Cervical Oculopathy: The Cervical Spine Etiology of Visual Symptoms and Eye Diseases—A Hypothesis Exploring Mechanisms Linking the Neck and the Eye
Abstract
1. Introduction
2. Methods
3. The Modern Lifestyle’s Effects on the Cervical Spine
3.1. Facedown/Forward Head Lifestyle and Global Increase in Visual Impairment
3.2. Facedown/Forward Head Lifestyle Leads to Ligamentous Cervical Instability
4. Text Neck, Computer Vision Syndrome, Neck Pain, and Pathology
Visual Symptoms in Ehlers-Danlos Syndrome and Whiplash Suggest Ligamentous Etiology
5. Cervical Lordotic Curve
6. Documenting Cervical Structural and Dynamic Carotid Sheath Compression
6.1. Cervical Structural Imaging
6.2. Dynamic Carotid Sheath Compression
7. Internal Jugular Vein Compression
Intracranial Pressure and Intraocular Pressure Affected by IJV Compression
8. Cerebrospinal Fluid Disruption Evidenced by Elevated Optic Nerve Sheath Diameter
9. Noninvasive Testing for Elevated Intracranial Pressure
10. Is Increased ONSD a Cause of Blurry Vision and Optic Nerve Dysfunction and Degeneration?
Optic Nerve Head Mechanical Stresses
11. Leaky Eye: Disruption of Blood–Ocular Barriers and Increased Pressures from Internal Jugular Vein Compression
12. The “Double Eye Squish”
13. Ocular Dysautonomia—Superior Cervical Sympathetic Ganglion Hyperactivity
14. Stages of Eye Degeneration Due to LCI
15. Cervical Structural Treatment for Eye Conditions?
16. Limitations and Future Directions
17. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ANS | Autonomic nervous system |
| BRB | Blood–retinal barrier |
| C6AI | C6-atlas interval |
| CBCT | Cone beam computed tomography |
| CCJ | Craniocervical junction |
| CD | Cervical dysstructure |
| CNS | Central nervous system |
| COP | Cervical oculopathy |
| CSA | Cross-sectional area |
| CSF | Cerebrospinal fluid |
| CT | Computed tomography |
| CVS | Computer vision syndrome |
| DOC | Depth of curve |
| DMX | digital motion X-ray |
| FDFH | Facedown/forward head |
| FHP | Forward head posture |
| hEDS | Hypermobile Ehlers-Danlos syndrome |
| ICH | Intracranial hypertension |
| ICP | Intracranial pressure |
| IJV | Internal jugular vein |
| IOP | Intraocular pressure |
| LCI | Ligamentous cervical instability |
| MRI | Magnetic resonance imaging |
| ONH | Optic nerve head |
| ONSD | Optic nerve sheath diameter |
| SAS | Subarachnoid space |
| SCSG | Superior cervical sympathetic ganglion |
| TCD | Transcranial Doppler |
| TLPD | Translaminar pressure difference |
| TNS | Text neck syndrome |
References
- Demmin, D.L.; Silverstein, S.M. Visual Impairment and Mental Health: Unmet Needs and Treatment Options. Clin. Ophthalmol. 2020, 14, 4229–4251. [Google Scholar] [CrossRef]
- Wang, M.T.M.; Muntz, A.; Mamidi, B.; Wolffsohn, J.S.; Craig, J.P. Modifiable Lifestyle Risk Factors for Dry Eye Disease. Cont. Lens Anterior Eye 2021, 44, 101409. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Vision Infographic: Global Perspective on Health Trends. 2024. Available online: https://iris.who.int/server/api/core/bitstreams/74b12494-f213-4b5b-9533-18442147e1fb/content (accessed on 1 August 2025).
- Ccami-Bernal, F.; Soriano-Moreno, D.R.; Romero-Robles, M.A. Prevalence of Computer Vision Syndrome: A Systematic Re-View and Meta-Analysis. J. Optom. 2024, 17, 100482. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Pu, Y.; Chen, J. Global Prevalence, Trend and Projection of Myopia in Children and Adolescents from 1990 to 2050: A Comprehensive Systematic Review and Meta-Analysis. Br. J. Ophthalmol. 2025, 109, 362–371. [Google Scholar] [CrossRef]
- Almutairi, H.; Alhammad, L.; Aldossari, B.; Alonazi, A. Prevalence and Interrelationships of Screen Time, Visual Disorders, and Neck Pain Among University Students: A Cross-Sectional Study at Majmaah University. Healthcare 2024, 12, 2067. [Google Scholar] [CrossRef] [PubMed]
- Ha, A.; Lee, Y.J.; Lee, M.; Shim, S.R.; Kim, Y.K. Digital Screen Time and Myopia: A Systematic Review and Dose-Response Me-Ta-Analysis. JAMA Netw. Open 2025, 8, e2460026. [Google Scholar] [CrossRef]
- Langelaan, M.; Boer, M.R.; Nispen, R.M.; Wouters, B.; Moll, A.C.; Rens, G.H. Impact of Visual Impairment on Quality of Life: A Comparison with Quality of Life in the General Population and with Other Chronic Conditions. Ophthalmic Epidemiol. 2007, 14, 119–126. [Google Scholar] [CrossRef]
- Hauser, R.A.; Griffiths, M.; Watterson, A.; D, M.; Rawlings, B. Objective Test Findings in Patients with Chronic Eye Symp-Toms Seeking Care at an Outpatient Neck Center: Ligamentous Cervical Instability Etiology? Front. Neurol. 2025, 16, 1576315. [Google Scholar] [CrossRef]
- Leung, K.K.Y.; Chu, E.C.-P.; Chin, W.L.; Mok, S.T.K.; Chin, E.W.S. Cervicogenic Visual Dysfunction: An Understanding of Its Pathomechanism. Med. Pharm. Rep. 2023, 96, 16–19. [Google Scholar] [CrossRef]
- Russek, L.N.; Block, N.P.; Byrne, E.; Chalela, S.; Chan, C.; Comerford, M.; Frost, N.; Hennessey, S.; McCarthy, A.; Nicholson, L.L.; et al. Presentation and Physical Therapy Management of Upper Cervical Instability in Patients with Symptomatic Generalized Joint Hypermobility: International Expert Consensus Recommendations. Front. Med. 2022, 9, 1072764. [Google Scholar] [CrossRef]
- Freeman, M.D.; Katz, E.A.; Rosa, S.L.; Gatterman, B.G.; Strömmer, E.M.F.; Leith, W.M. Diagnostic Accuracy of Videofluoroscopy for Symptomatic Cervical Spine Injury Following Whiplash Trauma. Int. J. Environ. Res. Public Health 2020, 17, 1693. [Google Scholar] [CrossRef]
- Hauser, R.A.; Matias, D.; Rawlings, B. The Ligamentous Cervical Instability Etiology of Human Disease from the Forward Head-Facedown Lifestyle: Emphasis on Obstruction of Fluid Flow into and out of the Brain. Front. Neurol. 2024, 15, 1430390. [Google Scholar] [CrossRef]
- Fargen, K.M.; Midtlien, J.P.; Margraf, C.R.; Hui, F.K. Idiopathic intracranial hypertension pathogenesis: The jugular hypothesis. Interv. Neuroradiol. 2024, 8, 15910199241270660. [Google Scholar] [CrossRef]
- Bruno, A.; Corbett, J.J.; Biller, J.; Adams, H.P., Jr.; Qualls, C. Transient Monocular Visual Loss Patterns and Associated Vascular Ab-Normalities. Stroke 1990, 21, 34–39. [Google Scholar] [CrossRef]
