Improved Clinical and Radiological Outcomes with Double-Cage Biportal Endoscopic Transforaminal Lumbar Interbody Fusion: A Comparative CT-Based Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Surgical Techniques
2.2.1. Bleeding Control and Irrigation
2.2.2. Working Channel and Soft Tissue Management
2.2.3. Decompression and Visualization
2.2.4. Disc Space Preparation
2.3. Clinical and Radiological Outcome Assessment
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MISTLIF | Minimally invasive transforaminal lumbar interbody fusion |
BETLIF | Biportal endoscopic transforaminal lumbar interbody fusion |
CT | Computed tomography |
MRI | Magnetic resonance image |
VAS | Visual analog scale |
ODI | Oswestry disability index |
JOA | Japanese orthopedic association |
UBE | Unilateral biportal endoscopy |
MCID | Minimum clinically important difference |
FDR | False discovery rate |
PEEK | Polyetheretherketone |
Ti | Titanium |
DBM | Demineralized bone matrix |
TCP | Tricalcium phosphate |
References
- Prabhu, M.C.; Jacob, K.C.; Patel, M.R.; Pawlowski, H.; Vanjani, N.N.; Singh, K. History and Evolution of the Minimally Invasive Transforaminal Lumbar Interbody Fusion. Neurospine 2022, 19, 479–491. [Google Scholar] [CrossRef]
- Foley, K.T.; Lefkowitz, M.A. Advances in minimally invasive spine surgery. Clin. Neurosurg. 2002, 49, 499–517. [Google Scholar] [PubMed]
- Lener, S.; Wipplinger, C.; Hernandez, R.N.; Hussain, I.; Kirnaz, S.; Navarro-Ramirez, R.; Schmidt, F.A.; Kim, E.; Hartl, R. Defining the MIS-TLIF: A Systematic Review of Techniques and Technologies Used by Surgeons Worldwide. Global Spine J. 2020, 10, 151S–167S. [Google Scholar] [CrossRef]
- Vazan, M.; Gempt, J.; Meyer, B.; Buchmann, N.; Ryang, Y.M. Minimally invasive transforaminal lumbar interbody fusion versus open transforaminal lumbar interbody fusion: A technical description and review of the literature. Acta Neurochir. 2017, 159, 1137–1146. [Google Scholar] [CrossRef]
- Lee, M.J.; Mok, J.; Patel, P. Transforaminal Lumbar Interbody Fusion: Traditional Open Versus Minimally Invasive Techniques. J. Am. Acad. Orthop. Surg. 2018, 26, 124–131. [Google Scholar] [CrossRef]
- Song, K.S.; Kim, P. Assessment of Clinical and Radiologic Outcomes of Biportal Endoscopic Posterior Cervical Inclinatory Foraminotomy: A Retrospective Cohort Study. J. Korean Neurosurg. Soc. 2025, 68, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Murillo, M.; Castro-Toral, J.; Bonome-Gonzalez, C.; de Mon-Montoliu, J.A. Endoscopic surgery for multilevel spinal stenosis: A comprehensive meta-analysis and subgroup analysis of uniportal and biportal approaches. Asian Spine J. 2025, 19, 133–147. [Google Scholar] [CrossRef] [PubMed]
- Park, D.Y.; Upfill-Brown, A.; Curtin, N.; Hamad, C.D.; Shah, A.; Kwon, B.; Kim, Y.H.; Heo, D.H.; Park, C.W.; Sheppard, W.L. Clinical outcomes and complications after biportal endoscopic spine surgery: A comprehensive systematic review and meta-analysis of 3673 cases. Eur. Spine J. 2023, 32, 2637–2646. [Google Scholar] [CrossRef]
