A Hybrid Convolutional Neural Network–Long Short-Term Memory (CNN–LSTM)–Attention Model Architecture for Precise Medical Image Analysis and Disease Diagnosis
Abstract
1. Introduction
1.1. Overview
1.2. Advances in CNN-Based Medical Image Classification
1.3. Emerging Hybrid Architectures for Enhanced Feature Representation
1.4. Sequential and Attention-Based Models for Context-Aware Analysis
1.5. Motivation and Research Gaps
- Present a comprehensive CNN-LSTM-Attention hybrid model for medical image classification;
- Demonstrate the effectiveness and generalizability of MediVision across ten diverse medical imaging datasets;
- Investigate the ability of MediVision to seamlessly integrate and exploit spatial, temporal, and attention-based features;
- Showcase the scalability and adaptability of MediVision for a broad range of medical image analysis tasks;
- Conduct extensive comparative and statistical analyses across diverse medical imaging datasets to validate the consistency, reliability, and generalizability of MediVision.
2. Materials and Methods
2.1. Dataset Description and Customization
2.2. Data Augmentation and Normalization
2.3. The Proposed MediVision Model
2.3.1. CNNs Unit
2.3.2. Flattening and Reshaping Unit
2.3.3. LSTM Unit
2.3.4. Attention Mechanism
2.3.5. Skip Connection
2.3.6. Prediction Process
3. Results
3.1. Alzheimer’s Disease Dataset
3.2. Blood Cell Dataset
3.3. Bone Fracture Multi-Region Dataset
3.4. Brain Tumor Dataset
3.5. Breast Ultrasound Dataset
3.6. Chest CT Scans Dataset
3.7. Chest X-Ray Dataset
3.8. Diabetic Retinopathy Dataset
3.9. Kidney Diseases Dataset
3.10. Retinal OCT Dataset
4. Discussion
4.1. Model Interpretability via Explainable AI
4.2. Comparative Analysis
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Algorithm A1 Proposed MediVision Procedure |
Input: Image I with three channels , number of CNN layers N, LSTM units U, and number of classes K;
|
Output: Classified label y; |
References
- Li, M.; Jiang, Y.; Zhang, Y.; Zhu, H. Medical image analysis using deep learning algorithms. Front. Public Health 2023, 11, 1273253. [Google Scholar] [CrossRef]
- Rajula, H.S.R.; Verlato, G.; Manchia, M.; Antonucci, N.; Fanos, V. Comparison of conventional statistical methods with machine learning in medicine: Diagnosis, drug development, and treatment. Medicina 2020, 56, 455. [Google Scholar] [CrossRef] [PubMed]
- Kingslake, J.; Dias, R.; Dawson, G.R.; Simon, J.; Goodwin, G.M.; Harmer, C.J.; Morriss, R.; Brown, S.; Guo, B.; Dourish, C.T.; et al. The effects of using the PReDicT Test to guide the antidepressant treatment of depressed patients: Study protocol for a randomised controlled trial. Trials 2017, 18, 558. [Google Scholar] [CrossRef]
- Chen, C. Ascent of machine learning in medicine. Nat. Mater. 2019, 18, 407. [Google Scholar] [CrossRef]
- Saria, S.; Butte, A.; Sheikh, A. Better medicine through machine learning: What’s real, and what’s artificial? PLoS Med. 2018, 15, e1002721. [Google Scholar] [CrossRef]
- Churpek, M.M.; Yuen, T.C.; Winslow, C.; Meltzer, D.O.; Kattan, M.W.; Edelson, D.P. Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards. Crit. Care Med. 2016, 44, 368–374. [Google Scholar] [CrossRef]
- Hernesniemi, J.A.; Mahdiani, S.; Tynkkynen, J.A.; Lyytikäinen, L.P.; Mishra, P.P.; Lehtimäki, T.; Eskola, M.; Nikus, K.; Antila, K.; Oksala, N. Extensive phenotype data and machine learning in prediction of mortality in acute coronary syndrome–the MADDEC study. Ann. Med. 2019, 51, 156–163. [Google Scholar] [CrossRef]
