Hypertension and Diabetes as Determinants of Patient-Reported Quality of Life in Permanent Atrial Fibrillation
Abstract
1. Introduction
2. Methods
2.1. Study Population
2.2. Variables and Measurements
2.3. Outcomes
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Baseline Characteristics
3.3. Echocardiography and Ventricular Function
3.4. Quality of Life—KCCQ
3.5. Correlations with KCCQ
3.6. Multivariable Analysis
4. Discussion
4.1. Interpretation of Results
4.2. Comparison with Existing Literature
4.3. Mechanism of Action
4.4. Limitations
4.5. Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AF | Atrial fibrillation |
| AUC | Area under the curve |
| BMI | Body mass index |
| BP | Blood pressure |
| DBP | Diastolic blood pressure |
| DM | Diabetes mellitus |
| eGFR | Estimated glomerular filtration rate |
| HbA1c | Glycated hemoglobin |
| HF | Heart failure |
| HFmrEF | Heart failure with mildly reduced ejection fraction |
| HFpEF | Heart failure with preserved ejection fraction |
| HFrEF | Heart failure with reduced ejection fraction |
| HTN | Hypertension |
| KCCQ | Kansas City Cardiomyopathy Questionnaire |
| LA | Left atrium/left atrial |
| LVEF | Left ventricular ejection fraction |
| NLR | Neutrophil-to-lymphocyte ratio |
| PROM | Patient-reported outcome measure |
| ROC | Receiver operating characteristic |
| SBP | Systolic blood pressure |
| SGLT2i | Sodium-glucose cotransporter-2 inhibitor |
References
- McEvoy, J.W.; McCarthy, C.P.; Bruno, R.M.; Brouwers, S.; Canavan, M.D.; Ceconi, C.; Christodorescu, R.M.; Daskalopoulou, S.S.; Ferro, C.J.; Gerdts, E.; et al. 2024 ESC Guidelines for the management of elevated blood pressure and hypertension. Eur. Heart J. 2024, 45, 3912–4018. Available online: https://pubmed.ncbi.nlm.nih.gov/39210715/?utm_source=chatgpt.com (accessed on 12 September 2025). [CrossRef] [PubMed]
- Lauder, L.; Mahfoud, F.; Azizi, M.; Bhatt, D.L.; Ewen, S.; Kario, K.; Parati, G.; Rossignol, P.; Schlaich, M.P.; Teo, K.K.; et al. Hypertension management in patients with cardiovascular comorbidities. Eur. Heart J. 2023, 44, 2066–2077. Available online: https://academic.oup.com/eurheartj/article/44/23/2066/6808663?login=false&utm_source=chatgpt.com (accessed on 12 September 2025). [CrossRef]
- NCD Risk Factor Collaboration. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 2021, 398, 957–980. Available online: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)01330-1/fulltext (accessed on 14 September 2025). [CrossRef] [PubMed]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. Available online: https://www.diabetesresearchclinicalpractice.com/article/S0168-8227(19)31230-6/fulltext (accessed on 14 September 2025). [CrossRef]
- Petrie, J.R.; Guzik, T.J.; Touyz, R.M. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can. J. Cardiol. 2018, 34, 575–584. [Google Scholar] [CrossRef]