- Pao, J.L.; Lin, S.M.; Chen, W.C.; Chang, C.H. Unilateral biportal endoscopic decompression for degenerative lumbar canal stenosis. J. Spine Surg. 2020, 6, 438–446. [Google Scholar] [CrossRef]
- Pao, J.L. Biportal Endoscopic Transforaminal Lumbar Interbody Fusion Using Double Cages: Surgical Techniques and Treatment Outcomes. Neurospine 2023, 20, 80–91. [Google Scholar] [CrossRef]
- Kang, M.S.; You, K.H.; Choi, J.Y.; Heo, D.H.; Chung, H.J.; Park, H.J. Minimally invasive transforaminal lumbar interbody fusion using the biportal endoscopic techniques versus microscopic tubular technique. Spine J. 2021, 21, 2066–2077. [Google Scholar] [CrossRef]
- Heo, D.H.; Lee, D.C.; Kim, H.S.; Park, C.K.; Chung, H. Clinical Results and Complications of Endoscopic Lumbar Interbody Fusion for Lumbar Degenerative Disease: A Meta-Analysis. World Neurosurg. 2021, 145, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Heo, D.H. Biportal endoscopic transforaminal lumbar interbody fusion using a large cage for degenerative spondylolisthesis with stenosis. Neurosurg. Focus Video 2024, 10, V15. [Google Scholar] [CrossRef]
- Park, D.Y.; Heo, D.H. The Use of Dual Direction Expandable Titanium Cage with Biportal Endoscopic Transforaminal Lumbar Interbody Fusion: A Technical Consideration with Preliminary Results. Neurospine 2023, 20, 110–118. [Google Scholar] [CrossRef]
- Park, M.K.; Park, S.A.; Son, S.K.; Park, W.W.; Choi, S.H. Clinical and radiological outcomes of unilateral biportal endoscopic lumbar interbody fusion (ULIF) compared with conventional posterior lumbar interbody fusion (PLIF): 1-year follow-up. Neurosurg. Rev. 2019, 42, 753–761. [Google Scholar] [CrossRef]
- Heo, D.H.; Park, C.K. Clinical results of percutaneous biportal endoscopic lumbar interbody fusion with application of enhanced recovery after surgery. Neurosurg. Focus 2019, 46, E18. [Google Scholar] [CrossRef]
- Yang, H.; Cheng, F.; Hai, Y.; Liu, Y.; Pan, A. Unilateral biportal endoscopic lumbar interbody fusion enhanced the recovery of patients with the lumbar degenerative disease compared with the conventional posterior procedures: A systematic review and meta-analysis. Front. Neurol. 2022, 13, 1089981. [Google Scholar] [CrossRef]
- Brusko, G.D.; Wang, M.Y. Endoscopic Lumbar Interbody Fusion. Neurosurg. Clin. N. Am. 2020, 31, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.J.; Choi, C.M.; Jung, J.T.; Lee, S.J.; Kim, Y.S. Learning Curve Associated with Complications in Biportal Endoscopic Spinal Surgery: Challenges and Strategies. Asian Spine J. 2016, 10, 624–629. [Google Scholar] [CrossRef] [PubMed]