- Paik, E.S.; Lee, J.W.; Park, J.Y.; Kim, J.H.; Kim, M.; Kim, T.J.; Choi, C.H.; Kim, B.G.; Bae, D.S.; Seo, S.W. Prediction of survival outcomes in patients with epithelial ovarian cancer using machine learning methods. J. Gynecol. Oncol. 2019, 30, e65. [Google Scholar] [CrossRef]
- Abràmoff, M.D.; Lou, Y.; Erginay, A.; Clarida, W.; Amelon, R.; Folk, J.C.; Niemeijer, M. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Investig. Ophthalmol. Vis. Sci. 2016, 57, 5200–5206. [Google Scholar] [CrossRef]
- Azizi, S.; Mustafa, B.; Ryan, F.; Beaver, Z.; Freyberg, J.; Deaton, J.; Loh, A.; Karthikesalingam, A.; Kornblith, S.; Chen, T.; et al. Big self-supervised models advance medical image classification. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; pp. 3478–3488. [Google Scholar]
- Xiao, C.; Choi, E.; Sun, J. Opportunities and challenges in developing deep learning models using electronic health records data: A systematic review. J. Am. Med. Inform. Assoc. 2018, 25, 1419–1428. [Google Scholar] [CrossRef]
- Shickel, B.; Tighe, P.J.; Bihorac, A.; Rashidi, P. Deep EHR: A survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE J. Biomed. Health Inform. 2017, 22, 1589–1604. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.; Steinbach, M.; Kumar, V.; Simon, G. Mining electronic health records (EHRs) A survey. ACM Comput. Surv. (CSUR) 2018, 50, 1–40. [Google Scholar] [CrossRef]
- Kim, H.E.; Cosa-Linan, A.; Santhanam, N.; Jannesari, M.; Maros, M.E.; Ganslandt, T. Transfer learning for medical image classification: A literature review. BMC Med. Imaging 2022, 22, 69. [Google Scholar] [CrossRef]
- Puttagunta, M.; Ravi, S. Medical image analysis based on deep learning approach. Multimed. Tools Appl. 2021, 80, 24365–24398. [Google Scholar] [CrossRef]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Annual Conference on Neural Information Processing Systems 2014, Montreal, QC, Canada, 8–13 December 2014. [Google Scholar]
- Chowdhary, C.L.; Mittal, M.; P, K.; Pattanaik, P.A.; Marszalek, Z. An efficient segmentation and classification system in medical images using intuitionist possibilistic fuzzy C-mean clustering and fuzzy SVM algorithm. Sensors 2020, 20, 3903. [Google Scholar] [CrossRef]
- Kumar, R.R.; Shankar, S.V.; Jaiswal, R.; Ray, M.; Budhlakoti, N.; Singh, K. Advances in Deep Learning for Medical Image Analysis: A Comprehensive Investigation. J. Stat. Theory Pract. 2025, 19, 9. [Google Scholar] [CrossRef]
- Kourounis, G.; Elmahmudi, A.A.; Thomson, B.; Hunter, J.; Ugail, H.; Wilson, C. Computer image analysis with artificial intelligence: A practical introduction to convolutional neural networks for medical professionals. Postgrad. Med. J. 2023, 99, 1287–1294. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Hu, Y.; Mo, G.; Wu, J. Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction. arXiv 2022, arXiv:2204.02623. [Google Scholar]
- de Sousa, P.M.; Carneiro, P.C.; Pereira, G.M.; Oliveira, M.M.; da Costa Junior, C.A.; de Moura, L.V.; Mattjie, C.; da Silva, A.M.; Macedo, T.A.A.; Patrocinio, A.C. Towards a Classification Model using CNN and Wavelets applied to COVID-19 CT images. Res. Soc. Dev. 2022, 11, e2411527919. [Google Scholar] [CrossRef]
- Barzekar, H.; Yu, Z. C-Net: A reliable convolutional neural network for biomedical image classification. Expert Syst. Appl. 2022, 187, 116003. [Google Scholar] [CrossRef]