- Hibert, M.L.; Chen, Y.I.; Ohringer, N. Altered Blood Flow in the Ophthalmic and Internal Carotid Arteries in Patients with Age-Related Macular Degeneration Measured Using Noncontrast MR Angiography at 7T. Am. J. Neuroradiol. 2021, 42, 1653–1660. [Google Scholar] [CrossRef]
- Neto, A.C.L.; Bittar, R.; Gattas, G.S.; Bor-Seng-Shu, E.; Oliveira, M.d.L.; Monsanto, R.d.C.; Bittar, L.F. Pathophysiology and Diagnosis of Vertebrobasilar Insufficiency: A Review of the Literature. Int. Arch. Otorhinolaryngol. 2017, 21, 302–307. [Google Scholar] [CrossRef]
- Fulop, G.A.; Ahire, C.; Csipo, T.; Tarantini, S.; Kiss, T.; Balasubramanian, P.; Yabluchanskiy, A.; Farkas, E.; Toth, A.; Nyúl-Tóth, Á.; et al. Cerebral Venous Congestion Promotes Blood-Brain Barrier Disruption and Neuroinflamma-Tion, Impairing Cognitive Function in Mice. Geroscience 2019, 41, 575–589. [Google Scholar] [CrossRef] [PubMed]
- Lüddecke, R.; Lindner, T.; Forstenpointner, J.; Baron, R.; Jansen, O.; Gierthmühlen, J. Should You Stop Wearing Neckties?-Wearing a Tight Necktie Reduces Cerebral Blood Flow. Neuroradiology 2018, 60, 861–864. [Google Scholar] [CrossRef]
- Liu, K.C.; Fleischman, D.; Lee, A.G.; Killer, H.E.; Chen, J.J.; Bhatti, M.T. Current Concepts of Cerebrospinal Fluid Dynamics and the Translaminar Cribrosa Pressure Gradient: A Paradigm of Optic Disk Disease. Surv. Ophthalmol. 2020, 65, 48–66. [Google Scholar] [CrossRef] [PubMed]
- Siaudvytyte, L.; Januleviciene, I.; Ragauskas, A.; Bartusis, L.; Meiliuniene, I.; Siesky, B.; Harris, A. The Difference in Translaminar Pressure Gradient and Neuroretinal Rim Area in Glaucoma and Healthy Subjects. J. Ophthalmol. 2014, 2014, 937360. [Google Scholar] [CrossRef]
- Waisberg, E.; Ong, J.; Masalkhi, M.; Paladugu, P.; Lee, A.G.; Berdahl, J. Precisional Modulation of Translaminar Pressure Gradients for Ophthalmic Diseases. Eur. J. Ophthalmol. 2024, 34, 1328–1336. [Google Scholar] [CrossRef] [PubMed]
- Estacia, C.T.; Filho, A.R.G.; da Silveira, I.B.E.; Da Cas, M.E.; Gameiro, R.R. Radius-Maumenee Syndrome (Idiopathic Dilated Episcleral Vessels. GMS Ophthalmol. Cases 2024, 14, Doc15. [Google Scholar] [CrossRef]
- Sheng, Y.; Zhu, L. The Crosstalk between Autonomic Nervous System and Blood Vessels. Int. J. Physiol. Pathophysiol. Pharmacol. 2018, 10, 17–28. [Google Scholar]
- Kim, J.M.; Park, K.H.; Han, S.Y.; Kim, K.S.; Kim, D.M.; Kim, T.W.; Caprioli, J. Changes in Intraocular Pressure after Pharmacologic Pupil Dilation. BMC Ophthalmol. 2012, 12, 53. [Google Scholar] [CrossRef] [PubMed]
- Bradley, M.M.; Miccoli, L.; Escrig, M.A.; Lang, P.J. The Pupil as a Measure of Emotional Arousal and Autonomic Activa-Tion. Psychophysiology 2008, 45, 602–607. [Google Scholar] [CrossRef]
- Strik, M.; Clough, M.; Solly, E.J.; Glarin, R.; White, O.B.; Kolbe, S.C.; Fielding, J. Brain Network Dynamics in People with Visual Snow Syndrome. Hum. Brain Mapp. 2023, 44, 1868–1875. [Google Scholar] [CrossRef]
- Bothwell, S.W.; Janigro, D.; Patabendige, A. Cerebrospinal Fluid Dynamics and Intracranial Pressure Elevation in Neurological Diseases. Fluids Barriers CNS 2019, 16, 9. [Google Scholar] [CrossRef]
- Baudouin, C.; Kolko, M.; Melik-Parsadaniantz, S.; Messmer, E.M. Inflammation in Glaucoma: From the Back to the Front of the Eye, and Beyond. Prog. Retin. Eye Res. 2021, 83, 100916. [Google Scholar] [CrossRef]
- Rossi, H.L.; Recober, A. Photophobia in primary headaches. Headache J. Head. Face Pain. 2015, 55, 600–604. [Google Scholar] [CrossRef]
- Klein, A.; Schankin, C.J. Visual Snow Syndrome as a Network Disorder: A Systematic Review. Front. Neurol. 2021, 12, 724072. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.M.; Puledda, F. Visual Snow Syndrome and Migraine: A Review. Eye Lond. 2023, 37, 2374–2378. [Google Scholar] [CrossRef]
- Yuan, H.; Ye, F.; Zhou, Q. Relationship Between Atypical Symptoms of Degenerative Cervical Myelopathy and Segments of Spinal Cord Compression: Retrospective Observational Study. World Neurosurg. 2022, 161, e154–e161. [Google Scholar] [CrossRef]
- Mitsuoka, K.; Kikutani, T.; Sato, I. Morphological relationship between the superior cervical ganglion and cervical nerves in Japanese cadaver donors. Brain Behav. 2016, 7, e00619. [Google Scholar] [CrossRef]
- Moodley, A. Understanding Vision and the Brain. Community Eye Health 2016, 29, 61–63. [Google Scholar]
- Harris, A.; Guidoboni, G.; Siesky, B. Ocular Blood Flow as a Clinical Observation: Value, Limitations and Data Analy-Sis. Prog. Retin. Eye Res. 2020, 78, 100841. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.; Harris, A.; Wudunn, D.; Kheradiya, N.; Siesky, B. Dysfunctional Regulation of Ocular Blood Flow: A Risk Factor for Glaucoma? Clin. Ophthalmol. 2008, 2, 849–861. [Google Scholar] [CrossRef] [PubMed]
- Ashwini, D.L.; Raju, T.R. Autonomic Nervous System and Control of Visual Function. Ann. Neurosci. 2023, 30, 151–153. [Google Scholar] [CrossRef]
- Varma, R.; Vajaranant, T.S.; Burkemper, B. Visual Impairment and Blindness in Adults in the United States: Demographic and Geographic Variations From 2015 to 2050. JAMA Ophthalmol. 2016, 134, 802–809. [Google Scholar] [CrossRef]
- Holden, B.A.; Fricke, T.R.; Wilson, D.A.; Jong, M.; Naidoo, K.S.; Sankaridurg, P.; Wong, T.Y.; Naduvilath, T.; Resnikoff, S. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042. [Google Scholar] [CrossRef]
- Salahzadeh, Z.; Maroufi, N.; Ahmadi, A. Assessment of Forward Head Posture in Females:Observational and Photo-Grammetry Methods. J. Back. Musculoskelet. Rehabil. 2014, 27, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Fiebert, I.; Kistner, F.; Gissendanner, C.; DaSilva, C. Text Neck: An Adverse Postural Phenomenon. Work 2021, 69, 1261–1270. [Google Scholar] [CrossRef]
- Kim, S.Y.; Koo, S.J. Effect of Duration of Smartphone Use on Muscle Fatigue and Pain Caused by Forward Head Posture in Adults. J. Phys. Ther. Sci. 2016, 28, 1669–1672. [Google Scholar] [CrossRef]
- Statista Daily Time Spent with Digital Media According to U.S. Consumers. 2023. Available online: https://www.statista.com/statistics/262340/daily-time-spent-with-digital-media-according-to-us-consumsers/ (accessed on 13 October 2025).
