Machine Learning in MRI Brain Imaging: A Review of Methods, Challenges, and Future Directions
Abstract
1. Introduction
- Section 2 presents the literature review methodology, including the search strategy, databases used, and inclusion and exclusion criteria.
- Section 3 focuses on the datasets used to train and evaluate machine learning models, including data quality, labeling, and the availability of public datasets.
- Section 4 reviews common machine learning methods used in brain MRI analysis and discusses their performance. It also provides examples of their applications in tumor detection, segmentation, and classification.
- Section 5 identifies challenges and future research directions, in particular limitations related to data generalization and improving model robustness for clinical use.
- Section 6 presents the discussion, providing a critical interpretation of the reviewed literature and highlighting open issues.
- Section 7 concludes the paper with a summary of key observations.
2. Materials and Methods
3. Datasets for MRI Brain Image Analysis
3.1. Data Quality, Labelling Issues, and Dataset Limitations
3.2. Comparative Overview of Datasets
4. Machine Learning Techniques in MRI Brain Image Analysis
4.1. Classical Machine Learning Methods
4.1.1. Support Vector Machines
4.1.2. Random Forest
4.1.3. Other Classical Methods (k-NN, Naïve Bayes, Decision Tree)
4.2. Deep Learning Architectures
4.2.1. Convolutional Neural Networks
4.2.2. U-Net and 3D CNN
4.2.3. Transfer Learning and Data Augmentation
4.3. Ensemble Methods
4.3.1. Hybrid CNN-SVM and Other Hybrid Models
4.3.2. CNN-LSTM
4.3.3. Other Team Approaches
4.4. Comparative Overview of ML Methods
5. Challenges and Future Directions
5.1. Technical and Clinical Challenges
5.2. Emerging Trends and Potential Improvements
5.3. Open Questions and Research Gaps
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mandal, S.; Greenblatt, A.B.; An, J. Imaging Intelligence: AI Is Transforming Medical Imaging across the Imaging Spectrum. IEEE Pulse 2018, 9, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Pacal, I. A Novel Swin Transformer Approach Utilizing Residual Multi-Layer Perceptron for Diagnosing Brain Tumors in MRI Images. Int. J. Mach. Learn. Cybern. 2024, 15, 3579–3597. [Google Scholar] [CrossRef]
- Montaha, S.; Azam, S.; Rafid, A.K.M.R.H.; Hasan, M.Z.; Karim, A.; Islam, A. TimeDistributed-CNN-LSTM: A Hybrid Approach Combining CNN and LSTM to Classify Brain Tumor on 3D MRI Scans Performing Ablation Study. IEEE Access 2022, 10, 60039–60059. [Google Scholar] [CrossRef]
- Soomro, T.A.; Zheng, L.; Afifi, A.J.; Ali, A.; Soomro, S.; Yin, M.; Gao, J. Image Segmentation for MR Brain Tumor Detection Using Machine Learning: A Review. IEEE Rev. Biomed. Eng. 2023, 16, 70–90. [Google Scholar] [CrossRef] [PubMed]
- Preetha, R.; Jasmine Pemeena Priyadarsini, M.; Nisha, J.S. Brain Tumor Segmentation Using Multi-Scale Attention U-Net with EfficientNetB4 Encoder for Enhanced MRI Analysis. Sci. Rep. 2025, 15, 9914. [Google Scholar] [CrossRef]
- Afzal, S.; Rauf, M.; Ashraf, S.; Bin Md Ayob, S.; Ahmad Arfeen, Z. CART-ANOVA-Based Transfer Learning Approach for Seven Distinct Tumor Classification Schemes with Generalization Capability. Diagnostics 2025, 15, 378. [Google Scholar] [CrossRef]
- Younis, A.; Qiang, L.; Nyatega, C.O.; Adamu, M.J.; Kawuwa, H.B. Brain Tumor Analysis Using Deep Learning and VGG-16 Ensembling Learning Approaches. Appl. Sci. 2022, 12, 7282. [Google Scholar] [CrossRef]
- Li, Y.; Ammari, S.; Balleyguier, C.; Lassau, N.; Chouzenoux, E. Impact of Preprocessing and Harmonization Methods on the Removal of Scanner Effects in Brain MRI Radiomic Features. Cancers 2021, 13, 3000. [Google Scholar] [CrossRef]
- Khairandish, M.O.; Sharma, M.; Jain, V.; Chatterjee, J.M.; Jhanjhi, N.Z. A Hybrid CNN-SVM Threshold Segmentation Approach for Tumor Detection and Classification of MRI Brain Images. IRBM 2022, 43, 290–299. [Google Scholar] [CrossRef]
- Anaya-Isaza, A.; Mera-Jimenez, L. Data Augmentation and Transfer Learning for Brain Tumor Detection in Magnetic Resonance Imaging. IEEE Access 2022, 10, 23217–23233. [Google Scholar] [CrossRef]
- Alsubai, S.; Khan, H.U.; Alqahtani, A.; Sha, M.; Abbas, S.; Mohammad, U.G. Ensemble Deep Learning for Brain Tumor Detection. Front. Comput. Neurosci. 2022, 16, 1005617. [Google Scholar] [CrossRef] [PubMed]
- Sahaai, M.B.; Jothilakshmi, G.R.; Praveen, E.; Kumar, V.H. Multi Class Brain Cancer Prediction System Empowered with BRISK Descriptor. Intell. Autom. Soft Comput. 2023, 36, 1507–1521. [Google Scholar] [CrossRef]
- Almalki, Y.E.; Ali, M.U.; Kallu, K.D.; Masud, M.; Zafar, A.; Alduraibi, S.K.; Irfan, M.; Basha, M.A.A.; Alshamrani, H.A.; Alduraibi, A.K.; et al. Isolated Convolutional-Neural-Network-Based Deep-Feature Extraction for Brain Tumor Classification Using Shallow Classifier. Diagnostics 2022, 12, 1793. [Google Scholar] [CrossRef]
- Ali, M.; Gilani, S.O.; Waris, A.; Zafar, K.; Jamil, M. Brain Tumour Image Segmentation Using Deep Networks. IEEE Access 2020, 8, 153589–153598. [Google Scholar] [CrossRef]
- Akkus, Z.; Galimzianova, A.; Hoogi, A.; Rubin, D.L.; Erickson, B.J. Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions. J. Digit. Imaging 2017, 30, 449–459. [Google Scholar] [CrossRef]
- Neamah, K.; Mohamed, F.; Adnan, M.M.; Saba, T.; Bahaj, S.A.; Kadhim, K.A.; Khan, A.R. Brain Tumor Classification and Detection Based DL Models: A Systematic Review. IEEE Access 2024, 12, 2517–2542. [Google Scholar] [CrossRef]
- Mendeley Developer Portal. Core API Resources: Documents and Catalog Documents. Available online: https://dev.mendeley.com/overview/core_resources.html (accessed on 9 October 2025).