- Zebari, N.A.; Mohammed, C.N.; Zebari, D.A.; Mohammed, M.A.; Zeebaree, D.Q.; Marhoon, H.A.; Abdulkareem, K.H.; Kadry, S.; Viriyasitavat, W.; Nedoma, J.; et al. A deep learning fusion model for accurate classification of brain tumours in Magnetic Resonance images. CAAI Trans. Intell. Technol. 2024, 9, 790–804. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Zhao, H.; Guo, Z.; Sun, D. CT image classification based on convolutional neural network. Neural Comput. Appl. 2021, 33, 8191–8200. [Google Scholar] [CrossRef]
- Hu, C.; Cao, N.; Zhou, H.; Guo, B. Medical Image Classification with a Hybrid SSM Model Based on CNN and Transformer. Electronics 2024, 13, 3094. [Google Scholar] [CrossRef]
- Kadhim, Y.A.; Guzel, M.S.; Mishra, A. A Novel hybrid machine learning-based system using deep learning techniques and meta-heuristic algorithms for various medical datatypes classification. Diagnostics 2024, 14, 1469. [Google Scholar] [CrossRef]
- Aydın, M.; Kuş, Z.; Akçelik, Z.K. A Hybrid CNN-Tree Based Model for Enhanced Image Classification Performance. In Proceedings of the 2024 32nd Signal Processing and Communications Applications Conference (SIU), Mersin, Türkiye, 15–18 May 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–4. [Google Scholar]
- Bouslihim, I.; Cherif, W.; Kissi, M. Application of a hybrid EfficientNet-SVM model to medical image classification. In Proceedings of the 2023 14th International Conference on Intelligent Systems: Theories and Applications (SITA), Casablanca, Morocco, 22–23 November 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar]
- Ajlouni, N.; Özyavaş, A.; Takaoğlu, M.; Takaoğlu, F.; Ajlouni, F. Medical image diagnosis based on adaptive Hybrid Quantum CNN. BMC Med. Imaging 2023, 23, 126. [Google Scholar] [CrossRef]
- Abbas, Q. An intelligent medical image classification system using few-shot learning. Concurr. Comput. Pract. Exp. 2023, 35, e7451. [Google Scholar] [CrossRef]
- Borji, A.; Kronreif, G.; Angermayr, B.; Hatamikia, S. Advanced hybrid deep learning model for enhanced evaluation of osteosarcoma histopathology images. Front. Med. 2025, 12, 1555907. [Google Scholar] [CrossRef]
- Hussain, T.; Shouno, H.; Hussain, A.; Hussain, D.; Ismail, M.; Mir, T.H.; Hsu, F.R.; Alam, T.; Akhy, S.A. EFFResNet-ViT: A fusion-based convolutional and vision transformer model for explainable medical image classification. IEEE Access 2025, 13, 54040–54068. [Google Scholar] [CrossRef]
- Salehin, I.; Islam, M.S.; Amin, N.; Baten, M.A.; Noman, S.; Saifuzzaman, M.; Yazmyradov, S. Real-Time Medical Image Classification with ML Framework and Dedicated CNN–LSTM Architecture. J. Sens. 2023, 2023, 3717035. [Google Scholar] [CrossRef]
- Gonçalves, T.; Rio-Torto, I.; Teixeira, L.F.; Cardoso, J.S. A survey on attention mechanisms for medical applications: Are we moving toward better algorithms? IEEE Access 2022, 10, 98909–98935. [Google Scholar] [CrossRef]
- Cheng, D.; Deng, J.; Xiao, J.; Yanyan, M.; Kang, J.; Gai, J.; Zhang, B.; Zhao, F. Attention based multi-scale nested network for biomedical image segmentation. Heliyon 2024, 10, e33892. [Google Scholar] [CrossRef]
- Liu, S.; Yue, W.; Guo, Z.; Wang, L. Multi-branch CNN and grouping cascade attention for medical image classification. Sci. Rep. 2024, 14, 15013. [Google Scholar] [CrossRef]