- Agarwal, R.; Tripathi, A.; Khan, I.A.; Agarwal, M. Effect of Increased Screen Time on Eyes during COVID-19 Pandemic. J. Fam. Med. Prim. Care 2022, 11, 3642–3647. [Google Scholar] [CrossRef] [PubMed]
- Savitri, P.A.; Faidlullah, H.Z. Risk Factors and Prevalence of Forward Head Posture Complaints Due to Use of Devices during Pandemic. In Annual Physiotherapy Scientific Meeting Proceeding; Ikatan Fisioterapi Indonesia: Jakarta, Indonesia, 2022. [Google Scholar]
- Korpinen, L.; Pääkkönen, R.; Gobba, F. Self-Reported Neck Symptoms and Use of Personal Computers, Laptops and Cell Phones among Finns Aged 18–65. Ergonomics 2013, 56, 1134–1146. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, M.; Zhu, D.; Cao, Y. Smartphone Overuse and Visual Impairment in Children and Young Adults: Systematic Review and Meta-Analysis. J. Med. Internet Res. 2020, 22, e21923. [Google Scholar] [CrossRef]
- Noonari, M.; Noonari, S.; Samejo, B. Investigating the Association of Computer Vision Syndrome with Forward-Headed and Kyphotic Posture among Undergraduate Information Technology Students. J. Mod. Rehabil. 2024, 18, 427–435. [Google Scholar] [CrossRef]
- Zhuang, L.; Wang, L.; Xu, D.; Wang, Z.; Liang, R. Association between Excessive Smartphone Use and Cervical Disc Degeneration in Young Patients Suffering from Chronic Neck Pain. J. Orthop. Sci. 2021, 26, 110–115. [Google Scholar] [CrossRef]
- Patwardhan, A.G.; Havey, R.M.; Khayatzadeh, S.; Muriuki, M.G.; Voronov, L.I.; Carandang, G.; Nguyen, N.-L.; Ghanayem, A.J.; Schuit, D.; Patel, A.A.M.; et al. Postural Consequences of Cervical Sagittal Imbalance: A Novel Laboratory Model. Spine 2015, 40, 783–792. [Google Scholar] [CrossRef]
- Kang, J.H.; Park, R.Y.; Lee, S.J.; Kim, J.Y.; Yoon, S.R.; Jung, K.I. The Effect of the Forward Head Posture on Postural Balance in Long Time Computer Based Worker. Ann. Rehabil. Med. 2012, 36, 98–104. [Google Scholar] [CrossRef]
- Wang, K.; Deng, Z.; Li, Z.; Wang, H.; Zhan, H. The Influence of Natural Head Position on the Cervical Sagittal Alignment. J. Heal. Eng. 2017, 2017, 2941048. [Google Scholar] [CrossRef]
- Panjabi, M.M. The Stabilizing System of the Spine. Part I. Function, Dysfunction, Adaptation, and Enhancement. J. Spinal Disord. 1992, 5, 383–389. [Google Scholar] [CrossRef]
- Kim, C.W.; Perry, A.; Garfin, S.R. Spinal Instability: The Orthopedic Approach. Semin. Musculoskelet. Radiol. 2005, 9, 77–87. [Google Scholar] [CrossRef]
- Hauser, R.A.; Matias, D.; Rawlings, B.R. Cervicovagopathy: Ligamentous Cervical Instability and Dysstructure as a Potential Etiology for Vagus Nerve Dysfunction in the Cause of Human Symptoms and Diseases. Front. Neurol. 2025, 16, 1572863. [Google Scholar] [CrossRef]
- Flanagan, M.F. The Role of the Craniocervical Junction in Craniospinal Hydrodynamics and Neurodegenerative Conditions. Neurol. Res. Int. 2015, 2015, 794829. [Google Scholar] [CrossRef]
- Zhou, D.; Ding, J.; Asmaro, K.; Pan, L.; Ya, J.; Yang, Q.; Fan, C.; Ding, Y.; Ji, X.; Meng, R. Clinical Characteristics and Neuroimaging Findings in Internal Jugular Venous Outflow Disturbance. Thromb. Haemost. 2019, 119, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Ding, J.Y.; Ya, J.Y.; Pan, L.Q.; Yan, F.; Yang, Q.; Ding, Y.C.; Ji, X.M.; Meng, R. Understanding jugular venous outflow disturbance. CNS Neurosci. Ther. 2018, 24, 473–482. [Google Scholar] [CrossRef]
- Greene, P.F. Internal jugular vein compression: A benign entity or an underappreciated phenomenon? eNeurologicalSci 2025, 40, 100577. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.N.; Zhou, Y.Y.; Hua, D.H.; Yang, J.Y.; Hu, M.L.; Xing, Y.Q. Vagal Nerve Stimulation Attenuates Ischemia-Reperfusion In-Duced Retina Dysfunction in Acute Ocular Hypertension. Front. Neurosci. 2019, 13, 87. [Google Scholar] [CrossRef]
- Wen, H.J. Acute Bilateral Vision Deficit as the Initial Symptom in Guillain-Barre Syndrome: A Case Report. Exp. Ther. Med. 2018, 16, 2712–2716. [Google Scholar] [CrossRef] [PubMed]
- Thambisetty, M.; Lavin, P.J.; Newman, N.J.; Biousse, V. Fulminant idiopathic intracranial hypertension. Neurology 2007, 68, 229–232. [Google Scholar] [CrossRef]
- Tsantili, A.R.; Chrysikos, D.; Troupis, T. Text Neck Syndrome: Disentangling a New Epidemic. Acta Medica Acad. 2022, 51, 123–127. [Google Scholar] [CrossRef]
- Teo, C.; Giffard, P.; Johnston, V.; Treleaven, J. Computer Vision Symptoms in People with and without Neck Pain. Appl. Erg. 2019, 80, 50–56. [Google Scholar] [CrossRef]
- Gowrisankaran, S.; Sheedy, J.E. Computer Vision Syndrome: A Review. Work 2015, 52, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, A.H.; Alemayehu, M.; Abere, G.; Mekonnen, T.H. Prevalence and Associated Factors of Computer Vision Syndrome Among Academic Staff in the University of Gondar, Northwest Ethiopia: An Institution-Based Cross-Sectional Study. Environ. Health Insights 2022, 16, 11786302221111865. [Google Scholar]
- Adane, F.; Alamneh, Y.M.; Desta, M. Computer Vision Syndrome and Predictors among Computer Users in Ethiopia: A System-Atic Review and Meta-Analysis. Trop. Med. Health 2022, 50, 26. [Google Scholar] [CrossRef]
- Turkistani, A.N.; Al-Romaih, A.; Alrayes, M.M.; Al Ojan, A.; Al-Issawi, W. Computer Vision Syndrome among Saudi Population: An Evaluation of Prevalence and Risk Factors. J. Fam. Med. Prim. Care 2021, 10, 2313–2318. [Google Scholar] [CrossRef]
- Brown, J.J. Ocular Effects of Whiplash. Clevel. State Law Rev. 1963, 12, 258–275. [Google Scholar]
- Vasavada, A.N.; Danaraj, J.; Siegmund, G.P. Head and Neck Anthropometry, Vertebral Geometry and Neck Strength in Height-Matched Men and Women. J. Biomech. 2008, 41, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Saboor, A. Computer Vision Syndrome: Prevalence and Associated Risk Factors Among Computer-Using Bank Workers in Pakistan. Turk. J. Ophthalmol. 2022, 52, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Asanad, S.; Bayomi, M.; Brown, D. Ehlers-Danlos Syndromes and Their Manifestations in the Visual System. Front. Med. Lausanne 2022, 9, 996458. [Google Scholar] [CrossRef]