- Khan, H.A.; Jue, W.; Mushtaq, M.; Mushtaq, M.U. Brain Tumor Classification in MRI Image Using Convolutional Neural Network. Math. Biosci. Eng. 2020, 17, 6203–6216. [Google Scholar] [CrossRef]
- Agarwal, M.; Abhisikta, A.; Mallick, P.K.; Kumar Jagadev, A.; Sahoo, B. Advanced Deep Learning Framework for MRI Brain Tumor Detection: ResNet50 and GAN-Driven Data Augmentation for Rare Tumor Analysis. In Proceedings of the 2025 International Conference on Emerging Systems and Intelligent Computing (ESIC), Bhubaneswar, India, 8–9 February 2025; IEEE: Coimbatore, India, 2025; pp. 853–858. [Google Scholar]
- Mandle, A.K.; Sahu, S.P.; Gupta, G. Brain Tumor Segmentation and Classification in MRI Using Clustering and Kernel-Based SVM. Biomed. Pharmacol. J. 2022, 15, 699–716. [Google Scholar] [CrossRef]
- Wahlang, I.; Maji, A.K.; Saha, G.; Chakrabarti, P.; Jasinski, M.; Leonowicz, Z.; Jasinska, E. Brain Magnetic Resonance Imaging Classification Using Deep Learning Architectures with Gender and Age. Sensors 2022, 22, 1766. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Wu, X.; Chen, J.; Cheng, G.; Zhang, X.; Wan, C.; Hu, J.; Miao, S.; Yin, Y.; Wang, Z.; et al. Characterizing Brain Tumor Regions Using Texture Analysis in Magnetic Resonance Imaging. Front. Neurosci. 2021, 15, 634926. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, M.; Raza, M.; Yasmin, M. Detection of Brain Tumor Based on Features Fusion and Machine Learning. J. Ambient. Intell. Humaniz. Comput. 2024, 15, 983–999. [Google Scholar] [CrossRef]
- Jo, S.W.; Kim, E.S.; Yoon, D.Y.; Kwon, M.J. Changes in Radiomic and Radiologic Features in Meningiomas after Radiation Therapy. BMC Med. Imaging 2023, 23, 164. [Google Scholar] [CrossRef]
- Ni, J.; Zhang, H.; Yang, Q.; Fan, X.; Xu, J.; Sun, J.; Zhang, J.; Hu, Y.; Xiao, Z.; Zhao, Y.; et al. Machine-Learning and Radiomics-Based Preoperative Prediction of Ki-67 Expression in Glioma Using MRI Data. Acad. Radiol. 2024, 31, 3397–3405. [Google Scholar] [CrossRef]
- Archana, K.V.; Komarasamy, G. A Novel Deep Learning-Based Brain Tumor Detection Using the Bagging Ensemble with K-Nearest Neighbor. J. Intell. Syst. 2023, 32, 20220206. [Google Scholar] [CrossRef]
- Biswas, A.; Islam, M.S. A Hybrid Deep CNN-SVM Approach for Brain Tumor Classification. J. Inf. Syst. Eng. Bus. Intell. 2023, 9, 1–15. [Google Scholar] [CrossRef]
- Hashemzehi, R.; Mahdavi, S.J.S.; Kheirabadi, M.; Kamel, S.R. Detection of Brain Tumors from MRI Images Base on Deep Learning Using Hybrid Model CNN and NADE. Biocybern. Biomed. Eng. 2020, 40, 1225–1232. [Google Scholar] [CrossRef]
- Papadomanolakis, T.N.; Sergaki, E.S.; Polydorou, A.A.; Krasoudakis, A.G.; Makris-Tsalikis, G.N.; Polydorou, A.A.; Afentakis, N.M.; Athanasiou, S.A.; Vardiambasis, I.O.; Zervakis, M.E. Tumor Diagnosis against Other Brain Diseases Using T2 MRI Brain Images and CNN Binary Classifier and DWT. Brain Sci. 2023, 13, 348. [Google Scholar] [CrossRef]
- Saxena, V.; Singh, S. Classification and Segmentation of MRI Images of Brain Tumors Using Deep Learning and Hybrid Approach. Int. J. Electr. Comput. Eng. Syst. 2024, 15, 163–172. [Google Scholar] [CrossRef]
- Pathak, K.; Pavthawala, M.; Patel, N.; Malek, D.; Shah, V.; Vaidya, B. Classification of Brain Tumor Using Convolutional Neural Network. In Proceedings of the 2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 12–14 June 2019; IEEE: Coimbatore, India, 2019; pp. 128–132. [Google Scholar] [CrossRef]
- Badža, M.M.; Barjaktarović, M.C. Classification of Brain Tumors from MRI Images Using a Convolutional Neural Network. Appl. Sci. 2020, 10, 1999. [Google Scholar] [CrossRef]
- Gunasundari, C.; Selva Bhuvaneswari, K. A Novel Approach for the Detection of Brain Tumor and Its Classification via Independent Component Analysis. Sci. Rep. 2025, 15, 8252. [Google Scholar] [CrossRef]
- Yang, L.; Dong, Q.; Lin, D.; Tian, C.; Lü, X. MUNet: A Novel Framework for Accurate Brain Tumor Segmentation Combining UNet and Mamba Networks. Front. Comput. Neurosci. 2025, 19, 1513059. [Google Scholar] [CrossRef]
- Ullah, Z.; Jamjoom, M.; Thirumalaisamy, M.; Alajmani, S.H.; Saleem, F.; Sheikh-Akbari, A.; Khan, U.A. A Deep Learning Based Intelligent Decision Support System for Automatic Detection of Brain Tumor. Biomed. Eng. Comput. Biol. 2024, 15, 1–13. [Google Scholar] [CrossRef]
- Ullah, N.; Khan, J.A.; Khan, M.S.; Khan, W.; Hassan, I.; Obayya, M.; Negm, N.; Salama, A.S. An Effective Approach to Detect and Identify Brain Tumors Using Transfer Learning. Appl. Sci. 2022, 12, 5645. [Google Scholar] [CrossRef]
- Zahoor, M.M.; Qureshi, S.A.; Bibi, S.; Khan, S.H.; Khan, A.; Ghafoor, U.; Bhutta, M.R. A New Deep Hybrid Boosted and Ensemble Learning-Based Brain Tumor Analysis Using MRI. Sensors 2022, 22, 2726. [Google Scholar] [CrossRef]
- Dixon, J.; Akinniyi, O.; Abdelhamid, A.; Saleh, G.A.; Rahman, M.M.; Khalifa, F. A Hybrid Learning-Architecture for Improved Brain Tumor Recognition. Algorithms 2024, 17, 221. [Google Scholar] [CrossRef]
- Gajula, S.; Rajesh, V. Deep Learning Based Analysis of MRI Images for Brain Tumor Diagnosis. Int. J. Adv. Comput. Sci. Appl. 2023, 14, 280–286. [Google Scholar] [CrossRef]
- Shah, H.A.; Saeed, F.; Yun, S.; Park, J.H.; Paul, A.; Kang, J.M. A Robust Approach for Brain Tumor Detection in Magnetic Resonance Images Using Finetuned EfficientNet. IEEE Access 2022, 10, 65426–65438. [Google Scholar] [CrossRef]
- Kader, I.A.E.; Xu, G.; Shuai, Z.; Saminu, S.; Javaid, I.; Ahmad, I.S. Differential Deep Convolutional Neural Network Model for Brain Tumor Classification. Brain Sci. 2021, 11, 352. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.V.; Prince, P.G.K. Gaussian Weighted Deep CNN with LSTM for Brain Tumor Detection. SSRG Int. J. Electr. Electron. Eng. 2023, 10, 197–208. [Google Scholar] [CrossRef]
- Dhaniya, R.D.; Umamaheswari, K.M. CNN-LSTM: A Novel Hybrid Deep Neural Network Model for Brain Tumor Classification. Intell. Autom. Soft Comput. 2023, 37, 1129–1143. [Google Scholar] [CrossRef]
- Muthaiyan, R.; Malleswaran, M. Bendlets and Ensemble Learning Based MRI Brain Classification System. Intell. Autom. Soft Comput. 2022, 33, 891–907. [Google Scholar] [CrossRef]
- Yoo, J.J.; Namdar, K.; Khalvati, F. Deep Superpixel Generation and Clustering for Weakly Supervised Segmentation of Brain Tumors in MR Images. BMC Med. Imaging 2024, 24, 335. [Google Scholar] [CrossRef]
- Kuraparthi, S.; Reddy, M.K.; Sujatha, C.N.; Valiveti, H.; Duggineni, C.; Kollati, M.; Kora, P.; Sravan, V. Brain Tumor Classification of MRI Images Using Deep Convolutional Neural Network. Trait. Signal 2021, 38, 1171–1179. [Google Scholar] [CrossRef]
- Park, C.J.; Kim, S.; Han, K.; Ahn, S.S.; Kim, D.; Park, Y.W.; Chang, J.H.; Kim, S.H.; Lee, S.K. Diffusion- and Perfusion-Weighted MRI Radiomics for Survival Prediction in Patients with Lower-Grade Gliomas. Yonsei Med. J. 2024, 65, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Gates, E.D.H.; Lin, J.S.; Weinberg, J.S.; Prabhu, S.S.; Hamilton, J.; Hazle, J.D.; Fuller, G.N.; Baladandayuthapani, V.; Fuentes, D.T.; Schellingerhout, D. Imaging-Based Algorithm for the Local Grading of Glioma. Am. J. Neuroradiol. 2020, 41, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Bektaş, A.B.; Gönen, M. Machine Learning for Medicine Must Be Interpretable, Shareable, Reproducible and Accountable by Design. arXiv 2025. [Google Scholar] [CrossRef]
- Nyul, L.G.; Udupa, J.K.; Zhang, X. New Variants of a Method of MRI Scale Standardization. IEEE Trans. Med. Imaging 2000, 19, 143–150. [Google Scholar] [CrossRef]
- Khan, M.K.H.; Guo, W.; Liu, J.; Dong, F.; Li, Z.; Patterson, T.A.; Hong, H. Machine Learning and Deep Learning for Brain Tumor MRI Image Segmentation. Exp. Biol. Med. 2023, 248, 1974–1992. [Google Scholar] [CrossRef]
- Baur, C.; Denner, S.; Wiestler, B.; Navab, N.; Albarqouni, S. Autoencoders for Unsupervised Anomaly Segmentation in Brain MR Images: A Comparative Study. Med. Image Anal. 2021, 69, 101952. [Google Scholar] [CrossRef] [PubMed]
- Ahmaad, I. Advancing Brain Tumor Detection Using Machine Learning and Artificial Intelligence: A Systematic Literature Review of Predictive Models and Diagnostic Accuracy. Strateg. Data Manag. Innov. 2024, 1, 37–55. [Google Scholar] [CrossRef]
- Naser, W.A.K.; Kadim, E.A. Safana Hyder Abbas SVM Kernels Comparison for Brain Tumor Diagnosis Using MRI. Glob. J. Eng. Technol. Adv. 2021, 7, 26–36. [Google Scholar] [CrossRef]
- Tangirala, S. Evaluating the Impact of GINI Index and Information Gain on Classification Using Decision Tree Classifier Algorithm. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 612–619. [Google Scholar] [CrossRef]
- Iman, M.; Arabnia, H.R.; Rasheed, K. A Review of Deep Transfer Learning and Recent Advancements. Technologies 2023, 11, 40. [Google Scholar] [CrossRef]
- Cody, T.; Beling, P.A. A Systems Theory of Transfer Learning. IEEE Syst. J. 2023, 17, 26–37. [Google Scholar] [CrossRef]
- Khorasani, A. Glioma Grading by Integrating Radiomic Features from Peritumoral Edema in Fused MRI Images and Automated Machine Learning. J. Imaging 2025, 11, 336. [Google Scholar] [CrossRef]
- Tasnim, R.; Roy, K.; Siddula, M. Interpretable Deep Learning Model for Multiclass Brain Tumor Classification. In Proceedings of the 2024 International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 18–20 December 2024; IEEE: Coimbatore, India, 2024; pp. 1412–1417. [Google Scholar]
- Hildt, E. What Is the Role of Explainability in Medical Artificial Intelligence? A Case-Based Approach. Bioengineering 2025, 12, 375. [Google Scholar] [CrossRef] [PubMed]
- Dorfner, F.J.; Patel, J.B.; Kalpathy-Cramer, J.; Gerstner, E.R.; Bridge, C.P. A Review of Deep Learning for Brain Tumor Analysis in MRI. NPJ Precis. Oncol. 2025, 9, 2. [Google Scholar] [CrossRef]
- Azizi, S.; Mustafa, B.; Ryan, F.; Beaver, Z.; Freyberg, J.; Deaton, J.; Loh, A.; Karthikesalingam, A.; Kornblith, S.; Chen, T.; et al. Big Self-Supervised Models Advance Medical Image Classification. arXiv 2021. [Google Scholar] [CrossRef]
| No. | Study | Acquisition Method | Dataset Sources | Data Split/Validation Method |
|---|---|---|---|---|
| 1. | Mandle et al. [20] | T2-weighted MRI, axial plane, 256 × 256 px | AANLIB, OASIS, Harvard Medical School—160 images (20 normal, 140 abnormal) | 5-fold cross-validation (129 Train, 32 Validation/Test) |
| 2. | Wahlang et al. [21] | Multimodal MRI (FLAIR, T1-weighted), 2D axial slices | Figshare, Brainweb, Radiopaedia—2530 images (806 normal, 1534 abnormal) | 5-fold and 8-fold cross-validation; generalization test on 506 images |
| 3. | Sahaai et al. [12] | MRI, modality not reported, 2D slices | Kaggle—3264 images (500 normal, 926 glioma, 937 meningioma, 901 pituitary) | 2870 Training/394 Testing |
| 4. | Yu et al. [22] | Coronal MRI (modality not reported) | Clinical dataset, Nanjing Brain Hospital—80 regions (40 tumors, 40 healthy regions) | 70% Training/30% Testing (iterated 5 times) |
| 5. | Amin et al. [23] | Multimodal MRI (T1, T2,T1c, FLAIR) | BRATS (2012–2015), ISLES (2015)—535 cases (80, 30, 191, 274 cases of HG/LG Glioma) | 5-fold cross-validation and 0.5 hold-out validation |
| 6. | Jo et al. [24] | Multimodal MRI (T1WI, T2WI, CE-T1WI, FLAIR, CE-FLAIR), slice thickness 1 mm | Clinical dataset, Hallym University Sacred Heart Hospital (South Korea)—162 patients (meningiomas) | Random stratified sampling: 118 Training/44 Validation; 10-fold cross-validation (for radiomics features) |
| 7. | Ni et al. [25] | Multimodal MRI (T1, T2, T1CE, FLAIR) | Clinical dataset, First Affiliated Hospital of Nanjing Medical University—613 patients (glioma) | 10-fold cross-validation |
| 8. | Archana & Komarasamy [26] | T1-weighted MRI, coronal/axial/sagittal planes | Figshare (Cheng)—3064 images (233 patients; 1426 glioma, 708 meningioma, 930 pituitary) | 80% Training/20% Testing |
| 9. | Biswas & Islam [27] | T1-weighted MRI, axial/coronal/sagittal planes, 512 × 512 px | Figshare—2957 images (1330 glioma, 697 meningioma, 930 pituitary) | 80% Training/20% Testing |
| 10. | Hashemzehi et al. [28] | T1CE MRI, 512 × 512 px | Clinical dataset—3064 images from 233 patients (708 meningioma, 1426 glioma, 930 pituitary); tumor boundaries manually annotated by a radiologist | 6-fold cross-validation |
| 11. | Papadomanolakis et al. [29] | T2-SWI MRI, 1.5 T scanner; 240 × 240 px (JPEG)/512 × 512 px (NIfTI), axial plane | St. George Hospital, BraTS (2016–2017), ISLES—572 T2 MRIs | 5-fold cross-validation (382 Training/190 Testing) |
| 12. | Singh & Saxena [30] | Multimodal MRI (T1, T2, FLAIR, T1c), axial/coronal/sagittal planes | Clinical dataset, Safdarjung, Medanta, SGPGI Hospitals (India)—884 images (624 tumor, 260 no-tumor) | 80% Training/20% Testing (707/77 images; total dataset size inconsistently reported as 884) |
| 13. | Pathak et al. [31] | T1-weighted MRI, axial slices | Clinical dataset, 5 medical centers w Surat (India)—327 images | 240 Training/87 Validation |
| 14. | Badža & Barjaktarović [32] | T1c MRI, sagittal/axial/coronal planes | Nanfang Hospital, Tianjin Medical University—3064 images (233 patients) (708 meningioma, 1426 glioma, 930 pituitary tumor) | 10-fold cross-validation (60% Train, 20% Validation, 20% Test) |
| 15. | Khan et al. [18] | MRI, modality not reported | Kaggle (Navoneel, 2019)—253 images (155 malignant, 98 benign) | 185 Training/48 Validation/20 Testing |
| 16. | Gunasundari & Bhuvaneswari [33] | T1C MRI (2D slices), 512 × 1024, slice thickness 6 mm | TUCMD dataset; collected from General Hospital of Tianjin Medical University and Nanfang Hospital (China); 2084 original images expanded to 25,000 after augmentation (7000 normal, 9000 abnormal; 3 tumor types: glioma, meningioma, pituitary) | 5-fold cross-validation (~1800 abnormal/1400 normal per fold) |
| 17. | Yang et al. [34] | Multimodal MRI (T1, T1c, T2, FLAIR) 240 × 240 × 155 px | BraTS2020 (369 images), BraTS2018 (285), LGG-TCIA (3929 MRI slices from 110 LGG patients) | 5-fold cross-validation; independent test on BraTS2020 subset |