- Altwijri, O.; Alanazi, R.; Aleid, A.; Alhussaini, K.; Aloqalaa, Z.; Almijalli, M.; Saad, A. Novel deep-learning approach for automatic diagnosis of Alzheimer’s disease from MRI. Appl. Sci. 2023, 13, 13051. [Google Scholar] [CrossRef]
- Raptis, C.; Karavasilis, E.; Anastasopoulos, G.; Adamopoulos, A. Comparative Analysis of Conventional CNN v’s ImageNet Pretrained ResNet in Medical Image Classification. Information 2024, 15, 806. [Google Scholar] [CrossRef]
- Acevedo, A.; Alférez, S.; Merino, A.; Puigví, L.; Rodellar, J. Recognition of peripheral blood cell images using convolutional neural networks. Comput. Methods Programs Biomed. 2019, 180, 105020. [Google Scholar] [CrossRef]
- Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018, 172, 1122–1131. [Google Scholar] [CrossRef]
- Rahman, T.; Khandakar, A.; Kadir, M.A.; Islam, K.R.; Islam, K.F.; Mazhar, R.; Hamid, T.; Islam, M.T.; Kashem, S.; Mahbub, Z.B.; et al. Reliable tuberculosis detection using chest X-ray with deep learning, segmentation and visualization. IEEE Access 2020, 8, 191586–191601. [Google Scholar] [CrossRef]
- Bacellar, G.C.; Chandrappa, M.; Kulkarni, R.; Dey, S. COVID-19 chest X-ray image classification using deep learning. medRxiv 2021. [Google Scholar] [CrossRef]
- Asif, S.; Wenhui, Y.; Jin, H.; Jinhai, S. Classification of COVID-19 from chest X-ray images using deep convolutional neural network. In Proceedings of the 2020 IEEE 6th International Conference on Computer and Communications (ICCC), Chengdu, China, 11–14 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 426–433. [Google Scholar]
- Altayeb, M.; Arabiat, A.; Al-Ghraibah, A. Detection and classification of pneumonia using the Orange3 data mining tool. Int. J. Electr. Comput. Eng. (2088-8708) 2024, 14, 6894–6903. [Google Scholar] [CrossRef]
- Jassim, O.A.; Abed, M.J.; Saied, Z.H.S. Deep learning techniques in the cancer-related medical domain: A transfer deep learning ensemble model for lung cancer prediction. Baghdad Sci. J. 2024, 21, 1101. [Google Scholar] [CrossRef]
- Benítez, V.E.C.; Matto, I.C.; Román, J.C.M.; Noguera, J.L.V.; García-Torres, M.; Ayala, J.; Pinto-Roa, D.P.; Gardel-Sotomayor, P.E.; Facon, J.; Grillo, S.A. Dataset from fundus images for the study of diabetic retinopathy. Data Brief 2021, 36, 107068. [Google Scholar] [CrossRef]
- Bhandari, M.; Yogarajah, P.; Kavitha, M.S.; Condell, J. Exploring the capabilities of a lightweight CNN model in accurately identifying renal abnormalities: Cysts, stones, and tumors, using LIME and SHAP. Appl. Sci. 2023, 13, 3125. [Google Scholar] [CrossRef]
- AlMahadin, G.; Owida, H.A.; Al-Nabulsi, J.I.; Turab, N.; Al Hawamdeh, N. Automated detection of kidney masses lesions using a deep learning approach. Int. J. Artif. Intell. ISSN 2024, 2252, 2863. [Google Scholar] [CrossRef]
- Aldhyani, T.; Ahmed, Z.A.; Alsharbi, B.M.; Ahmad, S.; Al-Adhaileh, M.H.; Kamal, A.H.; Almaiah, M.; Nazeer, J. Diagnosis and detection of bone fracture in radiographic images using deep learning approaches. Front. Med. 2025, 11, 1506686. [Google Scholar] [CrossRef]
- Gholami, P.; Roy, P.; Parthasarathy, M.K.; Lakshminarayanan, V. OCTID: Optical coherence tomography image database. Comput. Electr. Eng. 2020, 81, 106532. [Google Scholar] [CrossRef]