- Doolan, B.J.; Lavallee, M.E.; Hausser, I.; Schubart, J.R.; Pope, F.M.; Seneviratne, S.L.; Winship, I.M.; Burrows, N.P. Extracutaneous Features and Complications of the Ehlers-Danlos Syndromes: A Systemic Review. Front. Med. 2023, 10, 1053466. [Google Scholar] [CrossRef]
- Gharbiya, M.; Moramarco, A.; Castori, M.; Parisi, F.; Celletti, C.; Marenco, M.; Mariani, I.; Grammatico, P.; Camerota, F. Ocular Features in Joint Hypermobility Syndrome/Ehlers-Danlos Syndrome Hypermobility Type: A Clinical and in Vivo Confocal Microscopy Study. Am. J. Ophthalmol. 2012, 154, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Henderson, F.C.; Schubart, J.R.; Narayanan, M.V.; Tuchman, K.; Mills, S.E.; Poppe, D.J.; Koby, M.B.; Rowe, P.C.; Francomano, C.A. Craniocervical Instability in Patients with Ehlers-Danlos Syndromes: Outcomes Analysis Following Occipito-Cervical Fusion. Neurosurg. Rev. 2024, 47, 27. [Google Scholar] [CrossRef]
- Castori, M. Ehlers-Danlos Syndrome, Hypermobility Type: An Underdiagnosed Hereditary Connective Tissue Disorder with Mucocutaneous, Articular, and Systemic Manifestations. ISRN Dermatol. 2012, 2012, 751768. [Google Scholar] [CrossRef] [PubMed]
- Treleaven, J.; Takasaki, H. Characteristics of Visual Disturbances Reported by Subjects with Neck Pain. Man. Ther. 2014, 19, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, M.K.; Kongsted, A.; Carstensen, T.; Jensen, T.S.; Kasch, H. Revisiting Risk-Stratified Whiplash-Exposed Patients 12 to 14 Years After Injury. Clin. J. Pain. 2020, 36, 923–931. [Google Scholar] [CrossRef]
- Astrup, J.; Gyntelberg, F. The Whiplash Disease Reconsidered. Front. Neurol. 2022, 13, 821097. [Google Scholar] [CrossRef]
- Alhusuny, A.; Cook, M.; Khalil, A.; Johnston, V. Visual Symptoms, Neck/Shoulder Problems and Associated Factors among Sur-Geons Performing Minimally Invasive Surgeries (MIS): A Comprehensive Survey. Int. Arch. Occup. Environ. Health 2021, 94, 959–979. [Google Scholar] [CrossRef]
- Alhusuny, A.; Cook, M.; Khalil, A.; Hill, A.; Johnston, V. The Relationship between Visual Impairments and Activity of the Neck/Shoulder Muscles among Surgeons during Simulated Surgical Tasks. Surg. Endosc. 2022, 36, 5326–5338. [Google Scholar] [CrossRef]
- Kaiser, J.T.; Reddy, V.; Launico, M.V.; Lugo-Pico, J.G. Anatomy, Head and Neck: Cervical Vertebrae. In StatPearls; StatPearls Publishing: St. Petersburg/Tampa, FL, USA, 2023. [Google Scholar]
- Patel, P.D.; Arutyunyan, G.; Plusch, K.; Vaccaro, A., Jr.; Vaccaro, A.R. A Review of Cervical Spine Alignment in the Normal and De-Generative Spine. J. Spine Surg. 2020, 6, 106–123. [Google Scholar] [CrossRef]
- Goel, A. Indicators of atlantoaxial instability. J. Craniovertebral Junction Spine 2021, 12, 103–106. [Google Scholar] [CrossRef]
- Been, E.; Shefi, S.; Soudack, M. Cervical Lordosis: The Effect of Age and Gender. Spine J. 2017, 17, 880–888. [Google Scholar] [CrossRef]
- Radcliff, K.; Rubin, T.; Reitman, C.A. Normal Cervical Alignment. Semin. Spine Surg. 2011, 23, 159–164. [Google Scholar] [CrossRef]
- Siegmund, G.P.; Davis, M.B.; Quinn, K.P.; Hines, E.; Myers, B.S.; Ejima, S.; Ono, K.; Kamiji, K.; Yasuki, T.; Winkelstein, B.A. Head-Turned Postures Increase the Risk of Cervical Facet Capsule Injury during Whiplash. Spine 2008, 33, 1643–1649. [Google Scholar] [CrossRef]
- Yoon, S.Y.; Moon, H.I.; Lee, S.C.; Eun, N.L.; Kim, Y.W. Association between Cervical Lordotic Curvature and Cervical Muscle Cross-sectional Area in Patients with Loss of Cervical Lordosis. Clin. Anat. 2018, 31, 710–715. [Google Scholar] [CrossRef]
- Harman, K.; Hubley-Kozey, C.L.; Butler, H. Effectiveness of an Exercise Program to Improve Forward Head Posture in Normal Adults: A Randomized, Controlled 10-Week Trial. J. Man. Manip. Ther. 2005, 13, 163–176. [Google Scholar] [CrossRef]
- Goo, B.W.; Oh, J.H.; Kim, J.S.; Lee, M.Y. Effects of Cervical Stabilization with Visual Feedback on Craniovertebral Angle and Pro-Prioception for the Subjects with Forward Head Posture. Medicine 2024, 103, e36845. [Google Scholar] [CrossRef]
- Borden, A.G.B.; Rechtman, A.M.; Gershon-Cohen, J. The Normal Cervical Lordosis. Radiology 1960, 74, 806–809. [Google Scholar] [CrossRef]
- Hou, S.B.; Sun, X.Z.; Liu, F.Y. Relationship of Change in Cervical Curvature after Laminectomy with Lateral Mass Screw Fixation to Spinal Cord Shift and Clinical Efficacy. J. Neurol. Surg. Cent. Eur. Neurosurg. 2022, 83, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Öğrenci, A.; Koban, O.; Yaman, O.; Dalbayrak, S.; Yılmaz, M. The Effect of Technological Devices on Cervical Lordosis. Open Access Maced. J. Med. Sci. 2018, 6, 467–471. [Google Scholar] [CrossRef]
- Chu, E.C.P.; Lo, F.S.; Bhaumik, A. Plausible Impact of Forward Head Posture on Upper Cervical Spine Stability. J. Fam. Med. Prim. Care 2020, 9, 2517–2520. [Google Scholar] [CrossRef]
- Hauser, R.A. Hauser’s Laws on the Ligamentous Structural Causes of Chronic Disabling Symptoms of Human Diseases. On. J. Neur. Br. Disord. 2024, 7, 642–689. [Google Scholar] [CrossRef]
- Nasseh, I.; Al-Rawi, W. Cone Beam Computed Tomography. Dent. Clin. N. Am. 2018, 62, 361–391. [Google Scholar] [CrossRef] [PubMed]
- Baldino, G.; Girolamo, C.; Blasis, G.; Gori, A. Eagle Syndrome and Internal Carotid Artery Dissection: Description of Five Cases Treated in Two Italian Institutions and Review of the Literature. Ann. Vasc. Surg. 2020, 67, 565.e17–565.e24. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.A.; Riew, K.D.; Traynelis, V.C. Cervical Spine Deformity—Part 1: Biomechanics, Radiographic Parameters, and Classification. Neurosurgery 2017, 81, 197–203. [Google Scholar] [CrossRef]
- Anderst, W. In Vivo Cervical Spine Kinematics, Arthrokinematics and Disc Loading in Asymptomatic Control Subjects and Anterior Fusion Patients. 2014. Available online: https://d-scholarship.pitt.edu/22226/1/anderst_edt2014.pdf (accessed on 1 August 2025).