- Shah, S.; Abbas, G.; Aslam, A.; Randhawa, F.A.; Khan, F.U.; Khurram, H.; Chand, U.R.; Butt, M.H.; Mallhi, T.H.; Khan, Y.H. Assessment of health-related quality of life among patients with obesity, hypertension and type 2 diabetes mellitus and its relationship with multimorbidity. PLoS ONE 2023, 18, e0289502. Available online: https://pubmed.ncbi.nlm.nih.gov/37540689/?utm_source=chatgpt.com (accessed on 12 September 2025). [CrossRef]
- Chin, Y.R.; Lee, I.S.; Lee, H.Y. Effects of Hypertension, Diabetes, and/or Cardiovascular Disease on Health-related Quality of Life in Elderly Korean Individuals: A Population-based Cross-sectional Survey. Asian Nurs. Res. 2014, 8, 267–273. [Google Scholar] [CrossRef]
- Spertus, J.A.; Jones, P.G. Development and Validation of a Short Version of the Kansas City Cardiomyopathy Questionnaire. Circ. Cardiovasc. Qual. Outcomes 2015, 8, 469–476. [Google Scholar] [CrossRef]
- Palmiero, G.; Cesaro, A.; Vetrano, E.; Pafundi, P.C.; Galiero, R.; Caturano, A.; Moscarella, E.; Gragnano, F.; Salvatore, T.; Rinaldi, L.; et al. Impact of SGLT2 Inhibitors on Heart Failure: From Pathophysiology to Clinical Effects. Int. J. Mol. Sci. 2021, 22, 5863. [Google Scholar] [CrossRef]
- Cesaro, A.; Pastori, D.; Acerbo, V.; Biccirè, F.G.; Golino, M.; Panico, D.; Prati, F.; Abbate, A.; Lip, G.Y.H.; Calabrò, P. Reduction of New Onset of Atrial Fibrillation in Patients Treated with Semaglutide: An updated systematic review and meta regression analysis of randomized controlled trials. Eur. J. Prev. Cardiol. 2025, zwaf257. [Google Scholar] [CrossRef] [PubMed]
- Regulation—2016/679—EN—gdpr—EUR-Lex. Available online: https://eur-lex.europa.eu/eli/reg/2016/679/oj/eng (accessed on 14 September 2025).
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2025. Diabetes Care 2025, 48 (Suppl. S1), S27–S49. [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Green, C.P.; Porter, C.B.; Bresnahan, D.R.; Spertus, J.A. Development and evaluation of the Kansas City Cardiomyopathy Questionnaire: A new health status measure for heart failure. J. Am. Coll. Cardiol. 2000, 35, 1245–1255. Available online: https://pubmed.ncbi.nlm.nih.gov/10758967/?utm_source=chatgpt.com (accessed on 12 September 2025). [CrossRef]
- Spertus, J.A.; Jones, P.G.; Sandhu, A.T.; Arnold, S.V. Interpreting the Kansas City Cardiomyopathy Questionnaire in Clinical Trials and Clinical Care: JACC State-of-the-Art Review. JACC 2020, 76, 2379–2390. Available online: https://www.jacc.org/doi/abs/10.1016/j.jacc.2020.09.542?utm_source=chatgpt.com (accessed on 12 September 2025). [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows, version 26.0; IBM Corp: Armonk, NY, USA, 2019; Available online: https://www.scirp.org/reference/referencespapers?referenceid=3316867 (accessed on 12 September 2025).
- Verdecchia, P.; Angeli, F.; Reboldi, G. Hypertension and Atrial Fibrillation. Circ. Res. 2018, 122, 352–368. [Google Scholar] [CrossRef] [PubMed]
- Wijesurendra, R.S.; Casadei, B. Mechanisms of atrial fibrillation. Heart 2019, 105, 1860–1867. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Mahamat-Saleh, Y.; Kobeissi, E.; Feng, T.; Heath, A.K.; Janszky, I. Blood pressure, hypertension and the risk of atrial fibrillation: A systematic review and meta-analysis of cohort studies. Eur. J. Epidemiol. 2023, 38, 145–178. [Google Scholar] [CrossRef] [PubMed]