- Hasan, N.; Ahmed, M.F.; Nasif, M.A.; Haq, M.R.; Rahman, M. Hybrid feature extraction approach for robust brain tumor classification: HOG, GLCM, and artificial neural network. In Proceedings of the 2024 6th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT), Dhaka, Bangladesh, 2–4 May 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1292–1297. [Google Scholar]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Lemley, J.; Bazrafkan, S.; Corcoran, P. Smart augmentation learning an optimal data augmentation strategy. IEEE Access 2017, 5, 5858–5869. [Google Scholar] [CrossRef]
- Moreno-Barea, F.J.; Jerez, J.M.; Franco, L. Improving classification accuracy using data augmentation on small data sets. Expert Syst. Appl. 2020, 161, 113696. [Google Scholar] [CrossRef]
- Singh, D.; Singh, B. Investigating the impact of data normalization on classification performance. Appl. Soft Comput. 2020, 97, 105524. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Wei, W.; Zhang, Y. Dynamic super-pixel normalization for robust hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5505713. [Google Scholar] [CrossRef]
- Chen, B.; Li, H.; Luo, W. Image processing operations identification via convolutional neural network. arXiv 2017, arXiv:1709.02908. [Google Scholar] [CrossRef]
- Hao, S.; Lee, D.H.; Zhao, D. Sequence to sequence learning with attention mechanism for short-term passenger flow prediction in large-scale metro system. Transp. Res. Part C Emerg. Technol. 2019, 107, 287–300. [Google Scholar] [CrossRef]
- Sethuraman, S.K.; Malaiyappan, N.; Ramalingam, R.; Basheer, S.; Rashid, M.; Ahmad, N. Predicting Alzheimer’s disease using deep neuro-functional networks with resting-state fMRI. Electronics 2023, 12, 1031. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Gil, J.M.; Kim, S.K. Attention-Driven Hybrid Ensemble Approach with Bayesian Optimization for Accurate Energy Forecasting in Jeju Island’s Renewable Energy System. IEEE Access 2025, 13, 7986–8010. [Google Scholar] [CrossRef]
- Asghar, R.; Kumar, S.; Hynds, P. Automatic classification of 10 blood cell subtypes using transfer learning via pre-trained convolutional neural networks. Informatics Med. Unlocked 2024, 49, 101542. [Google Scholar] [CrossRef]
- Singh, D.; Kumar, V.; Yadav, V.; Kaur, M. Deep neural network-based screening model for COVID-19-infected patients using chest X-ray images. Int. J. Pattern Recognit. Artif. Intell. 2021, 35, 2151004. [Google Scholar] [CrossRef]
- Mamun, M.; Mahmud, M.I.; Meherin, M.; Abdelgawad, A. Lcdctcnn: Lung cancer diagnosis of ct scan images using cnn based model. In Proceedings of the 2023 10th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 23–24 March 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 205–212. [Google Scholar]
- Wang, Z.; Yin, Y.; Shi, J.; Fang, W.; Li, H.; Wang, X. Zoom-in-net: Deep mining lesions for diabetic retinopathy detection. In Proceedings of the Medical Image Computing and Computer Assisted Intervention- MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, 11–13 September 2017; Proceedings, Part III 20. Springer: Berlin/Heidelberg, Germany, 2017; pp. 267–275. [Google Scholar]
- Dai, H.; Yang, Y.; Yue, X.; Chen, S. Improving retinal OCT image classification accuracy using medical pre-training and sample replication methods. Biomed. Signal Process. Control 2024, 91, 106019. [Google Scholar] [CrossRef]
- Khan, S.U.R.; Zhao, M.; Asif, S.; Chen, X. Hybrid-NET: A fusion of DenseNet169 and advanced machine learning classifiers for enhanced brain tumor diagnosis. Int. J. Imaging Syst. Technol. 2024, 34, e22975. [Google Scholar] [CrossRef]
Dataset Name | Modality | No. of Images | Classes | Subcategories |
---|---|---|---|---|
Alzheimer’s Disease [38] | MRI | 14,000 | 4 | Non-demented, Very Mild, |
Mild, Moderate | ||||
Breast Ultrasound [39] | Ultrasound | 8148 | 2 | Benign, Malignant |
Blood Cells [40] | Microscopic | 21,841 | 8 | Erythroblast, Neutrophil, Basophil, Eosinophil, Lymphocyte, |
Monocyte, Immature Granulocyte, Lymphocyte | ||||
Chest X-ray [41,42,43,44,45] | X-ray | 14,375 | 4 | Normal, COVID-19, Pneumonia, Tuberculosis |
Chest CT Scans [46] | CT | 4000 | 4 | Normal, Adenocarcinoma, Large Cell, Squamous Cell |
Diabetic Retinopathy [47] | Fundus | 13,000 | 2 | Diabetic, Non-Diabetic |
Kidney Diseases [48,49] | Ultrasound | 11,756 | 4 | Normal, Cyst, Stone, Tumor |
Bone Fracture [50] | X-ray | 9206 | 2 | Fractured, Non-Fractured |
Retinal OCT [51] | OCT | 6000 | 5 | Normal, AMRD, CSR, DR, MH |
Brain Tumor [52] | MRI | 10,500 | 3 | Glioma, Meningioma, Pituitary |
Augmentation Technique | Description |
---|---|
Rotation | Rotates the image by fixed angles (90°, 180°, 270°). |
Horizontal flip | Flips the image along the vertical axis. |
Vertical flip | Flips the image along the horizontal axis. |
Brightness adjustment | Randomly increases or decreases brightness. Factor range: 0.7–1.3. |
Contrast adjustment | Randomly enhances or reduces contrast. Factor range: 0.8–1.5. |
Datasets | Subclasses | Precision (%) | Recall (%) | F1-Score (%) | Accuracy (%) |
---|---|---|---|---|---|
Alzheimer’s disease | Mild Demented | 96.00 | 99.00 | 97.00 | 98.00 |
Moderate Demented | 100.00 | 99.00 | 100.00 | ||
Non-Demented | 98.00 | 98.00 | 98.00 | ||
Very Mild Demented | 97.00 | 95.00 | 96.00 | ||
Breast ultrasound | Benign | 97.00 | 98.00 | 97.00 | 97.45 |
Malignant | 98.00 | 97.00 | 97.00 | ||
Blood cell | Basophil | 93.00 | 95.00 | 94.00 | 95.45 |
Eosinophil | 99.00 | 99.00 | 99.00 | ||
Erythroblast | 98.00 | 94.00 | 96.00 | ||
Ig | 86.00 | 90.00 | 88.00 | ||
Lymphocyte | 97.00 | 96.00 | 97.00 | ||
Monocyte | 94.00 | 93.00 | 93.00 | ||
Neutrophil | 97.00 | 96.00 | 97.00 | ||
Platelet | 100.00 | 100.00 | 100.00 | ||
Chest X-ray | COVID19 | 97.00 | 97.00 | 97.00 | 97.31 |
Normal | 98.00 | 97.00 | 97.00 | ||
Pneumonia | 97.00 | 98.00 | 97.00 | ||
Tuberculosis | 97.00 | 98.00 | 98.00 | ||
Chest CT scans | Adenocarcinoma | 91.00 | 93.00 | 92.00 | 94.83 |
Large cell carcinoma | 97.00 | 96.00 | 97.00 | ||
Normal | 98.00 | 100.00 | 99.00 | ||
Squamous cell carcinoma | 93.00 | 91.00 | 92.00 | ||
Diabetic retinopathy | DR | 96.00 | 95.00 | 95.00 | 95.43 |
No DR | 94.00 | 95.00 | 95.00 | ||
Kidney diseases | Cyst | 100.00 | 100.00 | 100.00 | 98.36 |
Normal | 98.00 | 96.00 | 97.00 | ||
Stone | 96.00 | 98.00 | 97.00 | ||
Tumor | 100.00 | 99.00 | 100.00 | ||
Bone fracture | Fractured | 98.00 | 99.00 | 99.00 | 98.56 |
Not Fractured | 99.00 | 98.00 | 99.00 | ||
Retinal OCT | Age-related Macular Degeneration | 97.00 | 100.00 | 98.00 | 95.44 |
Central Serous Retinopathy | 98.00 | 92.00 | 95.00 | ||
Diabetic Retinopathy | 89.00 | 96.00 | 92.00 | ||
Macular Hole | 95.00 | 94.00 | 94.00 | ||
Normal | 98.00 | 96.00 | 97.00 | ||
Brain tumor | Glioma | 97.00 | 98.00 | 96.00 | 96.76 |
Meningioma | 98.00 | 96.00 | 98.00 | ||
Pituitary | 95.00 | 98.00 | 96.00 |
Dataset | Model | Accuracy (%) |
---|---|---|
Alzheimer’s disease | VGG16 | 85.13 |
VGG19 | 84.03 | |
ResNet50 | 75.13 | |
MediVision | 98.00 | |
Blood cell | VGG16 | 80.20 |
VGG19 | 82.73 | |
ResNet50 | 69.09 | |
MediVision | 95.45 | |
Breast ultrasound | VGG16 | 96.47 |
VGG19 | 97.29 | |
ResNet50 | 84.65 | |
MediVision | 97.45 | |
Chest X-ray | VGG16 | 96.00 |
VGG19 | 96.30 | |
ResNet50 | 92.12 | |
MediVision | 97.31 | |
Chest CT scans | VGG16 | 96.00 |
VGG19 | 95.67 | |
ResNet50 | 80.83 | |
MediVision | 96.17 | |
Diabetic retinopathy | VGG16 | 95.21 |
VGG19 | 95.18 | |
ResNet50 | 89.13 | |
MediVision | 95.43 | |
Kidney diseases | VGG16 | 97.05 |
VGG19 | 96.54 | |
ResNet50 | 90.08 | |
MediVision | 98.36 | |
Bone fracture multi-region | VGG16 | 98.42 |
VGG19 | 98.13 | |
ResNet50 | 93.80 | |
MediVision | 98.56 | |
Retinal OCT | VGG16 | 95.44 |
VGG19 | 95.22 | |
ResNet50 | 64.56 | |
MediVision | 95.44 | |
Brain tumor | VGG16 | 89.90 |
VGG19 | 86.79 | |
ResNet50 | 72.32 | |
MediVision | 96.76 |
Dataset | Reference | Method | Benchmark (%) | Proposed (%) |
---|---|---|---|---|
Alzheimer’s disease | Sethuraman et al. [60] | CNN | 96.61 | 98.00 |
Breast ultrasound | Raptis et al. [39] | ResNet-50 | 93.05 | 97.45 |
Blood cell | Asghar et al. [62] | EfficientNet | 94.70 | 95.45 |
Chest X-ray | Singh et al. [63] | VGG-16 | 94.70 | 97.31 |
Chest CT scans | Mamun et al. [64] | DenseNet | 92.00 | 94.83 |
Diabetic retinopathy | Wang et al. [65] | InceptionV3 | 91.10 | 95.43 |
Kidney diseases | Bhandari et al. [48] | MobileNet | 99.39 | 98.36 |
Bone fracture multi-region | Aldhwani et al. [50] | Xception | 97.35 | 98.56 |
Retinal OCT | Dai et al. [66] | AlexNet | 95.00 | 95.44 |
Brain tumor | Khan et al. [67] | Hybrid CNN-LSTM | 95.10 | 96.76 |
Model | Mean Accuracy (%) |
---|---|
VGG16 | 92.98 |
VGG19 | 92.79 |
ResNet50 | 81.17 |
MediVision | 96.89 |
Comparison | Mean Difference (%) | Paired t-Test (p) | Wilcoxon (p) | Holm Adj. (p) |
---|---|---|---|---|
MediVision vs. VGG16 | +3.91 | 0.0597 | 0.0039 | 0.0039 |
MediVision vs. VGG19 | +4.10 | 0.0489 | 0.0020 | 0.0059 |
MediVision vs. ResNet50 | +15.72 | 0.0006 | 0.0020 | 0.0039 |
Test | p-Value | |
---|---|---|
Friedman test | 27.00 | 0.000006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayat, M.T.; Allawi, Y.M.; Alamro, W.; Sultan, S.M.; Abadleh, A.; Kang, H.; Zreikat, A.I. A Hybrid Convolutional Neural Network–Long Short-Term Memory (CNN–LSTM)–Attention Model Architecture for Precise Medical Image Analysis and Disease Diagnosis. Diagnostics 2025, 15, 2673. https://doi.org/10.3390/diagnostics15212673
Hayat MT, Allawi YM, Alamro W, Sultan SM, Abadleh A, Kang H, Zreikat AI. A Hybrid Convolutional Neural Network–Long Short-Term Memory (CNN–LSTM)–Attention Model Architecture for Precise Medical Image Analysis and Disease Diagnosis. Diagnostics. 2025; 15(21):2673. https://doi.org/10.3390/diagnostics15212673
Chicago/Turabian StyleHayat, Md. Tanvir, Yazan M. Allawi, Wasan Alamro, Salman Md Sultan, Ahmad Abadleh, Hunseok Kang, and Aymen I. Zreikat. 2025. "A Hybrid Convolutional Neural Network–Long Short-Term Memory (CNN–LSTM)–Attention Model Architecture for Precise Medical Image Analysis and Disease Diagnosis" Diagnostics 15, no. 21: 2673. https://doi.org/10.3390/diagnostics15212673
APA StyleHayat, M. T., Allawi, Y. M., Alamro, W., Sultan, S. M., Abadleh, A., Kang, H., & Zreikat, A. I. (2025). A Hybrid Convolutional Neural Network–Long Short-Term Memory (CNN–LSTM)–Attention Model Architecture for Precise Medical Image Analysis and Disease Diagnosis. Diagnostics, 15(21), 2673. https://doi.org/10.3390/diagnostics15212673