- Bonney, R.A.; Corlett, E.N. Head Posture and Loading of the Cervical Spine. Appl. Ergon. 2002, 33, 415–417. [Google Scholar] [CrossRef]
- Campbell, D.; Murphy, B.A.; Burkitt, J. Cervico-Ocular and Vestibulo-Ocular Reflexes in Subclinical Neck Pain and Healthy Individuals: A Cross-Sectional Study. Brain Sci. 2023, 13, 1603. [Google Scholar] [CrossRef]
- Liu, J.X.; Thornell, L.E.; Pedrosa-Domellöf, F. Muscle Spindles in the Deep Muscles of the Human Neck: A Morphological and Immunocytochemical Study. J. Histochem. Cytochem. 2003, 51, 175–186. [Google Scholar] [CrossRef]
- Treleaven, J. Sensorimotor Disturbances in Neck Disorders Affecting Postural Stability, Head and Eye Movement Control. Man. Ther. 2008, 13, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, L.; Dai, C.; Peng, B. Proprioceptive Cervicogenic Dizziness: A Narrative Review of Pathogenesis, Diagnosis, and Treatment. J. Clin. Med. 2022, 11, 6293. [Google Scholar] [CrossRef]
- Steilen, D.; Hauser, R.; Woldin, B.; Sawyer, S. Chronic Neck Pain: Making the Connection between Capsular Ligament Laxity and Cervical Instability. Open Orthop. J. 2014, 8, 326–345. [Google Scholar] [CrossRef]
- Endo, K.; Suzuki, H.; Nishimura, H.; Tanaka, H.; Shishido, T.; Yamamoto, K. Kinematic Analysis of the Cervical Cord and Cervical Canal by Dynamic Neck Motion. Asian Spine J. 2014, 8, 747–752. [Google Scholar] [CrossRef]
- Abdalkader, M.; Miller, M.I.; Klein, P. Differential Assessment of Internal Jugular Vein Stenosis in Patients Undergoing CT and MRI with Contrast. Tomography 2024, 10, 266–276. [Google Scholar] [CrossRef]
- Ahn, D.; Lee, G.J.; Sohn, J.H.; Kim, J.K. Prevalence and Characteristics of Vagus Nerve Variations on Neck Ultrasonography. Ultrasonography 2022, 41, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Giovagnorio, F.; Martinoli, C. Sonography of the Cervical Vagus Nerve: Normal Appearance and Abnormal Findings. Am. J. Roentgenol. 2001, 176, 745–749. [Google Scholar] [CrossRef]
- Abdelnaby, R.; Elsayed, M.; Mohamed, K.A.; Dardeer, K.T.; Sonbol, Y.T.; ELgenidy, A.; Barakat, M.H.; NasrEldin, Y.K.; Maier, A. Sonographic Reference Values of Vagus Nerve: A Systematic Review and Meta-Analysis. J. Clin. Neurophysiol. 2022, 39, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Pelz, J.O.; Belau, E.; Henn, P.; Hammer, N.; Classen, J.; Weise, D. Sonographic Evaluation of the Vagus Nerves: Protocol, Reference Values, and Side-to-Side Differences. Muscle Nerve 2017, 57, 766–771. [Google Scholar] [CrossRef] [PubMed]
- Sisini, F.; Tessari, M.; Gadda, G. An Ultrasonographic Technique to Assess the Jugular Venous Pulse: A Proof of Concept. Ultrasound Med. Biol. 2015, 41, 1334–1341. [Google Scholar] [CrossRef]
- Aljure, O.; Castillo-Pedraza, C.M.; Mitzova-Vladinov, G.; Maratea, E.A. Right Internal Jugular Vein Cross-Sectional Area: Is There an Optimal Level for Cannulation? J. Assoc. Vasc. Access 2015, 20, 22–25. [Google Scholar] [CrossRef]
- Yoon, H.-K.; Lee, H.-K.; Jeon, Y.-T.; Hwang, J.-W.; Lim, S.-M.; Park, H.-P. Clinical Significance of the Cross-Sectional Area of the Internal Jugular Vein. J. Cardiothorac. Vasc. Anesth. 2013, 27, 685–689. [Google Scholar] [CrossRef]
- Tartière, D.; Seguin, P.; Juhel, C.; Laviolle, B.; Mallédant, Y. Estimation of the Diameter and Cross-Sectional Area of the Internal Jugular Veins in Adult Patients. Crit. Care 2009, 13, R197. [Google Scholar] [CrossRef]
- Buch, K.; Groller, R.; Nadgir, R.N.; Fujita, A.; Qureshi, M.M.; Sakai, O. Variability in the Cross-Sectional Area and Narrowing of the Internal Jugular Vein in Patients Without Multiple Sclerosis. Am. J. Roentgenol. 2016, 206, 1082–1086. [Google Scholar] [CrossRef]
- Scerrati, A.; Norri, N.; Mongardi, L.; Dones, F.; Ricciardi, L.; Trevisi, G.; Menegatti, E.; Zamboni, P.; Cavallo, M.A.; De Bonis, P. Styloidogenic-Cervical Spondylotic Internal Jugular Venous Compression, a Vascular Disease Related to Several Clinical Neurological Manifestations: Diagnosis and Treatment—A Comprehensive Literature Review. Ann. Transl. Med. 2021, 9, 718. [Google Scholar] [CrossRef]
- Ball, A.K.; Clarke, C.E. Idiopathic intracranial hypertension. Lancet Neurol. 2006, 5, 433–442. [Google Scholar] [CrossRef]
- Giuseffi, V.; Wall, M.; Siegel, P.Z.; Rojas, P.B. Symptoms and Disease Associations in Idiopathic Intracranial Hypertension (Pseudotumor Cerebri): A Case-Control Study. Neurology 1991, 41, 239. [Google Scholar] [CrossRef]
- Zhou, D.; Meng, R.; Zhang, X.; Guo, L.; Li, S.; Wu, W.; Duan, J.; Song, H.; Ding, Y.; Ji, X. Intracranial Hypertension Induced by Internal Jugular Vein Stenosis can be Resolved by Stenting. Eur. J. Neurol. 2018, 25, 365-e13. [Google Scholar] [CrossRef]
- Doepp, F.; Schreiber, S.J.; Münster, T.; Rademacher, J.; Klingebiel, R.; Valdueza, J.M. How Does the Blood Leave the Brain? A Systematic Ultrasound Analysis of Cerebral Venous Drainage Patterns. Neuroradiology 2004, 46, 565–570. [Google Scholar] [CrossRef]
- Rasmussen, J.C.; Kwon, S.; Pinal, A. Assessing Lymphatic Route of CSF Outflow and Peripheral Lymphatic Contractile Activity during Head-down Tilt Using near-Infrared Fluorescence Imaging. Physiol. Rep. 2020, 8, e14375. [Google Scholar] [CrossRef]