- Gumprecht, J.; Domek, M.; Lip, G.Y.H.; Shantsila, A. Invited review: Hypertension and atrial fibrillation: Epidemiology, pathophysiology, and implications for management. J. Hum. Hypertens. 2019, 33, 824–836. [Google Scholar] [CrossRef]
- Spertus, J.; Dorian, P.; Bubien, R.; Lewis, S.; Godejohn, D.; Reynolds, M.R.; Lakkireddy, D.R.; Wimmer, A.P.; Bhandari, A.; Burk, C. Development and validation of the Atrial Fibrillation Effect on QualiTy-of-Life (AFEQT) Questionnaire in patients with atrial fibrillation. Circ. Arrhythmia Electrophysiol. 2011, 4, 15–25. [Google Scholar] [CrossRef]
- Mark, D.B.; Anstrom, K.J.; Sheng, S.; Piccini, J.P.; Baloch, K.N.; Monahan, K.H.; Daniels, M.R.; Bahnson, T.D.; Poole, J.E.; Rosenberg, Y.; et al. Effect of Catheter Ablation vs Medical Therapy on Quality of Life Among Patients With Atrial Fibrillation: The CABANA Randomized Clinical Trial. JAMA 2019, 321, 1275–1285. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, B.A.; Piccini, J.P. Tackling patient-reported outcomes in AF & HF: Identifying disease-specific symptoms? Cardiol. Clin. 2019, 37, 139–146. [Google Scholar]
- Masyuko, S.; Ngongo, C.J.; Smith, C.; Nugent, R. Patient-reported outcomes for diabetes and hypertension care in low- and middle-income countries: A scoping review. PLoS ONE 2021, 16, e0245269. [Google Scholar] [CrossRef]
- Langendoen-Gort, M.; Groeneveld, L.; Prinsen, C.A.C.; Beulens, J.W.; Elders, P.J.M.; Halperin, I.; Mukerji, G.; Terwee, C.B.; Rutters, F. Patient-reported outcome measures for assessing health-related quality of life in people with type 2 diabetes: A systematic review. Rev. Endocr. Metab. Disord. 2022, 23, 931–977. [Google Scholar] [CrossRef] [PubMed]
- Barnard-Kelly, K.; Battelino, T.; Brosius, F.C.; Ceriello, A.; Cosentino, F.; Gavin, J.R.; Giorgino, F.; Green, J.; Ji, L.; Kellerer, M.; et al. Defining patient-reported outcomes in diabetes, obesity, cardiovascular disease, and chronic kidney disease for clinical practice guidelines—Perspectives of the taskforce of the Guideline Workshop. Cardiovasc. Diabetol. 2025, 24, 68. [Google Scholar] [CrossRef]
- Leopoulou, M.; Theofilis, P.; Kordalis, A.; Papageorgiou, N.; Sagris, M.; Oikonomou, E.; Tousoulis, D. Diabetes mellitus and atrial fibrillation-from pathophysiology to treatment. World J. Diabetes 2023, 14, 512–527. [Google Scholar] [CrossRef] [PubMed]
- Meng, T.; Wang, J.; Tang, M.; Liu, S.; Ding, L.; Yan, Y. Diabetes Mellitus Promotes Atrial Structural Remodeling and PARP-1/Ikkα/NF-κB Pathway Activation in Mice. Diabetes Metab. Syndr. Obes. 2021, 14, 2189–2199. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Y.; Xu, N.; Bi, C.; Liu, X.; Song, W.; Jiang, Y. Assessing the causal role of hypertension on left atrial and left ventricular structure and function: A two-sample Mendelian randomization study. Front. Cardiovasc. Med. 2022, 9, 1006380. Available online: https://www.frontiersin.org/journals/cardiovascular-medicine/articles/10.3389/fcvm.2022.1006380/full (accessed on 13 September 2025). [CrossRef]
- Lange, A.; Palka, V.; Bian, C.; Huntress, H.; Morgan, J.; Allwood, S.; Swann, R.; Palka, P. Left heart remodelling in hypertensive patients: A comprehensive echocardiography and computed tomography study. Front. Cardiovasc. Med. 2023, 10, 1295537. Available online: https://www.frontiersin.org/journals/cardiovascular-medicine/articles/10.3389/fcvm.2023.1295537/full (accessed on 13 September 2025). [CrossRef]
- Li, N.; Lv, D.; Zhu, X.; Wei, P.; Gui, Y.; Liu, S.; Zhou, E.; Zheng, M.; Zhou, D.; Zhang, L. Effects of SGLT2 Inhibitors on Renal Outcomes in Patients With Chronic Kidney Disease: A Meta-Analysis. Front. Med. 2021, 8, 728089. Available online: https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2021.728089/full (accessed on 13 September 2025). [CrossRef]
- Klen, J.; Dolžan, V. SGLT2 Inhibitors in the Treatment of Diabetic Kidney Disease: More than Just Glucose Regulation. Pharmaceutics 2023, 15, 1995. [Google Scholar] [CrossRef]
- Fedele, D.; Casuso Alvarez, M.; Maida, A.; Vasumini, N.; Amicone, S.; Canton, L.; Di Leo, M.; Basile, M.; Manaresi, T.; Angeli, F.; et al. Prevention of atrial fibrillation with SGLT2 inhibitors across the spectrum of cardiovascular disorders: A meta-analysis of randomized controlled trials. Eur. Heart J. Cardiovasc. Pharmacother. 2025, 11, 441–450. [Google Scholar] [CrossRef]
- Armillotta, M.; Angeli, F.; Paolisso, P.; Belmonte, M.; Raschi, E.; Di Dalmazi, G.; Amicone, S.; Canton, L.; Fedele, D.; Suma, N.; et al. Cardiovascular therapeutic targets of sodium-glucose co-transporter 2 (SGLT2) inhibitors beyond heart failure. Pharmacol. Ther. 2025, 270, 108861. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, Y.; Li, S.; Lv, J. Endothelial Dysfunction and Diabetic Cardiomyopathy. Front. Endocrinol. 2022, 13, 851941. Available online: https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2022.851941/full (accessed on 14 September 2025). [CrossRef] [PubMed]
- de la Cruz-Ares, S.; Cardelo, M.P.; Gutiérrez-Mariscal, F.M.; Torres-Peña, J.D.; García-Rios, A.; Katsiki, N.; Malagón, M.M.; López-Miranda, J.; Pérez-Martínez, P.; Yubero-Serrano, E.M. Endothelial Dysfunction and Advanced Glycation End Products in Patients with Newly Diagnosed Versus Established Diabetes: From the CORDIOPREV Study. Nutrients 2020, 12, 238. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Zhang, Z.; Zheng, C.; Wintergerst, K.A.; Keller, B.B.; Cai, L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: Preclinical and clinical evidence. Nat. Rev. Cardiol. 2020, 17, 585–607. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, G. Update on Pathogenesis of Glomerular Hyperfiltration in Early Diabetic Kidney Disease. Front. Endocrinol. 2022, 13, 872918. [Google Scholar] [CrossRef]