- Park, S.M.; Kim, H.J.; Kim, G.U.; Choi, M.H.; Chang, B.S.; Lee, C.K.; Yeom, J.S. Learning Curve for Lumbar Decompressive Laminectomy in Biportal Endoscopic Spinal Surgery Using the Cumulative Summation Test for Learning Curve. World Neurosurg. 2019, 122, e1007–e1013. [Google Scholar] [CrossRef]
- Benson, J.C.; Lehman, V.T.; Sebastian, A.S.; Larson, N.A.; Nassr, A.; Diehn, F.E.; Wald, J.T.; Murthy, N.S. Successful fusion versus pseudarthrosis after spinal instrumentation: A comprehensive imaging review. Neuroradiology 2022, 64, 1719–1728. [Google Scholar] [CrossRef]
- Choudhri, T.F.; Mummaneni, P.V.; Dhall, S.S.; Eck, J.C.; Groff, M.W.; Ghogawala, Z.; Watters, W.C., 3rd; Dailey, A.T.; Resnick, D.K.; Sharan, A.; et al. Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 4: Radiographic assessment of fusion status. J. Neurosurg. Spine 2014, 21, 23–30. [Google Scholar] [CrossRef]
- Duits, A.A.A.; van Urk, P.R.; Lehr, A.M.; Nutzinger, D.; Reijnders, M.R.L.; Weinans, H.; Foppen, W.; Oner, F.C.; van Gaalen, S.M.; Kruyt, M.C. Radiologic Assessment of Interbody Fusion: A Systematic Review on the Use, Reliability, and Accuracy of Current Fusion Criteria. JBJS Rev. 2024, 12, e23.00065. [Google Scholar] [CrossRef] [PubMed]
- Parisien, A.; Wai, E.K.; ElSayed, M.S.A.; Frei, H. Subsidence of Spinal Fusion Cages: A Systematic Review. Int. J. Spine Surg. 2022, 16, 1103–1118. [Google Scholar] [CrossRef]
- Fujibayashi, S.; Takemoto, M.; Izeki, M.; Takahashi, Y.; Nakayama, T.; Neo, M. Does the formation of vertebral endplate cysts predict nonunion after lumbar interbody fusion? Spine 2012, 37, E1197–E1202. [Google Scholar] [CrossRef]
- Sasaki, M.; Umegaki, M.; Fukunaga, T.; Hijikata, Y.; Banba, Y.; Matsumoto, K.; Miyao, Y. Vertebral Endplate Cyst Formation in Relation to Properties of Interbody Cages. Neurospine 2021, 18, 170–176. [Google Scholar] [CrossRef]
- Goh, G.S.; Liow, M.H.L.; Ling, Z.M.; Soh, R.C.C.; Guo, C.M.; Yue, W.M.; Tan, S.B.; Chen, J.L. Severity of Preoperative Myelopathy Symptoms Affects Patient-reported Outcomes, Satisfaction, and Return to Work After Anterior Cervical Discectomy and Fusion for Degenerative Cervical Myelopathy. Spine 2020, 45, 649–656. [Google Scholar] [CrossRef]
- Parker, S.L.; Adogwa, O.; Paul, A.R.; Anderson, W.N.; Aaronson, O.; Cheng, J.S.; McGirt, M.J. Utility of minimum clinically important difference in assessing pain, disability, and health state after transforaminal lumbar interbody fusion for degenerative lumbar spondylolisthesis. J. Neurosurg. Spine 2011, 14, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Champagne, P.O.; Walsh, C.; Diabira, J.; Plante, M.E.; Wang, Z.; Boubez, G.; Shedid, D. Sagittal Balance Correction Following Lumbar Interbody Fusion: A Comparison of the Three Approaches. Asian Spine J. 2019, 13, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Soliman, M.A.R.; Aguirre, A.O.; Kuo, C.C.; Ruggiero, N.; Azmy, S.; Khan, A.; Ghannam, M.M.; Almeida, N.D.; Jowdy, P.K.; Mullin, J.P.; et al. Vertebral bone quality score independently predicts cage subsidence following transforaminal lumbar interbody fusion. Spine J. 2022, 22, 2017–2023. [Google Scholar] [CrossRef] [PubMed]
- Ackfeld, T.; Schmutz, T.; Guechi, Y.; Le Terrier, C. Blood Transfusion Reactions-A Comprehensive Review of the Literature including a Swiss Perspective. J. Clin. Med. 2022, 11, 2859. [Google Scholar] [CrossRef] [PubMed]
- Heo, D.H.; Hong, Y.H.; Lee, D.C.; Chung, H.J.; Park, C.K. Technique of biportal endoscopic transforaminal lumbar interbody fusion. Neurospine 2020, 17, S129–S137. [Google Scholar] [CrossRef]
- Tatsumi, R.; Lee, Y.P.; Khajavi, K.; Taylor, W.; Chen, F.; Bae, H. In vitro comparison of endplate preparation between four mini-open interbody fusion approaches. Eur. Spine J. 2015, 24 (Suppl. 3), 372–377. [Google Scholar] [CrossRef]
- Wu, H.; Shan, Z.; Zhao, F.; Cheung, J.P.Y. Poor Bone Quality, Multilevel Surgery, and Narrow and Tall Cages Are Associated with Intraoperative Endplate Injuries and Late-onset Cage Subsidence in Lateral Lumbar Interbody Fusion: A Systematic Review. Clin. Orthop. Relat. Res. 2022, 480, 163–188. [Google Scholar] [CrossRef]
- Yao, Y.C.; Chou, P.H.; Lin, H.H.; Wang, S.T.; Liu, C.L.; Chang, M.C. Risk Factors of Cage Subsidence in Patients Received Minimally Invasive Transforaminal Lumbar Interbody Fusion. Spine 2020, 45, E1279–E1285. [Google Scholar] [CrossRef]
- Levy, H.A.; Pinter, Z.W.; Reed, R.; Harmer, J.R.; Raftery, K.; Nathani, K.R.; Katsos, K.; Bydon, M.; Fogelson, J.L.; Elder, B.D.; et al. Transforaminal lumbar interbody fusion subsidence: Computed tomography analysis of incidence, associated risk factors, and impact on outcomes. J. Neurosurg. Spine 2024, 41, 463–472. [Google Scholar] [CrossRef]
- Zhao, L.; Xie, T.; Wang, X.; Yang, Z.; Pu, X.; Lu, Y.; Zeng, J. Clinical and radiological evaluation of cage subsidence following oblique lumbar interbody fusion combined with anterolateral fixation. BMC Musculoskelet. Disord. 2022, 23, 214. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Ma, C.; Li, B.; Ren, B.; Liu, J.; Huang, Y.; Qiao, L.; Mao, K. Biomechanical studies of different numbers and positions of cage implantation on minimally invasive transforaminal interbody fusion: A finite element analysis. Front. Surg. 2022, 9, 1011808. [Google Scholar] [CrossRef]
- Yu, Y.; Robinson, D.L.; Ackland, D.C.; Yang, Y.; Lee, P.V.S. Influence of the geometric and material properties of lumbar endplate on lumbar interbody fusion failure: A systematic review. J. Orthop. Surg. Res. 2022, 17, 224. [Google Scholar] [CrossRef]