| 18. | Afzal et al. [6] | T1 MRI, axial plane | Source 1: Kaggle, Radiopaedia—3137 images (4 and 7 classes). Source 2: Radiopaedia, Kaggle—1365 images (validation) | Source 1: 80% Training/20% Testing; Source 2: External Validation (Generalization Test) |
| 19. | Ullah et al. [35] | MRI, modality not specified | Kaggle—4600 images (2513 tumor, 2087 no tumor) | 70% Training/20% Testing/10% Validation |
| 20. | Ullah et al. [36] | T1-weighted MRI | Kaggle—2475 images (822 meningioma, 826 glioma, 827 pituitary) | 80% Training/20% Testing |
| 21. | Younis et al. [7] | T1-weighted MRI | Brain MRI Images for Brain Tumor Detection—253 images (155 patients; meningioma, glioma, pituitary) | 80% Training/10% Validation/10% Testing |
| 22. | Zahoor et al. [37] | T1c MRI | Kaggle (normal) + Figshare (tumor types: glioma, meningioma, pituitary); total 5058 images (1994 normal, 3064 tumor) | Detection Phase: 60% Training/40% Testing; Classification Phase: 80% Training/20% Testing |
| 23. | Preetha et al. [5] | T1c MRI; axial/sagittal/coronal planes; 512 × 512 resolution | Figshare dataset (3064 slices from 233 patients; glioma, meningioma, pituitary tumor) | 90% Training/10% Testing |
| 24. | Dixon et al. [38] | Multimodal MRI (T1, T2, FLAIR) 2D axial slices | Public datasets: Figshare, SARTAJ, Br35H—7023 images (1645 meningioma, 1621 glioma, 1757 pituitary, 2000 normal); Local dataset: Mansoura University Hospital—64 patients (normal, benign, malignant) | 5-fold cross-validation; 80% Training/20% Testing; external validation on local dataset |
| 25. | Gajula & Rajesh [39] | T1-weighted MRI | Custom dataset—3264 MRI images divided into 4 classes: glioma, meningioma, pituitary, and no tumor | 2870 Training/394 Testing |
| 26. | Shah et al. [40] | T1-weighted MRI | Kaggle (BraTS 2015, TCIA)—3762 images; subset of 3060 used (1500 labeled as tumor, 1500 as no tumor) | 80% Training/20% Validation |
| 27. | Abd El Kader et al. [41] | Multimodal MRI (T1, T2, FLAIR) | TUCMD dataset—17,600 raw images; 25,000 after augmentation (7000 normal, 18,000 tumor images across 6 types) | 5-fold validation |
| 28. | Kumar et al. [42] | MRI (modality not specified) | 253 brain MRI images (source not specified) | Not reported |
| 29. | Dhaniya & Umamaheswari [43] | MRI (modality not specified) | UCI Machine Learning Lab (quantity not stated) | Not reported |
| 30. | Montaha et al. [3] | Multimodal MRI (T1, T1c, T2, FLAIR), 3D volumes | BraTS 2018 (282 cases: 208 HGG, 74 LGG); BraTS 2019 (331 cases: 257 HGG, 74 LGG); BraTS 2020 (365 cases: 291 HGG, 74 LGG) | BraTS 2018 + 2019 combined for training/validation (361 subjects: 210 HGG, 151 LGG); BraTS 2020 used as external test set |
| 31. | Muthaiyan & Malleswaran [44] | DICOM MRI (converted to BMP) | REMBRANDT—200 images (100 normal, 50 low-risk, 50 high-risk) | 10-fold validation |
| 32. | Yoo et al. [45] | Multimodal MRI (T1, T1c, T2, FLAIR), 2D axial slices (derived from 3D volumes) | BraTS 2020—369 3D volumes (~24 635 2D slices); BraTS 2023—886 2D slices (external test set) | BraTS 2020: 80% Training/10% Validation/10% Testing; BraTS 2023: External Validation |
| 33. | Kuraparthi et al. [46] | 2D MRI images (T1, T2, FLAIR—not specified) | Kaggle—253 images (2 classes: 98 no tumor, 155 tumor); BraTS 2015—332 images (2 classes: 156 LGG, 176 HGG) | 70% Training/30% Testing for both datasets |
| 34. | Park et al. [47] | Multimodal MRI (DWI/ADC, DSC/rCBV, DCE/Ktrans), 3T scanner | Clinical dataset, Severance Hospital, Yonsei University College of Medicine (South Korea)—129 patients with WHO grade II–III lower-grade gliomas | 90 Training (2015–2019)/39 Testing (2012–2014); 10-fold cross-validation (100 replications) for feature selection |
| 35. | Gates et al. [48] | Multimodal MRI (T1, T1c, T2, FLAIR, DWI, DSC, DCE, SWAN), 3T MRI | Prospective institutional dataset, MD Anderson Cancer Center (USA)—2323 patients (52 biopsy samples; 7 grade II, 9 grade III, 7 grade IV gliomas) | 5-fold cross-validation; 80% Training/20% Testing |
| No. | Study | Method | Task | Approach and Preprocessing | Evaluation |
|---|---|---|---|---|---|
| 1. | Mandle et al. [20] | K-means + SVM | Segmentation & Classification | Preprocessing with skull stripping, median filtering, and Otsu thresholding; segmentation via optimized K-means; feature extraction with DWT; feature selection using PCA; classification with K-SVM | Accuracy: 98.75%; Precision: 95.43%; Recall: 97.65%; Dice score for segmentation: 0.94; SSIM: 0.9901; MSE: 0.0012 |
| 2. | Wahlang et al. [21] | SVM | Classification (Normal vs. Abnormal) | Baseline comparison for classifying MRI brain images as normal/abnormal | Accuracy: 91% |
| LeNet | LeNet-inspired CNN model; median filtering, image cropping, resizing to 194 × 194; included age/gender as additional input | Accuracy: 94% | |||
| CNN-DNN | Cascade of CNN and deep dense layers; same preprocessing and demographic input as above | Accuracy: 95% | |||
| ResNet50 | Transfer learning using ResNet50; applied to resized MRI images. | Accuracy: 59% | |||
| 3. | Sahaai et al. [12] | kNN | Multi-class Classification | Feature extraction using BRISK and shape/intensity descriptors; classification using kNN with Euclidean and other distance metrics | Accuracy: ~93–94%; Sensitivity: ~82–91%; slightly lower than SVM and RF |
| SVM | BRISK-based feature extraction + image-based features; multi-class classificationusing SVM with BF kernel; optimizedvia grid search wih various kernels | Accuracy: 97.59%; Sensitivity: 93.24%; improved over kNN | |||
| Random Forest | Classiication using RF enseble on BRISK + image-based features; 50 tres used in ensemble; outperformed SVM and kNN | Accuracy: 99.62%; Sensitivity: 99.16%; Specificity: 99.75% | |||
| 4. | Yu et al. [22] | SVM | Tumor Type Classification (Glioma vs. Meningioma) | 25 texture features extracted from MRI; feature selection via Gini index in RF; top 5 features used to train SVM classifier | AUC: 0.932; Sensitivity: 94.04%; Specificity: 92.3%; Error rate: 6.9% |
| Random Forest | Feature selection using Gini impurity; classification model trained using RF on selected texture features | AUC: 0.856; Sensitivity: 82.8%; Specificity: 88.3%; Error rate: 14.1% | |||
| 5. | Jo et al. [24] | Random Forest | Classification (treated vs. untreated meningiomas) | Semi-automatic segmentation; feature extraction using Pyradiomics; feature selection (Boruta + MRMR); lassification using RF with 10-fold cross-validation | AUC: 0.79; Accuracy: 73%; Sensitivity: 78.7%; Specificity: 67.4% |
| 6. | Ni et al. [25] | LR, SVM, RF, NB, DT, GBT, XGB, LGBM | Classification (Ki-67 expression: low vs. high) | MRI preprocessing (registration, skull stripping); nnU-Net segmentation; radiomic feature extraction (PyRadiomics); feature selection via LASSO, correlation filter, and RF ranking; classification using multiple ML models with 10-fold cross-validation | Best: LR—AUC: 0.912; Accuracy: 0.881; SVM—AUC: 0.904; Accuracy: 0.884; RF—AUC: 0.882; Accuracy: 0.830 |
| 7. | Archana & Komarasamy [26] | U-Net | Segmentation (tumor localization) | Preprocessing steps included .MAT to .PNG conversion, cropping, and resizing of T1-weighted MRI images. U-Net was applied for tumor region segmentation across axial, coronal, and sagittal slices | Qualitative segmentation masks used for downstream classification (no Dice/IoU reported). |
| Bagging-based KNN(BKNN) | Classification (glioma, meningioma, pituitary tumors) | Used segmented outputs from U-Net; BKNN classified tumor types using ensemble voting from multiple KNN models. Compared against KNN and AdaBoost + SVM baselines | BKNN accuracy: 97.7%; baseline KNN: 95.4%; AdaBoost + SVM: 96.3%; evaluated via confusion matrix and sensitivity/specificity per class | ||
| 8. | Biswas & Islam [27] | Deep CNN + SVM | Classification (glioma, meningioma, pituitary tumors) | Image resizing, anisotropic diffusion filtering, adaptive histogram equalization; data augmentation; custom 5-layer CNN; SVM classification | Accuracy: 96.0%; Sensitivity: 95.71%; Specificity: 98.00%; Precision: 99.69%; F-measure: 96.92% |
| 9. | Hashemzehi et al. [28] | CNN + NADE | Classification (glioma, meningioma, pituitary tumors) | Preprocessing of MRI images; feature extraction using CNN; distribution modeling and classification using NADE | Accuracy: 96.13% |
| 10. | Papadomanolakis et al. [29] | DWT-CNN | Binary classification (tumor/no tumor) | MRI T2-SWI; wavelet transform DWT (3 levels); resolution 1320 × 15 × 20 | Accuracy: 0.97; Sensitivity: 1.0; Specificity: 0.93; Precision: 0.95; FPR: 0.06; FNR: 0.0 |
| CNN | MRI T2-SWI; resolution 224 × 224; normalization; no feature processing | Accuracy: 0.97; Sensitivity: 0.94; Specificity: 1.0; Precision: 1.0; FPR: 0.0; FNR: 0.05 | |||
| CNN-TL (VGG16) | MRI T2-SWI; matched to the VGG16 input; TL from the ImageNet model | Accuracy: 0.87; Sensitivity: 0.91; Specificity: 0.84; Precision: 0.86; FPR: 0.4; FNR: 0.08 | |||
| 11. | Singh & Saxena [30] | 2D CNN + Graph + Threshold | Classification and segmentation | MRI preprocessed (resized to 224 × 224, normalized); CNN trained for binary tumor/no-tumor classification; hybrid segmentation using graph-based (Felzenszwalb) and threshold methods | Accuracy: 98.89%; Bfscore: 1.0; Jaccard: 93.86%; Validation accuracy: 98.00% |
| 12. | Pathak et al. [31] | CNN + Watershed segmentation | Classification and segmentation | MRI preprocessing with resizing and denoising; CNN for tumor/no-tumor classification; segmentation of tumors using marker-based watershed and morphological erosion | Accuracy: 98% (training), 100% (validation); Area calculation performed (16.56 mm2 tumor area) |
| 13. | Badža & Barjaktarović [32] | CNN | Classification (glioma, meningioma, pituitary tumors) | Image normalization; resizing to 256 × 256; augmentation (rotation, flipping); custom 22-layer CNN in MATLAB | Accuracy: 96.56% (record-wise, augmented); 88.48% (subject-wise, augmented); Mean F1-score up to 97.47% |
| 14. | Khan et al. [18] | CNN | Classification (binary) | Preprocessing via Canny edge detection and cropping; data augmentation (rotation, flip, brightness); CNN with 8 conv layers | Accuracy, Precision, Sensitivity, F1-score: 100%; AUC: 1.0 |
| VGG16 | Accuracy: 90%; Precision: 93%; Sensitivity: 100%; F1-score: 97%; AUC: 0.96 | ||||
| RenNet-50 | Accuracy: 89%; Precision: 87%; Sensitivity: 93%; F1-score: 90%; AUC: 0.89 | ||||
| Inception-v3 | Accuracy: 75%; Precision: 77%; Sensitivity: 71%; F1-score: 74%; AUC: 0.75 | ||||
| 15. | Kundari & Bhuvaneswari [33] | DCNN-SVM | Classification (glioma, meningioma, pituitary tumors) | Data augmentation (rotations, flipping, shifting, shear); feature extraction with LBP and ICA; SVM classifier | Accuracy: 98.96%; Sensitivity: 0.973; |
| 16. | Yang et al. [34] | MUNet (U-Net + Mamba) | Segmentation | SD-SSM block for global-local fusion; SD-Conv for redundancy reduction; skip connections; mIoU, Dice, Boundary losses | Dice (BraTS2020): 0.835 (ET), 0.915 (WT), 0.823 (TC); Dice (BraTS2018): 0.835 (ET, TC), 0.901 (WT); Generalization validated on LGG |
| 17. | Afzal et al. [6] | ResNet18 + Transfer Learning with CART-ANOVA | Multiclass classification (4 and 7 tumor types) | Median filtering, image resizing; transfer learning with ResNet18; CART-ANOVA hyperparameter tuning (LR, BS) | Accuracy: 99.65% (4-class), 98.05% (7-class); Validation accuracy on unseen dataset: 98.78% and 96.77%; F1-score: up to 99.69% (ResNet18) |
| 18. | Ullah et al. [35] | CNN (from scratch), VGG-16, VGG-19, LeNet-5 | Classification (binary) | Data augmentation (flipping, cropping, rotation); class balancing;training/test/validation split (70/20/10); hyperparameter tuning with Adam optimizer | VGG-16/VGG-19: Accuracy: 99.24%; Precision: 99%; Recall: 99%; Specificity: 99%; F1-score: 99%; CNN: 99.02%; LeNet-5: 98.80% |
| 19. | Ullah et al. [36] | Inceptionresnetv2 (TL) | Classification | Pretrained models fine-tuned on Kaggle dataset; images resized and augmented via rotation/translation. No segmentation or feature extraction. | Accuracy: 98.91%; Precision: 98.28%; Recall: 99.75%; F1-score: 99.00% |
| + 8 other TL models (e.g., ResNet50, Xception, Mobilenetv2) | Same preprocessing pipeline for all models; performance compared to identify the best TL model. | Other models: Xception (98.37%); Mobilenetv2 (82.61%); ResNet101 (74.09%); ResNet50 (67.03%) | |||
| Hybrid CNN + SVM | Deep features extracted from TL models, classified using SVM with linear kernel. | Accuracy: Mobilenetv2 + SVM = 98.5%, Densenet201 + SVM = 98.37%, ResNet101 + SVM = 98.01% | |||
| 20. | Younis et al. [7] | CNN | Classification (binary) | Noise removal; bias correction; thresholding; resizing to 224 × 224 | Accuracy: 96%; Recall: 89.5%; F1-score: 91.76% |
| VGG16 | TL; using feature maps from VGG16; resizing to 224 × 224 | Accuracy: 98.5%; Recall: 94.5%, F1-score: 92.6% | |||
| Ensemble (CNN + VGG) | Połączenie wyników CNN i VGG16; zmiana rozmiaru do 224 × 224 | Accuracy: 98.14%; Recall: 91.4%; F1-score: 91.54% | |||
| 21. | Zahoor et al. [37] | Ensemble CNN + SVM/MLP/AdaBoost (DBFS-EC); BRAIN-RENet + HOG + SVM (HFF-BTC) | Detection and Multi-class Classification | Phase 1: Ensemble of four TL-B CNNs (InceptionV3, ResNet-18, GoogleNet, DenseNet201) + SVM/MLP/AdaBoost; Phase 2: Fusion of BRAIN-RENet (dynamic features) and HOG (static) with SVM | Detection: Accuracy: 99.56%; F1-score: 0.9945; Classification: Accuracy: 99.2%; F1-score: 0.9909 |
| 22. | Preetha et al. [5] | EfficientNetB4 + Multi-Scale Attention U-Net | Segmentation | CLAHE, Gaussian blur, normalization, EfficientNetB4 encoder, multi-scale attention (1 × 1, 3 × 3, 5 × 5), residual attention blocks | Accuracy: 99.79%; Dice: 0.9339; IoU: 0.8795; Precision: 0.9657; Recall: 0.9103; Specificity: 0.9963 |