- Shapiro, R.; Youngberg, A.S.; Rothman, S.L. The Differential Diagnosis of Traumatic Lesions of the Occipito-Atlanto-Axial Segment. Radiol. Clin. N. Am. 1973, 11, 505–526. [Google Scholar] [CrossRef]
- Petersingham, G.; Shrestha, N.; Elliott, M. Invasive surgical management of cervical internal jugular venous compression: A literature review. J. Clin. Neurosci. 2025, 137, 111304. [Google Scholar] [CrossRef]
- Schreiber, S.J.; Lurtzing, F.; Gotze, R.; Doepp, F.; Klingebiel, R.; Valdueza, J.M. Extrajugular Pathways of Human Cerebral Venous Blood Drainage Assessed by Duplex Ultrasound. J. Appl. Physiol. 2003, 94, 1802–1805. [Google Scholar] [CrossRef]
- Ding, J.; Zhou, D.; Pan, L.; Ya, J.; Liu, C.; Yan, F.; Fan, C.; Ding, Y.; Ji, X.; Meng, R. Cervical Spondylotic Internal Jugular Venous Compression Syndrome. CNS Neurosci. Ther. 2019, 26, 47–54. [Google Scholar] [CrossRef]
- Jayaraman, M.V.; Boxerman, J.L.; Davis, L.M.; Haas, R.A.; Rogg, J.M. Incidence of Extrinsic Compression of the Internal Jugular Vein in Unselected Patients Undergoing CT Angiography. Am. J. Neuroradiol. 2012, 33, 1247–1250. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, N.Y.; Domenico, G.; Gambaccini, M. Cerebral venous drainage through internal jugular vein. Veins Lymphat-Ics 2019, 8, 8379. [Google Scholar] [CrossRef]
- Farina, R.; Foti, P.V.; Pennisi, I. Stylo-Jugular Venous Compression Syndrome: Lessons Based on a Case Report. Am. J. Case Rep. 2021, 22, e932035. [Google Scholar] [CrossRef]
- Oushy, S.; Wald, J.T.; Janus, J. Dynamic Internal Jugular Vein Compression by Hypertrophic Hyoid Bone: Management and out-Comes. Cureus 2020, 12, e7445. [Google Scholar] [CrossRef]
- Simka, M.; Latacz, P.; Ludyga, T.; Kazibudzki, M.; Swierad, M.; Janas, P.; Piegza, J. Prevalence of Extracranial Venous Abnormalities: Results from a Sample of 586 Multiple Sclerosis Patients. Funct. Neurol. 2011, 26, 197–203. [Google Scholar]
- Kroeker, J.; Keith, J.; Carruthers, H. Investigating the Time-Lapsed Effects of Rigid Cervical Collars on the Dimensions of the Internal Jugular Vein. Clin. Anat. 2018, 32, 196–200. [Google Scholar] [CrossRef]
- Teng, C.; Gurses-Ozden, R.; Liebmann, J.M.; Tello, C.; Ritch, R. Effect of a Tight Necktie on Intraocular Pressure. Br. J. Ophthalmol. 2003, 87, 946–948. [Google Scholar] [CrossRef]
- Theelen, T.; Meulendijks, C.F.; Geurts, D.E.; Leeuwen, A.; Voet, N.B.; Deutman, A.F. Impact Factors on Intraocular Pressure Measurements in Healthy Subjects. Br. J. Ophthalmol. 2004, 88, 1510–1511. [Google Scholar] [CrossRef]
- Sparke, A.; Voss, S.; Benger, J. The Measurement of Tissue Interface Pressures and Changes in Jugular Venous Parameters Associated with Cervical Immobilisation Devices: A Systematic Review. Scand. J. Trauma. Resusc. Emerg. Med. 2013, 21, 81. [Google Scholar] [CrossRef]
- Kolb, J.C.; Summers, R.L.; Galli, R.L. Cervical collar-induced changes in intracranial pressure. Am. J. Emerg. Med. 1999, 17, 135–137. [Google Scholar] [CrossRef]
- Karason, S.; Reynisson, K.; Sigvaldason, K.; Sigurdsson, G.H. Evaluation of Clinical Efficacy and Safety of Cervical Trauma Collars: Differences in Immobilization, Effect on Jugular Venous Pressure, and Patient Comfort. Scand. J. Trauma. Resusc. Emerg. Med. 2014, 22, 37. [Google Scholar] [CrossRef]
- Ladny, M.; Smereka, J.; Ahuja, S.; Szarpak, L.; Ruetzler, K.; Ladny, J. Effect of 5 Different Cervical Collars on Optic Nerve Sheath Diameter: A Randomized Crossover Trial. Medicine 2020, 99, e19740. [Google Scholar] [CrossRef]
- Maissan, I.M.; Ketelaars, R.; Vlottes, B.; Hoeks, S.E.; Hartog, D.; Stolker, R.J. Increase in Intracranial Pressure by Application of a Rigid Cervical Collar: A Pilot Study in Healthy Volunteers. Eur. J. Emerg. Med. 2018, 25, e24–e28. [Google Scholar] [CrossRef] [PubMed]
- Raphael, J.H.; Chotai, R. Effects of the Cervical Collar on Cerebrospinal Fluid Pressure. Anaesthesia 1994, 49, 437–439. [Google Scholar] [CrossRef] [PubMed]
- Benveniste, H.; Lee, H.; Volkow, N.D. The Glymphatic Pathway: Waste Removal from the CNS via Cerebrospinal Fluid Transport. Neuroscientist 2017, 23, 454–465. [Google Scholar] [CrossRef]
- Massa, R.N.; Minutello, K.; Mesfin, F.B. Neuroanatomy, Cavernous Sinus; StatPearls Publishing: St. Petersburg/Tampa, FL, USA, 2023. [Google Scholar]
- Kiel, J.W. The Ocular Circulation. Colloq. Ser. Integr. Syst. Physiol. Mol. Funct. 2011, 3, 1–81. [Google Scholar] [CrossRef]
- Tejaswini, U.; Sivakumar, P.; Upadhyaya, S.; Venkatesh, R. Elevated Episcleral Venous Pressure and Its Implications: A Case of Radius-Maumenee Syndrome. Indian J. Ophthalmol. 2020, 68, 1683–1685. [Google Scholar] [CrossRef]
- Raviola, G. The Structural Basis of the Blood-Ocular Barriers. Exp. Eye Res. 1977, 25, 27–63. [Google Scholar] [CrossRef] [PubMed]
- Goel, M.; Picciani, R.G.; Lee, R.K.; Bhattacharya, S.K. Aqueous Humor Dynamics: A Review. Open Ophthalmol. J. 2010, 4, 52–59. [Google Scholar] [CrossRef]
- Ghate, D.; Kedar, S.; Havens, S. The Effects of Acute Intracranial Pressure Changes on the Episcleral Venous Pressure, Retinal Vein Diameter, and Intraocular Pressure in a Pig Model. Curr. Eye Res. 2020, 46, 524–531. [Google Scholar] [CrossRef]