- Yuan, W.; Kaliya-Perumal, A.K.; Chou, S.M.; Oh, J.Y. Does Lumbar Interbody Cage Size Influence Subsidence? A Biomechanical Study. Spine 2020, 45, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Ushirozako, H.; Hasegawa, T.; Ebata, S.; Ohba, T.; Oba, H.; Mukaiyama, K.; Shimizu, S.; Yamato, Y.; Ide, K.; Shibata, Y.; et al. Impact of sufficient contact between the autograft and endplate soon after surgery to prevent nonunion at 12 months following posterior lumbar interbody fusion. J. Neurosurg. Spine 2020, 33, 796–805. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.C. “Pin Method” for Endoscopic Lumbar Interbody Fusion. J. Neurol. Surg. Cent. Eur. Neurosurg. 2022, 83, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Leveque, J.A.; Drolet, C.E.; Nemani, V.; Krause, K.L.; Shen, J.; Rathore, A.; Baig, Y.; Louie, P.K. The Impact of Surgical Approach on Sagittal Plane Alignment in Patients Undergoing One- or Two-Level Fusions for Degenerative Pathology: A Multicenter Radiographic Evaluation 6 Months Following Surgery. World Neurosurg. 2022, 164, e311–e317. [Google Scholar] [CrossRef]
- Hu, Y.H.; Niu, C.C.; Hsieh, M.K.; Tsai, T.T.; Chen, W.J.; Lai, P.L. Cage positioning as a risk factor for posterior cage migration following transforaminal lumbar interbody fusion—An analysis of 953 cases. BMC Musculoskelet. Disord. 2019, 20, 260. [Google Scholar] [CrossRef]
- Kim, J.T.; Shin, M.H.; Lee, H.J.; Choi, D.Y. Restoration of lumbopelvic sagittal alignment and its maintenance following transforaminal lumbar interbody fusion (TLIF): Comparison between straight type versus curvilinear type cage. Eur. Spine J. 2015, 24, 2588–2596. [Google Scholar] [CrossRef]
- Deng, L.; Wang, C.; Sun, H.; Lv, N.; Shen, Y.; Qian, Z.; Liu, H. Effects of Cage Implantation Depth on Sagittal Parameters and Functional Outcomes in Posterior Lumbar Interbody Fusion for the Treatment of L4–L5 Lumbar Degenerative Spondylolisthesis. Orthop. Surg. 2024, 16, 1327–1335. [Google Scholar] [CrossRef] [PubMed]
MISTLIF | BETLIF | |
---|---|---|
Approach | Wiltse’s mini-open approach | Wiltse’s mini-open approach |
Skin incision | Lateral pedicle line | 1–2 cm lateral to lateral pedicle line |
Surgical wounds | Two | Three, including one 5 mm surgical wound as the endoscopic portal |
Wound size | 3–4 cm for 1-segment fusion 5–6 cm for 2-segment fusion | 2–2.5 cm for 1-segment fusion 3–4 cm for 2-segment fusion |
Retractor | Expandable tubular retractor system, 26 mm diameter, 4–8 cm length | No retractor |
Medium | Air | Normal saline |
Equipment | ||
Visualization | Loupe or surgical microscopic system | Endoscopic system of 720 p, 1080 p, or 4K resolution, 0 or 30-degree endoscope |
Light source | Fiber optic light cable attached to the retractor | Light cable from the endoscopic system |
Hemostasis | Unipolar and bipolar electrocautery | Radiofrequency wand |
Bone removal | High speed drill system | High speed drill system |
Disc preparation | Serial disc shavers, curettes, and pituitary rongeurs | Blunt disc spreaders, endplate strippers, pituitary rongeurs |
Operation table | Radiolucent spine table | Radiolucent spine table |
Localization | Fluoroscopy | Fluoroscopy |
Implants | ||
Fusion cages | Two, one PEEK and one composite Ti-PEEK cage | Two, one PEEK and one composite Ti-PEEK cage |
Bone grafts | 3 mL of DBM putty and autograft from facetectomy and laminotomy, β-TCP blocks | 3 mL of DBM putty and autograft from facetectomy and laminotomy, β-TCP blocks |
Fixation | Fluoroscopy guide Transpedicle screws with reduction extension barrel, bilateral fixation | Fluoroscopy guide Transpedicle screws with reduction extension barrel, bilateral fixation |
MISTLIF | BETLIF | p-Value | q-Value * | |
---|---|---|---|---|
Patient number | 90 | 89 | ||
Age (year) | 66.9 ± 9.6 | 64.7 ± 8.7 | 0.110 † | 0.181 |
Gender | ||||
Male | 28 (31.1%) | 17 (19.1%) | 0.093 ‡ | 0.164 |
Female | 62 (68.9%) | 72 (80.9%) | ||
Diagnosis | ||||
Degenerative spondylolisthesis | 77 (85.6%) | 83 (92.2%) | 0.238 ‡ | 0.337 |
Degenerative disc disease | 10 (11.1%) | 4 (4.4%) | ||
Degenerative scoliosis | 3 (3.3%) | 4 (4.4%) | ||
Fusion segments | 114 | 114 | ||
1-segment | 69 (60.5%) | 66 (57.9%) | 0.780 ‡ | 0.865 |
2-segment | 18 (15.8%) | 21 (18.4%) | ||
3-segment | 3 (2.6%) | 2 (1.8%) | ||
Follow-up (months) | 18.8 ± 6.4 | 17.9 ± 5.8 | 0.325 † | 0.436 |
MISTLIF | BETLIF | p-Value | q-Value * | |
---|---|---|---|---|
Patient number | 90 | 89 | ||
Blood transfusion | 13 (14.7%) | 0 (0%) | <0.001 ‡ | <0.001 |
Hospital stay (days) | 7.4 ± 2.3 | 5.7 ± 1.1 | <0.001 † | <0.001 |
Pre-OP clinical status | ||||
VAS back pain | 5.4 ± 2.8 | 5.2 ± 3.1 | 0.651 † | 0.772 |
VAS leg pain | 6.2 ± 2.8 | 6.3 ± 2.5 | 0.801 † | 0.869 |
ODI | 47.5 ± 15.3 | 46.7 ± 17.0 | 0.741 † | 0.859 |
JOA score | 14.8 ± 5.2 | 15.6 ± 6.3 | 0.361 † | 0.460 |
Post-OP clinical status | ||||
VAS (back) | 1.8 ± 2.1 | 1.7 ± 2.1 | 0.750 † | 0.850 |
VAS (leg) | 1.9 ± 2.2 | 1.7 ± 2.0 | 0.525 † | 0.653 |
ODI | 23.5 ± 14.4 | 12.7 ± 16.1 | <0.001 † | <0.001 |
JOA score | 20.6 ± 2.5 | 26.4 ± 3.2 | <0.001 † | <0.001 |
MCID attainment rate | ||||
VAS (back) | 66 (73.3%) | 75 (84.3%) | 0.074 ‡ | 0.140 |
VAS (leg) | 87 (96.7%) | 82 (92.1%) | 0.187 ‡ | 0.272 |
ODI | 66 (73.3%) | 74 (83.1%) | 0.112 ‡ | 0.179 |
JOA score | 80 ((88.9%) | 87 (97.7%) | 0.018 ‡ | 0.042 |
Complications | ||||
Dural tear | 1 (1.11%) | 1 (1.12%) | 0.994 ‡ | 0.994 |
Pedicle screw malposition | 0 | 2 (2.25%) | 0.153 ‡ | 0.230 |
Epidural hematoma | 2 (2.22%) | 2 (2.25%) | 0.991 ‡ | 1.031 |
Transient neurological symptom | 2 (2.22%) | 2 (2.25%) | 0.991 ‡ | 1.031 |
Pedicle screw loosening | 3 (3.33%) | 0 | 0.082 ‡ | 0.149 |
Reoperation | 1 (1.11%) | 2 (2.25%) | 0.554 ‡ | 0.673 |
Pre-OP | Post-OP | p-Value | q-Value * | |
---|---|---|---|---|
Functional Outcomes | ||||
MISTLIF | ||||
VAS back pain | 5.4 ± 2.8 | 1.8 ± 2.1 | <0.001 | <0.001 |
VAS leg pain | 6.2 ± 2.8 | 1.9 ± 2.2 | <0.001 | <0.001 |
ODI | 47.5 ± 15.3 | 23.5 ± 14.4 | <0.001 | <0.001 |
