | 
 | 
| Gupta et al. [3] | 
 | 
| Steve et al. [10] | 
 | 
| Study | Parameter | Specificity of Ultrasensitive HBsAg Assay | Remarks | 
|---|---|---|---|
| Lou et al. [61] | Clinical specificity (10,633 blood donor specimens) | 100% | 
 | 
| Clinical specificity (8439 diagnostic samples) | 99.98% | Standard HBsAg assays: 99.86–99.93% | |
| Sickinger et al. [48] | Clinical specificity (6618 blood donor specimens) | 100% | 
 | 
| Clinical specificity (450 known positive samples) | 100% | Standard HBsAg assays: 100% | |
| Gupta et al. [3] | 100 confirmed positive samples | 100% | Standard HBsAg assay: 100% | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, H.; Buenning, C.; Daghfal, D. Advancing HBV Diagnostics: The Role of Ultrasensitive HBsAg Testing. Diagnostics 2025, 15, 2744. https://doi.org/10.3390/diagnostics15212744
Ali H, Buenning C, Daghfal D. Advancing HBV Diagnostics: The Role of Ultrasensitive HBsAg Testing. Diagnostics. 2025; 15(21):2744. https://doi.org/10.3390/diagnostics15212744
Chicago/Turabian StyleAli, Hussain, Carsten Buenning, and David Daghfal. 2025. "Advancing HBV Diagnostics: The Role of Ultrasensitive HBsAg Testing" Diagnostics 15, no. 21: 2744. https://doi.org/10.3390/diagnostics15212744
APA StyleAli, H., Buenning, C., & Daghfal, D. (2025). Advancing HBV Diagnostics: The Role of Ultrasensitive HBsAg Testing. Diagnostics, 15(21), 2744. https://doi.org/10.3390/diagnostics15212744
 
        


 
       