- Lovshin, J.A.; Boulet, G.; Lytvyn, Y.; Lovblom, L.E.; Bjornstad, P.; Farooqi, M.A.; Lai, V.; Cham, L.; Tse, J.; Orszag, A.; et al. Renin-angiotensin-aldosterone system activation in long-standing type 1 diabetes. JCI Insight 2018, 3, e96968. Available online: https://insight.jci.org/articles/view/96968?utm_source=chatgpt.com (accessed on 14 September 2025). [CrossRef]
- Nakamura, H.; Okubo, R.; Kumagai, M.; Anayama, M.; Makino, Y.; Tamura, K.; Nagasawa, M.; Okada, H.; Maruyama, S.; Hoshino, J.; et al. Exploring factors associated with Kidney Disease Quality of Life in patients with advanced chronic kidney disease: The Reach-J CKD cohort study. Clin. Exp. Nephrol. 2025, 29, 765–776. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Liu, S.; Gao, M.; Wang, W.; Chen, K.; Huang, L.; Liu, Y. Diabetic vascular diseases: Molecular mechanisms and therapeutic strategies. Signal Transduct. Target. Ther. 2023, 8, 152. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; He, G.; Huo, X.; Tian, A.; Ji, R.; Pu, B.; Peng, Y. Long-Term Cumulative High-Sensitivity C-Reactive Protein and Mortality Among Patients with Acute Heart Failure. J. Am. Heart Assoc. 2023, 12, e029386. [Google Scholar] [CrossRef]
- Kim, J.R.; Kim, H.N.; Song, S.W. Associations among inflammation, mental health, and quality of life in adults with metabolic syndrome. Diabetol. Metab. Syndr. 2018, 10, 66. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Jiang, H.; Dhuromsingh, M.; Dai, L.; Jiang, Y.; Zeng, H. Evaluation of C-reactive protein as predictor of adverse prognosis in acute myocardial infarction after percutaneous coronary intervention: A systematic review and meta-analysis from 18,715 individuals. Front. Cardiovasc. Med. 2022, 9, 1013501. [Google Scholar] [CrossRef]
- Luo, J.; Thomassen, J.Q.; Nordestgaard, B.G.; Tybjærg-Hansen, A.; Frikke-Schmidt, R. Neutrophil counts and cardiovascular disease. Eur. Heart J. 2023, 44, 4953–4964. [Google Scholar] [CrossRef]
- Sun, P.; Cen, H.; Chen, S.; Chen, X.; Jiang, W.; Zhu, H.; Liu, Y.; Liu, H.; Lu, W. Left atrial dysfunction can independently predict exercise capacity in patients with chronic heart failure who use beta-blockers. BMC Cardiovasc. Disord. 2023, 23, 128. [Google Scholar] [CrossRef]
- von Roeder, M.; Rommel, K.P.; Kowallick, J.T.; Blazek, S.; Besler, C.; Fengler, K.; Lotz, J.; Hasenfuß, G.; Lücke, C.; Gutberlet, M.; et al. Influence of Left Atrial Function on Exercise Capacity and Left Ventricular Function in Patients With Heart Failure and Preserved Ejection Fraction. Circ. Cardiovasc. Imaging 2017, 10, e005467. [Google Scholar] [CrossRef]
- Gan, G.C.H.; Bhat, A.; Chen, H.H.L.; Gu, K.H.; Fernandez, F.; Kadappu, K.K.; Byth, K.; Eshoo, S.; Thomas, L. Left Atrial Reservoir Strain by Speckle Tracking Echocardiography: Association With Exercise Capacity in Chronic Kidney Disease. J. Am. Heart Assoc. 2021, 10, e017840. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; Anavekar, N.; Skali, H.; McMurray, J.J.V.; Swedberg, K.; Yusuf, S.; Granger, C.B.; Michelson, E.L.; Wang, D.; Pocock, S.; et al. Influence of Ejection Fraction on Cardiovascular Outcomes in a Broad Spectrum of Heart Failure Patients. Circulation 2005, 112, 3738–3744. [Google Scholar] [CrossRef]
- Inoue, K.; Khan, F.H.; Remme, E.W.; Ohte, N.; García-Izquierdo, E.; Chetrit, M.; Moñivas-Palomero, V.; Mingo-Santos, S.; Andersen, Ø.S.; Gude, E.; et al. Determinants of left atrial reservoir and pump strain and use of atrial strain for evaluation of left ventricular filling pressure. Eur. Heart J. Cardiovasc. Imaging 2021, 23, 61–70. [Google Scholar] [CrossRef]
- Rønningen, P.S.; Berge, T.; Solberg, M.G.; Enger, S.; Pervez, M.O.; Orstad, E.B.; Kvisvik, B.; Aagaard, E.N.; Lyngbakken, M.N.; Ariansen, I. Impact of Blood Pressure in the Early 40s on Left Atrial Volumes in the Mid-60s: Data From the ACE 1950 Study. J. Am. Heart Assoc. 2022, 11, e023738. Available online: https://www.ahajournals.org/doi/10.1161/JAHA.121.023738?utm_source=chatgpt.com (accessed on 14 September 2025). [CrossRef] [PubMed]



| Variable | Total (n = 198) | AF + HTN-Only (n = 89) | AF + HTN + DM (n = 109) | p-Value |
|---|---|---|---|---|
| Age (years) | 73.1 ± 9.4 | 72.4 ± 9.5 | 73.6 ± 9.3 | 0.357 |
| BMI (kg/m2) | 29.1 ± 5.6 | 29.1 ± 5.6 | 29.1 ± 5.5 | 0.989 |
| SBP (mmHg) | 134.3 ± 25.1 | 134.5 ± 25.1 | 134.2 ± 25.2 | 0.934 |
| DBP (mmHg) | 76.8 ± 12.7 | 77.0 ± 12.7 | 76.7 ± 12.7 | 0.889 |
| SaO2 (%) | 95.2 ± 3.0 | 95.2 ± 2.9 | 95.1 ± 3.1 | 0.750 |
| Hemoglobin (g/dL) | 12.9 ± 2.0 | 12.7 ± 2.0 | 13.1 ± 2.0 | 0.068 |
| Creatinine (mg/dL) | 1.52 ± 0.45 | 1.42 ± 0.52 | 1.59 ± 0.36 | <0.001 * |
| Urea (mg/dL) | 62.2 ± 28.3 | 58.2 ± 28.6 | 65.5 ± 27.9 | 0.023 * |
| eGFR (mL/min) | 46.8 ± 16.4 | 51.4 ± 18.1 | 41.4 ± 12.7 | <0.001 * |
| Uric acid (mg/dL) | 7.58 ± 2.08 | 5.68 ± 1.09 | 9.13 ± 1.78 | <0.001 * |
| Neutrophils (%) | 74.3 ± 10.9 | 72.6 ± 10.6 | 75.7 ± 11.1 | 0.010 * |
| Lymphocytes (%) | 24.0 ± 9.4 | 26.1 ± 9.2 | 22.2 ± 9.5 | 0.001 * |
| Platelets (×109/L) | 249.2 ± 90.3 | 261.9 ± 94.3 | 238.4 ± 85.2 | 0.035 * |
| D-dimer (mg/L) | 2.08 ± – | 0.43 ± – | 3.73 ± – | 0.045 * |
| Coronary artery disease, n (%) | 61 (30.8) | 24 (27.0) | 37 (33.9) | 0.28 |
| Heart failure, n (%) | 73 (36.9) | 29 (32.6) | 44 (40.4) | 0.23 |
| Chronic kidney disease (eGFR < 60), n (%) | 106 (53.5) | 35 (39.3) | 71 (65.1) | <0.001 * |
| Dyslipidemia, n (%) | 139 (70.2) | 58 (65.2) | 81 (74.3) | 0.17 |
| Obesity (BMI ≥ 30 kg/m2), n (%) | 90 (45.5) | 38 (42.7) | 52 (47.7) | 0.51 |
| COPD, n (%) | 24 (12.1) | 10 (11.2) | 14 (12.8) | 0.74 |
| Prior stroke/TIA, n (%) | 17 (8.6) | 6 (6.7) | 11 (10.1) | 0.39 |
| Variable | Correlation (r) with KCCQ | p-Value |
|---|---|---|
| eGFR (mL/min) | +0.429 | <0.001 |
| Creatinine (mg/dL) | −0.290 | <0.001 |
| Urea (mg/dL) | −0.248 | <0.001 |
| Neutrophils (%) | −0.316 | <0.001 |
| Left atrial volume (mL) | −0.277 | <0.001 |
| Age (years) | −0.255 | <0.001 |
| D-dimer | +0.051 | 0.471 |
| Variable | β Coefficient (SE) | 95% CI | p-Value |
|---|---|---|---|
| Diabetes (yes) | +0.18 (1.63) | −3.04 to +3.41 | 0.91 |
| Age (years) | −0.07 (0.06) | −0.19 to +0.05 | 0.25 |
| BMI (kg/m2) | −0.08 (0.09) | −0.26 to +0.10 | 0.38 |