JOA score | 14.8 ± 5.2 | 20.6 ± 2.5 | <0.001 | <0.001 |
BETLIF | ||||
VAS back pain | 5.2 ± 3.1 | 1.7 ± 2.1 | <0.001 | <0.001 |
VAS leg pain | 6.3 ± 2.5 | 1.7 ± 2.0 | <0.001 | <0.001 |
ODI | 46.7 ± 17.0 | 12.7 ± 16.1 | <0.001 | <0.001 |
JOA score | 15.6 ± 6.3 | 26.4 ± 3.2 | <0.001 | <0.001 |
Radiological Outcomes | ||||
MISTLIF | ||||
Disc height (mm) | 5.9 ± 1.0 | 9.6 ± 1.0 | <0.001 | <0.001 |
Segmental lordosis (°) | 7.7 ± 1.8 | 13.9 ± 4.4 | <0.001 | <0.001 |
BETLIF | ||||
Disc height (mm) | 6.1 ± 1.7 | 10.5 ± 0.9 | <0.001 | <0.001 |
Segmental lordosis (°) | 7.3 ± 2.7 | 12.9 ± 3.7 | <0.001 | <0.001 |
MISTLIF | BETLIF | p-Value | q-Value * | |
---|---|---|---|---|
Patient number | 90 | 89 | ||
Fusion segments | 114 | 114 | ||
Disc height (mm) | ||||
Pre-operative | 5.9 ± 1.0 | 6.1 ± 1.7 | 0.340 † | 0.445 |
Post-operative | 9.6 ± 1.0 | 10.5 ± 0.9 | <0.001 † | <0.001 |
Disc height restoration | 3.7 ± 1.5 | 4.4 ± 1.5 | 0.004 † | 0.005 |
Segmental lordosis (°) | ||||
Pre-operative | 7.7 ± 1.8 | 7.3 ± 2.7 | 0.246 † | 0.339 |
Post-operative | 13.9 ± 4.4 | 12.9 ± 3.7 | 0.102 † | 0.173 |
Angle change | 6.2 ± 3.7 | 6.1 ± 2.0 | 0.822 † | 0.937 |
Segments with CT scan | 51 (56.7%) | 60 (67.4%) | 0.140 ‡ | 0.216 |
Bridging bone | ||||
Sagittal plane | 45 (88.2%) | 58 (96.6%) | 0.027 ‡ | 0.053 |
Coronal plane | 42 (82.4%) | 56 (93.3%) | 0.025 ‡ | 0.053 |
Successful fusion | 42 (82.4%) | 56 (93.3%) | 0.025 ‡ | 0.053 |
Bridwell grading | ||||
Grade I | 10 (19.6%) | 44 (73.3%) | <0.001 ‡ | <0.001 |
Grade II | 32 (62.8%) | 12 (20.0%) | ||
Grade III | 8 (15.6%) | 3 (5.0%) | ||
Grade IV | 1 (2.0%) | 1 (1.7%) | ||
Subchondral osteolysis | 27 (52.9%) | 8 (13.3%) | <0.001 ‡ | <0.001 |
Cage subsidence | ||||
No subsidence | 44 (86.3%) | 57 (95.0%) | 0.023 ‡ | 0.051 ‡ |
Subsidence | 7 (13.7%) | 3 (5.0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.-H.; Pao, J.-L. Improved Clinical and Radiological Outcomes with Double-Cage Biportal Endoscopic Transforaminal Lumbar Interbody Fusion: A Comparative CT-Based Study. Diagnostics 2025, 15, 2652. https://doi.org/10.3390/diagnostics15202652
Huang Y-H, Pao J-L. Improved Clinical and Radiological Outcomes with Double-Cage Biportal Endoscopic Transforaminal Lumbar Interbody Fusion: A Comparative CT-Based Study. Diagnostics. 2025; 15(20):2652. https://doi.org/10.3390/diagnostics15202652
Chicago/Turabian StyleHuang, Yu-Hao, and Jwo-Luen Pao. 2025. "Improved Clinical and Radiological Outcomes with Double-Cage Biportal Endoscopic Transforaminal Lumbar Interbody Fusion: A Comparative CT-Based Study" Diagnostics 15, no. 20: 2652. https://doi.org/10.3390/diagnostics15202652
APA StyleHuang, Y.-H., & Pao, J.-L. (2025). Improved Clinical and Radiological Outcomes with Double-Cage Biportal Endoscopic Transforaminal Lumbar Interbody Fusion: A Comparative CT-Based Study. Diagnostics, 15(20), 2652. https://doi.org/10.3390/diagnostics15202652