- Arora, N.; McLaren, J.W.; Hodge, D.O.; Sit, A.J. Effect of Body Position on Epsicleral Venous Pressure in Healthy Subjects. Investig. Ophthalmol. Vis. Sci. 2017, 58, 5151–5156. [Google Scholar] [CrossRef] [PubMed]
- Bill, A. Uveoscleral Drainage of Aqueous Humor: Physiology and Pharmacology. Prog. Clin. Biol. Res. 1989, 312, 417–427. [Google Scholar]
- Guidoboni, G.; Harris, A.; Cassani, S. Intraocular Pressure, Blood Pressure, and Retinal Blood Flow Autoregulation: A Mathematical Model to Clarify Their Relationship and Clinical Relevance. Investig. Opthalmol. Vis. Sci. 2014, 55, 4105–4118. [Google Scholar] [CrossRef]
- Ichhpujani, P. Commentary: Idiopathic Elevated Episcleral Venous Pressure—Tension with Twisted Tortuousity. Indian J. Ophthalmol. 2022, 70, 3320–3321. [Google Scholar] [CrossRef] [PubMed]
- Mallemat, H.A.; Winters, E.M. Emergency Medicine; Saunders: London, UK, 2013; pp. 28–42. ISBN 978-1-4377-3548-2. [Google Scholar]
- Chayapinun, V.; Koratala, A.; Assavapokee, T. Seeing beneath the Surface: Harnessing Point-of-Care Ultrasound for Internal Jugular Vein Evaluation. World J. Cardiol. 2024, 16, 73–79. [Google Scholar] [CrossRef]
- Sajjadi, S.A.; Harirchian, M.H.; Sheikhbahaei, N.; Mohebbi, M.R.; Malekmadani, M.H.; Saberi, H. The Relation between Intracranial and Intraocular Pressures: Study of 50 Patients. Ann. Neurol. 2006, 59, 867–870. [Google Scholar] [CrossRef]
- Yavin, D.; Luu, J.; James, M.T. Diagnostic Accuracy of Intraocular Pressure Measurement for the Detection of Raised In-Tracraial Pressure: Meta-Analysis: A Systematic Review. J. Neurosurg. 2014, 121, 680–687. [Google Scholar] [CrossRef] [PubMed]
- Rossinelli, D.; Killer, H.E.; Meyer, P. Large-Scale Morphometry of the Subarachnoid Space of the Optic Nerve. Fluids Barriers CNS 2023, 20, 21. [Google Scholar] [CrossRef]
- Mathieu, E.; Gupta, N.; Ahari, A.; Zhou, X.; Hanna, J.; Yücel, Y.H. Evidence for Cerebrospinal Fluid Entry into the Optic Nerve via a Glymphatic Pathway. Investig. Ophthalmol. Vis. Sci. 2017, 58, 4784–4791. [Google Scholar] [CrossRef]
- Khasawneh, A.H.; Garling, R.J.; Harris, C.A. Cerebrospinal Fluid Circulation: What Do We Know and How Do We Know It? Brain Circ. 2018, 4, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Ebraheim, N.A.; Xu, R.; Ahmad, M.; Heck, B. The Effect of Atlas Anterior Translation and Rotation on Axis Canal Size. A Computer-Assisted Anatomic Study. Am. J. Orthop. 1998, 27, 29–33. [Google Scholar] [PubMed]
- Swapnil, A.M.; Islam, M.S.; Rahman, L.; Khalil, K.F.A.; Nijam, N. Idiopathic Intracranial Hypertension Without Papilledema: A Case Emphasizing the Diagnostic Value of Optic Nerve Sheath Ultrasound. Cureus 2025, 17, e88066. [Google Scholar] [CrossRef]
- Hua, Y.; Voorhees, A.P.; Sigal, I.A. Cerebrospinal Fluid Pressure: Revisiting Factors Influencing Optic Nerve Head Biome-Chanics. Investig. Ophthalmol. Vis. Sci. 2018, 59, 154–165. [Google Scholar] [CrossRef] [PubMed]
- Simon, M.J.; Iliff, J.J. Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflamma-tory disease. Biochim. Biophys. Acta 2016, 1862, 442–451. [Google Scholar] [CrossRef]
- Wang, X.; Lou, N.; Eberhardt, A. An Ocular Glymphatic Clearance System Removes β-Amyloid from the Rodent Eye. Sci. Transl. Med. 2020, 12, eaaw3210. [Google Scholar] [CrossRef]
- Sheng, J.; Li, Q.; Liu, T.; Wang, X. Cerebrospinal Fluid Dynamics along the Optic Nerve. Front. Neurol. 2022, 13, 931523. [Google Scholar] [CrossRef]
- Hu, R.; Holbrook, J.; Newman, N.J.; Biousse, V.; Bruce, B.B.; Qiu, D.; Oshinski, J.; Saindane, A.M. Cerebrospinal Fluid Pressure Reduction Results in Dynamic Changes in Optic Nerve Angle on Magnetic Resonance Imaging. J. Neuroophthalmol. 2019, 39, 35–40. [Google Scholar] [CrossRef]
- Chen, B.S.; Meyer, B.I.; Saindane, A.M.; Bruce, B.B.; Newman, N.J.; Biousse, V. Prevalence of Incidentally Detected Signs of Intra-Cranial Hypertension on Magnetic Resonance Imaging and Their Association with Papilledema. JAMA Neurol. 2021, 78, 718–725. [Google Scholar] [CrossRef]
- Beier, D.; Korsbæk, J.J.; Bsteh, G. Magnetic Resonance Imaging Signs of Idiopathic Intracranial Hypertension. JAMA Netw. Open 2024, 7, e2420138. [Google Scholar] [CrossRef]
- Brazis, P.W.; Lee, A.G. Elevated Intracranial Pressure and Pseudotumor Cerebri. Curr. Opin. Ophthalmol. 1998, 9, 27–32. [Google Scholar] [CrossRef]
- Xie, J.S.; Donaldson, L.; Margolin, E. Papilledema: A Review of Etiology, Pathophysiology, Diagnosis, and Management. Surv. Ophthalmol. 2022, 67, 1135–1159. [Google Scholar] [CrossRef]
- Dağdelen, K.; Ekici, M. Measuring Optic Nerve Sheath Diameter Using Ultrasonography in Patients with Idiopathic Intracra-Nial Hypertension. Arq. Neuropsiquiatr. 2022, 80, 580–585. [Google Scholar] [CrossRef]
- Richards, E.; Munakomi, S.; Mathew, D. Optic Nerve Sheath Ultrasound. In StatPearls; StatPearls Publishing: St. Petersburg/Tampa, FL, USA, 2023. [Google Scholar]
- Malky, I.E.; Aita, W.E.; Elkordy, A. Optic Nerve Sonographic Parameters in Idiopathic Intracranial Hypertension, Case-Control Study. Sci. Rep. 2025, 15, 1788. [Google Scholar] [CrossRef] [PubMed]