| eGFR (mL/min) | +0.21 (0.05) | +0.11 to +0.31 | <0.001 * |
| Neutrophils (%) | −0.17 (0.07) | −0.31 to −0.03 | 0.015 * |
| Left atrial volume (mL) | −0.07 (0.02) | −0.11 to −0.03 | 0.002 * |
| HFrEF vs. HFmrEF | −8.31 (2.09) | −12.4 to −4.2 | <0.001 * |
| HFpEF vs. HFmrEF | +0.61 (1.94) | −3.21 to +4.43 | 0.75 |
| Pathway | Mechanism | Clinical Impact | Key References |
|---|---|---|---|
| Endothelial dysfunction and oxidative stress | Chronic hyperglycemia → AGEs accumulation → oxidative stress → impaired vasodilation; hypertension increases afterload and microvascular injury | Vascular stiffening, diastolic dysfunction, reduced exercise tolerance | de la Cruz-Ares et al., 2020 [38]; Petrie et al., 2018 [5] |
| Renal dysfunction | Diabetes + hypertension → glomerular hyperfiltration, RAAS activation, fibrosis, inflammation → declining eGFR | CKD symptoms (fatigue, functional limitation), worse QoL, higher CV risk | Yang et al., 2022 [40]; Nakamura et al., 2025 [42] |
| Systemic inflammation | Increased neutrophils/hs-CRP reflect chronic low-grade inflammation | Lower functional status, poorer QoL, higher risk of events | Zhang et al., 2023 [44]; Luo et al., 2023 [47] |
| Cardiac remodeling | Chronic BP load + inflammation → LA enlargement, LV hypertrophy, reduced LVEF | Dyspnea exercise intolerance, AF risk, worse QoL | Sun et al., 2023 [48]; von Roeder et al., 2017 [49] |
| LA strain and midlife BP effects | High BP in midlife predicts LA remodeling; LA strain outperforms volume in detecting filling pressures | Strong predictor of impaired QoL and prognosis | Rønningen et al., 2022 [53]; Inoue et al., 2021 [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciubotaru, P.G.; Kundnani, N.R.; Sharma, A.; Neagu, M.N.; Ivan, V.S.; Buzas, R.; Albulescu, N.; Dinu, A.R.; Lighezan, D.F. Hypertension and Diabetes as Determinants of Patient-Reported Quality of Life in Permanent Atrial Fibrillation. Diagnostics 2025, 15, 2674. https://doi.org/10.3390/diagnostics15212674
Ciubotaru PG, Kundnani NR, Sharma A, Neagu MN, Ivan VS, Buzas R, Albulescu N, Dinu AR, Lighezan DF. Hypertension and Diabetes as Determinants of Patient-Reported Quality of Life in Permanent Atrial Fibrillation. Diagnostics. 2025; 15(21):2674. https://doi.org/10.3390/diagnostics15212674
Chicago/Turabian StyleCiubotaru, Paul Gabriel, Nilima Rajpal Kundnani, Abhinav Sharma, Marioara Nicula Neagu, Vlad Sabin Ivan, Roxana Buzas, Nicolae Albulescu, Anca Raluca Dinu, and Daniel Florin Lighezan. 2025. "Hypertension and Diabetes as Determinants of Patient-Reported Quality of Life in Permanent Atrial Fibrillation" Diagnostics 15, no. 21: 2674. https://doi.org/10.3390/diagnostics15212674
APA StyleCiubotaru, P. G., Kundnani, N. R., Sharma, A., Neagu, M. N., Ivan, V. S., Buzas, R., Albulescu, N., Dinu, A. R., & Lighezan, D. F. (2025). Hypertension and Diabetes as Determinants of Patient-Reported Quality of Life in Permanent Atrial Fibrillation. Diagnostics, 15(21), 2674. https://doi.org/10.3390/diagnostics15212674