| 23. | Dixon et al. [38] | CNN + ViT + Radiomics + MLP | Multi-class classification (glioma, meningioma, pituitary, normal) | Preprocessing, augmentation (rotation, flip, contrast), feature extraction using GLCM, LBP, CNN, ViT; weighted feature fusion; MLP classifier | Accuracy: 99.19% (public); 99.38% (local); Sensitivity: 99.52%; Specificity: 99.53% |
| 24. | Pacal et al. [2] | Swin Transformer + residual MLP for tumor classification | Classification (Multiclass) | Patch-based input; hybrid attention and residual MLP block; dataset augmentation via rotation, flipping, and scaling | Accuracy: 99.92%; F1-score: 99.89%; Precision: 99.93%; Recall: 99.84% |
| 25. | Gajula &Rajesh [39] | CNN, SVM, RF, k-NN, NB, MLP | Multi-class classification (glioma, meningioma, pituitary, no tumor) | Adaptive filtering, global threshold segmentation, statistical and texture-based feature extraction | CNN: 98.6%; SVM: lower; AlexNet: 87.9%; VGG-16: 83.4%; RF/MLP/others: not explicitly detailed |
| 26. | Shah et al. [40] | Transfer learning (EfficientNet-B0) | Classification | Preprocessing: grayscale conversion, blur, high-pass filtering; Data augmentation (Albumentations); Fine-tuning EfficientNet-B0 with custom FC layers | Accuracy: 98.87%; Precision: 0.989; Recall: 0.988; F1-score: 0.988; AUC: 0.988 |
| VGG16, InceptionV3, ResNet50 | Transfer learning comparison with VGG16, ResNet50, IceptionV3 | VGG16: 98.64%; InceptionV3: 97.5%; ResNet50: 95.8% | |||
| 27. | Abd el Kader et al. [41] | Differential Deep-CNN | Classification | 5-layer CNN with differential operators to expand feature maps; data augmentation to 25,000 MRI images | Accuracy: 99.25%; Sensitivity: 95.89%; Specificity: 93.75%; Precision: 97.22%; F1-score: 95.23% |
| 28. | Kumar et al. [42] | GWDeepCNN-LSTM | Classification (tumor vs. normal) | Gaussian-weighted non-local mean filter, Hartigan’s clustering, Schutz index for similarity | Accuracy: 95%; Sensitivity: 98.21%; Specificity: 72.54%; MCC:0.8671; FPR = 5% |
| 29. | Dhaniya & Umamaheswari [43] | CNN-LSTM | Classification (tumor vs. normal) | Wiener filtering; data augmentation (cropping, rotation, zooming, CLAHE, RRPS); segmentation using APSO; CNN for feature extraction; LSTM for classification | Accuracy: 92.03%; Sensitivity: 92.36%; Specificity: 91.42%; Precision: 92.93%; F-measure: 94.3 |
| 30. | Montaha et al. [3] | TD-CNN-LSTM | Classification (HGG vs. LGG) | Normalization (min-max) and resizing; 4 MRI sequences passed as input; TimeDistributed CNN for feature extraction; LSTM for sequence modeling; ablation study to optimize architecture | Accuracy: 98.90%; Precision: 98.95%; Recall: 98.78%; Specificity: 99.15%; F1-score: 98.83%; AUC: 99.04% |
| 31. | Muthaiyan & Malleswaran [44] | Ensemble (SVM, NB, k-NN) + Bendlet | Classification (normal/abnormal, low/high risk) | Feature extraction using Bendlet transform with sub-band selection based on t-test; BCFs and histograms (HPBC and HNBC) were used for texture description; final classification was performed using an ensemble of SVM, Naive Bayes, and k-NN classifiers | Accuracy: 99.5%; Sensitivity: 99%; Specificity: 100% |
| 32. | Yoo et al. [45] | Weakly Supervised CNN (AINet + ResNet-18) | Segmentation | Multimodal MRI (T1, T1c, T2, FLAIR); classifier + RISE seeds; deep superpixel generation and clustering trained on image-level labels; no manual segmentations | Dice: 0.745; HD95: 20.8 (BraTS 2023) |
| 33. | Kuraparthi et al. [46] | AlexNet | Classification (binary) | Scaling images to 227 × 227 × 3; augmentation | Accuracy: 94.84% (Kaggle); 94.64% (BraTS) |
| VGG16 | Scaling images to 224 × 224 × 3; augmentation | Accuracy: 91.38% (Kaggle); 90.43% (BraTS) | |||
| ResNet50 | Scaling images to 224 × 224 × 3; augmentation | Accuracy: 98.23%; 97.87% (BraTS); AUC: 0.9978 (Kaggle); 0.9850 (BraTS) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ottoni, M.; Kasperczuk, A.; Tavora, L.M.N. Machine Learning in MRI Brain Imaging: A Review of Methods, Challenges, and Future Directions. Diagnostics 2025, 15, 2692. https://doi.org/10.3390/diagnostics15212692
Ottoni M, Kasperczuk A, Tavora LMN. Machine Learning in MRI Brain Imaging: A Review of Methods, Challenges, and Future Directions. Diagnostics. 2025; 15(21):2692. https://doi.org/10.3390/diagnostics15212692
Chicago/Turabian StyleOttoni, Martyna, Anna Kasperczuk, and Luis M. N. Tavora. 2025. "Machine Learning in MRI Brain Imaging: A Review of Methods, Challenges, and Future Directions" Diagnostics 15, no. 21: 2692. https://doi.org/10.3390/diagnostics15212692
APA StyleOttoni, M., Kasperczuk, A., & Tavora, L. M. N. (2025). Machine Learning in MRI Brain Imaging: A Review of Methods, Challenges, and Future Directions. Diagnostics, 15(21), 2692. https://doi.org/10.3390/diagnostics15212692