- Fernando, S.M.; Tran, A.; Cheng, W. Diagnosis of Elevated Intracranial Pressure in Critically Ill Adults: Systematic Re-View and Meta-Analysis. BMJ 2019, 366, l4225. [Google Scholar] [CrossRef]
- Lee, A.G.; Wall, M. Papilledema: Are We Any Nearer to a Consensus on Pathogenesis and Treatment? Curr. Neurol. Neurosci. Rep. 2012, 12, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Elsaid, N.; Ahmed, O.; Belal, T.; Razek, A.; Azab, A. Pathogenesis and Evaluation of the Effects of Idiopathic Intracranial Hy-Pertension on the Optic Nerves. Neuroophthalmology 2020, 44, 281–289. [Google Scholar] [CrossRef]
- Corbett, J.J.; Savino, P.J.; Thompson, H.S.; Kansu, T.; Schatz, N.J.; Orr, L.S.; Hopson, D. Visual Loss in Pseudotumor Cerebri. Follow-up of 57 Patients from Five to 41 Years and a Profile of 14 Patients with Permanent Severe Visual Loss. Arch. Neurol. 1982, 39, 461–474. [Google Scholar] [CrossRef] [PubMed]
- Bozdoğan, Z.; Şenel, E.; Özmuk, Ö.; Karataş, H.; Kurşun, O. Comparison of Optic Nerve Sheath Diameters Measured by Optic Ultrasonography Before and After Lumbar Puncture in Idiopathic Intracranial Hypertension Patients. Noro Psikiyatr. Ars. 2023, 60, 117–123. [Google Scholar] [CrossRef]
- Müller, S.J.; Henkes, E.; Gounis, M.J.; Felber, S.; Ganslandt, O.; Henkes, H. Non-Invasive Intracranial Pressure Monitoring. J. Clin. Med. 2023, 12, 2209. [Google Scholar] [CrossRef] [PubMed]
- Norager, N.H.; Olsen, M.H.; Pedersen, S.H.; Riedel, C.S.; Czosnyka, M.; Juhler, M. Reference Values for Intracranial Pressure and Lumbar Cerebrospinal Fluid Pressure: A Systematic Review. Fluids Barriers CNS 2021, 18, 19. [Google Scholar] [CrossRef]
- Geeraerts, T.; Launey, Y.; Martin, L. Ultrasonography of the Optic Nerve Sheath May Be Useful for Detecting Raised Intra-Cranial Pressure after Severe Brain Injury. Intensive Care Med. 2007, 33, 1704–1711. [Google Scholar] [CrossRef]
- Dong, J.; Li, Q.; Wang, X.; Fan, Y. A Review of the Methods of Non-Invasive Assessment of Intracranial Pressure through Ocular Measurement. Bioengineering 2022, 9, 304. [Google Scholar] [CrossRef]
- Bansal, A.; Tiwari, L.K.; Kumar, P.; Jain, R. Optic Nerve Sheath Diameter as a Non-Invasive Tool to Detect Clinically Relevant Raised Intracranial Pressure in Children: An Observational Analytical Study. BMJ Paediatr. Open 2024, 8, e002353. [Google Scholar] [CrossRef]
- Mirra, S.; Marfany, G.; Garcia-Fernàndez, J. Under Pressure: Cerebrospinal Fluid Contribution to the Physiological Homeo-Stasis of the Eye. Semin. Cell Dev. Biol. 2020, 102, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Naldi, A.; Provero, P.; Vercelli, A. Optic Nerve Sheath Diameter Asymmetry in Healthy Subjects and Patients with Intra-Cranial Hypertension. Neurol. Sci. 2020, 41, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Lochner, P.; Czosnyka, M.; Naldi, A.; Lyros, E.; Pelosi, P.; Mathur, S.; Fassbender, K.; Robba, C. Optic Nerve Sheath Diameter: Present and Future Perspectives for Neurologists and Critical Care Physicians. Neurol. Sci. 2019, 40, 2447–2457. [Google Scholar] [CrossRef]
- Ussahgij, W.; Toonpirom, W.; Munkong, W.; Lenghong, K.; Apiratwarakul, K. Optic Nerve Sheath Diameter Cutoff Point for Detection of Increased Intracranial Pressure in the Emergency Department. Open Access Maced. J. Med. Sci. 2020, 8, 62–65. [Google Scholar] [CrossRef]
- Kishk, N.A.; Ebraheim, A.M.; Ashour, A.S.; Badr, N.M.; Eshra, M.A. Optic Nerve Sonographic Examination to Predict Raised In-Tracranial Pressure in Idiopathic Intracranial Hypertension: The Cut-off Points. Neuroradiol. J. 2018, 31, 490–495. [Google Scholar] [CrossRef]
- Lee, S.J.; Choi, M.H.; Lee, S.E. Optic Nerve Sheath Diameter Change in Prediction of Malignant Cerebral Edema in Ischemic Stroke: An Observational Study. BMC Neurol. 2020, 20, 354. [Google Scholar] [CrossRef]
- Dubourg, J.; Javouhey, E.; Geeraerts, T.; Messerer, M.; Kassai, B. Ultrasonography of Optic Nerve Sheath Diameter for Detection of Raised Intracranial Pressure: A Systematic Review and Meta-Analysis. Intensive Care Med. 2011, 37, 1059–1068. [Google Scholar] [CrossRef]
- White, R.P.; Markus, H.S. Impaired Dynamic Cerebral Autoregulation in Carotid Artery Stenosis. Stroke 1997, 28, 1340–1344. [Google Scholar] [CrossRef]
- Mitchell, J. Vertebral Artery Blood Flow Velocity Changes Associated with Cervical Spine Rotation: A Meta-Analysis of the Evidence with Implications for Professional Practice. J. Man. Manip. Ther. 2009, 17, 46–57. [Google Scholar] [CrossRef]
- D’Andrea, A.; Conte, M.; Cavallaro, M. Transcranial Doppler Ultrasonography: From Methodology to Major Clinical Applications. World J. Cardiol. 2016, 8, 383–400. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, Y.Y.; Zhou, H.Y. Middle Cerebral Arterial Flow Changes on Transcranial Color and Spectral Doppler So-Nography in Patients with Increased Intracranial Pressure. J. Ultrasound Med. 2014, 33, 2131–2136. [Google Scholar] [CrossRef]
- Pradeep, R.; Gupta, D.; Shetty, N.; Bhushan, A.K.; Haskar, K.; Gogineni, S.; Mehta, A.; