Predicting Sarcopenia in Peritoneal Dialysis Patients: A Multimodal Ultrasound-Based Logistic Regression Analysis and Nomogram Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Demography Characteristics
2.3. Muscle Mass and Muscle Strength Estimation
2.4. Ultrasound Examination
2.5. Diagnostic Criteria for Malnutrition
2.6. Diagnostic Criteria for Sarcopenia
2.7. Prediction Model Construction
2.8. Statistical Analyses
3. Results
3.1. General Information of Peritoneal Dialysis (PD) Patients
3.2. Ultrasound Parameter
3.3. Multivariate Logistic Regression Analysis of Sarcopenia in Peritoneal Dialysis (PD)
3.4. Correlation Analysis Between Ultrasound Indicators and Clinical Diagnostic Parameters of Sarcopenia
3.5. Constructing a Model for Sarcopenia in Peritoneal Dialysis (PD) Patients
3.6. Construction and Evaluation of a Nomogram Prediction Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sayer, A.A.; Cooper, R.; Arai, H.; Cawthon, P.M.; Ntsama Essomba, M.J.; Fielding, R.A.; Grounds, M.D.; Witham, M.D.; Cruz-Jentoft, A.J. Sarcopenia. Nat. Rev. Dis. Primers 2024, 10, 68. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Larsson, L.; Degens, H.; Li, M.; Salviati, L.; Lee, Y.; Thompson, W.; Kirkland, J.L.; Sandri, M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol. Rev. 2019, 99, 427–511. [Google Scholar] [CrossRef] [PubMed]
- Noce, A.; Marrone, G.; Ottaviani, E.; Guerriero, C.; Di Daniele, F.; Pietroboni Zaitseva, A.; Di Daniele, N. Uremic Sarcopenia and Its Possible Nutritional Approach. Nutrients 2021, 13, 147. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.; Huang, S.; Kao, C.; Hsu, P. Muscle Wasting in Chronic Kidney Disease: Mechanism and Clinical Implications—A Narrative Review. Int. J. Mol. Sci. 2022, 23, 6047. [Google Scholar] [CrossRef]
- Kim, S.; Jeong, S.; Kim, K.; Sung, J.; Kim, D.J.; Lee, S. Sarcopenia Index Is Correlated with Osteoporosis in Patients with Chronic Kidney Disease. Diagnostics 2025, 15, 96. [Google Scholar] [CrossRef]
- Abro, A.; Delicata, L.; Vongsanim, S.; Davenport, A. Differences in the prevalence of sarcopenia in peritoneal dialysis patients using hand grip strength and appendicular lean mass: Depends upon guideline definitions. Eur. J. Clin. Nutr. 2018, 72, 993–999. [Google Scholar] [CrossRef]
- Kamijo, Y.; Kanda, E.; Ishibashi, Y.; Yoshida, M. Sarcopenia and Frailty in PD: Impact on Mortality, Malnutrition, and Inflammation. Perit. Dial. Int. 2018, 38, 447–454. [Google Scholar] [CrossRef]
- Tagliafico, A.S.; Bignotti, B.; Torri, L.; Rossi, F. Sarcopenia: How to measure, when and why. Radiol. Medica 2022, 127, 228–237. [Google Scholar] [CrossRef]
- Tangvoraphonkchai, K.; Davenport, A. Changes in body composition following haemodialysis as assessed by bioimpedance spectroscopy. Eur. J. Clin. Nutr. 2016, 71, 169–172. [Google Scholar] [CrossRef]
- Marra, M.; Sammarco, R.; De Lorenzo, A.; Iellamo, F.; Siervo, M.; Pietrobelli, A.; Donini, L.M.; Santarpia, L.; Cataldi, M.; Pasanisi, F.; et al. Assessment of Body Composition in Health and Disease Using Bioelectrical Impedance Analysis (BIA) and Dual Energy X-Ray Absorptiometry (DXA): A Critical Overview. Contrast Media Mol. Imaging 2019, 2019, 3548284. [Google Scholar] [CrossRef]
- Giglio, J.; Kamimura, M.A.; Souza, N.C.; Bichels, A.V.; Cordeiro, A.C.; Pinho, N.; Avesani, C.M. Muscle mass assessment by computed tomography in chronic kidney disease patients: Agreement with surrogate methods. Eur. J. Clin. Nutr. 2018, 73, 46–53. [Google Scholar] [CrossRef]
- Fu, H.; Wang, L.; Zhang, W.; Lu, J.; Yang, M. Diagnostic test accuracy of ultrasound for sarcopenia diagnosis: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2022, 14, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, S.J.; Gore, E.F.; Vadaszy, N.; Nixon, D.G.D.; Watson, E.L.; Smith, A.C. Utility of Ultrasound as a Valid and Accurate Diagnostic Tool for Sarcopenia. J. Ultrasound Med. 2020, 40, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhang, C.; Zhang, Z.; Su, B. Muscle ultrasound to diagnose sarcopenia in chronic kidney disease: A systematic review and bayesian bivariate meta-analysis. BMC Nephrol. 2024, 25, 12. [Google Scholar] [CrossRef] [PubMed]
- Perkisas, S.; Bastijns, S.; Baudry, S.; Bauer, J.; Beaudart, C.; Beckwée, D.; Cruz-Jentoft, A.; Gasowski, J.; Hobbelen, H.; Jager-Wittenaar, H.; et al. Application of ultrasound for muscle assessment in sarcopenia: 2020 SARCUS update. Eur. Geriatr. Med. 2021, 12, 45–59. [Google Scholar] [CrossRef]
- Sarto, F.; Spörri, J.; Fitze, D.P.; Quinlan, J.I.; Narici, M.V.; Franchi, M.V. Implementing Ultrasound Imaging for the Assessment of Muscle and Tendon Properties in Elite Sports: Practical Aspects, Methodological Considerations and Future Directions. Sports Med. 2021, 51, 1151–1170. [Google Scholar] [CrossRef]
- Klawitter, F.; Walter, U.; Patejdl, R.; Endler, J.; Reuter, D.A.; Ehler, J. Sonographic Evaluation of Muscle Echogenicity for the Detection of Intensive Care Unit-Acquired Weakness: A Pilot Single-Center Prospective Cohort Study. Diagnostics 2022, 12, 1378. [Google Scholar] [CrossRef]
- Stecco, A.; Pirri, C.; De Caro, R.; Raghavan, P. Stiffness and echogenicity: Development of a stiffness-echogenicity matrix for clinical problem solving. Eur. J. Transl. Myol. 2019, 29, 178–184. [Google Scholar] [CrossRef]
- Mesquita, G.M.; Patel, D.; Chang, Y.-C.; Cabot, F.; Ruggeri, M.; Yoo, S.H.; Ho, A.; Parel, J.-M.A.; Manns, F. In vivo measurement of the attenuation coefficient of the sclera and ciliary muscle. Biomed. Opt. Express 2021, 12, 5089–5106. [Google Scholar] [CrossRef]
- Zaidman, C.M.; Holland, M.R.; Hughes, M.S. Quantitative Ultrasound of Skeletal Muscle: Reliable Measurements of Calibrated Muscle Backscatter from Different Ultrasound Systems. Ultrasound Med. Biol. 2012, 38, 1618–1625. [Google Scholar] [CrossRef]
- Li, H.; Zheng, Y.; Zhang, Y.; Zhan, X.; Lu, W.; Zhu, W.; Zhang, Y. Handgrip strength and body mass index exhibit good predictive value for sarcopenia in patientson peritoneal dialysis. Front. Nutr. 2024, 11, 1470669. [Google Scholar] [CrossRef]
- Do, J.Y.; Kang, S.H. Comparison of various indices for predicting sarcopenia and its components in patients receiving peritoneal dialysis. Sci. Rep. 2022, 12, 14102. [Google Scholar] [CrossRef]
- Gu, Z.; Yang, C.; Zhang, K.; Wu, H. Development and validation of a nomogram for predicting sever cancer-related fatigue in patients with cervical cancer. BMC Cancer 2024, 24, 492. [Google Scholar] [CrossRef]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307. [Google Scholar] [CrossRef]
- Perkisas, S.; Bastijns, S.; Sanchez-Rodriguez, D.; Piotrowicz, K.; Cock, A.M.D. Application of ultrasound for muscle assessment in sarcopenia: 2020 SARCUS update: Reply to the letter to the editor: SARCUS working group on behalf of the Sarcopenia Special Interest Group of the European Geriatric Medicine Society. Eur. Geriatr. Med. 2021, 12, 427–428. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; Ma, Y.; Xiang, L.; Sun, J. A multiple imputation approach for flexible modelling of interval-censored data with missing and censored covariates. Comput. Stat. Data Anal. 2025, 209, 108177. [Google Scholar] [CrossRef]
- Tiratrakoonseree, T.; Charoenpichitnun, S.; Natesirinilkul, R.; Songthawee, N.; Komvilaisak, P.; Pongphitcha, P.; Vaewpanich, J.; Sirachainan, N. Clinical pre-diction tool to identify children at risk of pulmonary embolism. Thromb. Res. 2024, 234, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Konstantis, G.; Moghadam, D.G.L.; Frey, A.; Nuruzade, N.; Schramm, C.; Gerges, C.; Lange, C.M.; Schmidt, H.; Willuweit, K.; Kahraman, A.; et al. Prognostic factors for transplant-free survival in patients with secondary sclerosing cholangitis associated with critical illness. BMJ Open Gastroenterol. 2025, 12, e001571. [Google Scholar] [CrossRef]
- Li, Y.; Luo, H.; Zhang, X.; Chang, J.; Zhao, Y.; Li, J.; Li, D.; Wang, W. Development and validation of a clinical prediction model for endocervical curettage decision-making in cervical lesions. BMC Cancer 2021, 21, 804. [Google Scholar] [CrossRef]
- Zicarelli, M.; Duni, A.; Leivaditis, K.; Lin, Y.-L.; Baciga, F.; Pugliese, S.; Fiorentino, M.; Hsu, B.-G.; Roumeliotis, S.; Battaglia, Y.; et al. Comprehensive Insights into Sarcopenia in Dialysis Patients: Mechanisms, Assessment, and Therapeutic Approaches. Medicina 2025, 61, 449. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhu, B.; Xue, C.; Lin, H.; Zhou, F.; Luo, Q. A Prospective Cohort Study Evaluating Impact of Sarcopenia on Hospitalization in Patients on Continuous Ambulatory Peritoneal Dialysis. Sci. Rep. 2024, 14, 16926. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Chen, G.; Zhang, H.; Liu, Y.; Gu, F.; Wang, Y.; Yin, L. Development of a Practical Screening Tool to Predict Sarcopenia in Patients on Maintenance Hemodialysis. Med. Sci. Monit. 2022, 28, e937504. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.J.; Lal, S.; Gittins, M.; Strauss, B.J.G.; Burden, S.T. Practical measurement of body composition using bioelectrical impedance, air displacement plethysmography and ultrasound in stable outpatients with short bowel syndrome receiving home parenteral nutrition: Comparison of agreement between the methods. J. Hum. Nutr. Diet. 2018, 32, 288–294. [Google Scholar] [CrossRef]
- Šostakaitė, G.; Jauniškytė, M.; Budrys, D.; Budrevičius, K.; Šalčiūtė-Šimėnė, E.; Svetikienė, M.; Jovaiša, T.; Žvirblis, T.; Klimašauskas, A.; Šipylaitė, J. Comparison of Two Techniques to Assess Muscle Mass Loss During ICU Stay: Muscle Ultrasound vs Bioelectrical Impedance Analysis. Nutrition 2024, 130, 112607. [Google Scholar] [CrossRef]
- Cassiers, E.; Bastijns, S.; Perkisas, S.; Vandewoude, M.; De Cock, A.-M. Muscle measurements in daily clinical practice: Correlations between ultrasound, bioelectrical impedance analysis and hand grip strength. J. Frailty Sarcopenia Falls 2022, 7, 192–198. [Google Scholar] [CrossRef]
- Olinto, M.; Lins, V.C.; Rocha, G.; Dourado, M.A.; Dutra, M. Practical but Inaccurate? A-Mode Ultrasound and Bioelectrical Impedance Underestimate Body Fat Percentage Compared to Dual-Energy X-ray Absorptiometry in Male College Students. J. Funct. Morphol. Kinesiol. 2024, 9, 113. [Google Scholar] [CrossRef]
- Gao, Y.; Arfat, Y.; Wang, H.; Goswami, N. Muscle Atrophy Induced by Mechanical Unloading: Mechanisms and Potential Coun-termeasures. Front. Physiol. 2018, 9, 235. [Google Scholar] [CrossRef]
- Yin, L.; Li, N.; Jia, W.; Wang, N.; Liang, M.; Yang, X.; Du, G. Skeletal muscle atrophy: From mechanisms to treatments. Pharmacol. Res. 2021, 172, 105807. [Google Scholar] [CrossRef]
- Capitão, C.; Coutinho, D.; Neves, P.M.; Capelas, M.L.; Pimenta, N.M.; Santos, T.; Mäkitie, A.; Ravasco, P. Protein intake and muscle mass maintenance in patients with cancer types with high prevalence of sarcopenia: A systematic review. Support. Care Cancer 2021, 30, 3007–3015. [Google Scholar] [CrossRef]
- Zakharova, A.; Kabasawa, K.; Ito, Y.; Tanaka, J.; Hinata, A.; Kitamura, K.; Watanabe, Y.; Tsugane, S.; Nakamura, K.; Narita, I. Association between Sarcopenia and Depressive Symptoms in Community-Dwelling People Aged 40 Years and Older. Tohoku J. Exp. Med. 2022, 257, 117–125. [Google Scholar] [CrossRef]
- Gupta, M.; Lehl, S.S.; Lamba, A.S. Ultrasonography for Assessment of Sarcopenia. J. Mid-Life Health 2022, 13, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-C.; Wu, W.-T.; Chang, K.-V.; Chen, L.-R.; Chi, S.-Y.; Kara, M.; Özçakar, L. Ultrasound Imaging for the Diagnosis and Evaluation of Sarcopenia: An Umbrella Review. Life 2021, 12, 9. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, T.; Yamada, T.; Satoh, Y. Relationship between muscle echo intensity on ultrasound and isokinetic strength of the three superficial quadriceps femoris muscles in healthy young adults. J. Phys. Ther. Sci. 2021, 33, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wu, J.; Ran, L.; Yu, D.; Chen, X.; Liu, M. The phase angle is associated with upper arm muscle circumference but not with sarcopenia in continuous ambulatory peritoneal dialysis patients. medRxiv 2022. [Google Scholar] [CrossRef]
- Xie, R.-Z.; Li, X.-S.; Zha, F.-D.; Li, G.-Q.; Zhao, W.-Q.; Liang, Y.-F.; Huang, J.-F. Relationship Between Body Mass Index and Low Skeletal Muscle Mass in Adults Based on NHANES 2011–2018. Sci. Rep. 2025, 15, 2596. [Google Scholar] [CrossRef]
- Isaka, M.; Sugimoto, K.; Akasaka, H.; Yasunobe, Y.; Takahashi, T.; Xie, K.; Onishi, Y.; Yoshida, S.; Minami, T.; Yamamoto, K.; et al. The Muscle Thickness Assessment Using Ultrasonography is a Useful Alternative to Skeletal Muscle Mass by Bioelectrical Impedance Analysis. Clin. Interv. Aging 2022, 17, 1851–1861. [Google Scholar] [CrossRef]
- Aruna, R.; Sivarajan, A.A.; Madhumitha, M.; Vasanth, C.J. Association of Hand Grip Strength with Ultrasound-derived Forearm Muscle Thickness and Echo Intensity in Young Indian Adults. J. Med. Ultrasound 2022, 31, 206–210. [Google Scholar] [CrossRef]
- Yuan, H.; Kim, M. Meta-Analysis on the Association between Echo Intensity, Muscle Strength, and Physical Function in Older Individuals. Ann. Geriatr. Med. Res. 2023, 27, 329–337. [Google Scholar] [CrossRef]
- Hida, T.; Ando, K.; Kobayashi, K.; Ito, K.; Tsushima, M.; Kobayakawa, T.; Morozumi, M.; Tanaka, S.; Machino, M.; Ota, K.; et al. Ultrasound measurement of thigh muscle thickness for assessment of sarcopenia. Nagoya J. Med. Sci. 2018, 80, 519–527. [Google Scholar] [CrossRef]
- Matsuzawa, R.; Yamamoto, S.; Suzuki, Y.; Imamura, K.; Harada, M.; Matsunaga, A.; Tamaki, A.; Fukui, T.; Shimokado, K. The clinical applicability of ultrasound technique for diagnosis of sarcopenia in hemodialysis patients. Clin. Nutr. 2021, 40, 1161–1167. [Google Scholar] [CrossRef]
- Xu, J.; Fu, S.N.; Hug, F. Age-related increase in muscle stiffness is muscle length dependent and associated with muscle force in senior females. BMC Musculoskelet. Disord. 2021, 22, 829. [Google Scholar] [CrossRef]
- Lera, L.; Albala, C.; Leyton, B.; Márquez, C.; Angel, B.; Saguez, R.; Sánchez, H. Reference values of hand-grip dynamometry and the relationship between low strength and mortality in older Chileans. Clin. Interv. Aging 2018, 13, 317–324. [Google Scholar] [CrossRef]
- Han, D.-S.; Chang, K.-V.; Li, C.-M.; Lin, Y.-H.; Kao, T.-W.; Tsai, K.-S.; Wang, T.-G.; Yang, W.-S. Skeletal muscle mass adjusted by height correlated better with muscular functions than that adjusted by body weight in defining sarcopenia. Sci. Rep. 2016, 6, 19457. [Google Scholar] [CrossRef]
Characteristics | Sarcopenia (n = 60) | Non-Sarcopenia (n = 118) | p |
---|---|---|---|
Age, years | 70.19 ± 7.09 | 68.88 ± 8.99 | 0.063 |
Male, n (%) | 35 (58.33) | 62 (52.54) | 0.463 |
Dialysis duration, years | 5 (3, 8) | 6 (2, 9) | 0.982 |
BMI, kg/m2 | 23.35 ± 2.36 | 24.08 ± 1.36 | 0.016 |
Hypertension, n (%) | 54 (90.00) | 108 (91.52) | 0.549 |
Diabetes, n (%) | 47 (78.33) | 72 (61.22) | 0.002 |
Malnutrition, n (%) | 42(70.00) | 56 (47.45) | 0.004 |
Albumin, g/L | 30.85 ± 2.75 | 31.22 ± 2.73 | 0.033 |
Calcium, mmol/L | 2.16 ± 0.13 | 2.19 ± 0.18 | 0.038 |
Phosphate, mmol/L | 1.45 ± 0.26 | 1.50 ± 0.37 | 0.022 |
Creatinine, umol/L | 846.22 ± 230.89 | 832.61 ± 222.92 | 0.704 |
GFR, mL/min/1.73 m2 | 5.09 ± 1.26 | 5.51 ± 2.22 | 0.176 |
Handgrip strength, kg | 18.45 ± 5.04 | 28.53 ± 4.50 | <0.001 |
ASMI, kg/m2 | 5.59 ± 0.65 | 7.41 ± 0.96 | <0.001 |
β | SE | Wald | p | OR (95%CI) | |
---|---|---|---|---|---|
BMI | −0.172 | 0.086 | 4.058 | 0.044 | 0.842 (0.712, 0.995) |
Nutritional | 0.949 | 0.337 | 7.947 | 0.005 | 2.583 (1.335, 4.998) |
MT | −1.227 | 0.228 | 28.854 | <0.01 | 0.293 (0.187, 0.459) |
PA | −0.151 | 0.110 | 1.897 | 0.036 | 0.829 (0.473, 1.453) |
FL | 0.438 | 0.161 | 7.405 | 0.024 | 0.666 (0.306, 1.140) |
Atten Coe | 13.283 | 5.386 | 6.081 | 0.018 | 0.742 (0.535, 1.108) |
EI | 0.110 | 7.304 | 4.402 | 0.002 | 0.735 (0.506, 1.035) |
Constant | −13.235 | 7.806 | 2.875 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Lu, X.; Chen, J.; Xu, X.; Jiang, J.; Dong, Y. Predicting Sarcopenia in Peritoneal Dialysis Patients: A Multimodal Ultrasound-Based Logistic Regression Analysis and Nomogram Model. Diagnostics 2025, 15, 2685. https://doi.org/10.3390/diagnostics15212685
Wang S, Lu X, Chen J, Xu X, Jiang J, Dong Y. Predicting Sarcopenia in Peritoneal Dialysis Patients: A Multimodal Ultrasound-Based Logistic Regression Analysis and Nomogram Model. Diagnostics. 2025; 15(21):2685. https://doi.org/10.3390/diagnostics15212685
Chicago/Turabian StyleWang, Shengqiao, Xiuyun Lu, Juan Chen, Xinliang Xu, Jun Jiang, and Yi Dong. 2025. "Predicting Sarcopenia in Peritoneal Dialysis Patients: A Multimodal Ultrasound-Based Logistic Regression Analysis and Nomogram Model" Diagnostics 15, no. 21: 2685. https://doi.org/10.3390/diagnostics15212685
APA StyleWang, S., Lu, X., Chen, J., Xu, X., Jiang, J., & Dong, Y. (2025). Predicting Sarcopenia in Peritoneal Dialysis Patients: A Multimodal Ultrasound-Based Logistic Regression Analysis and Nomogram Model. Diagnostics, 15(21), 2685. https://doi.org/10.3390/diagnostics15212685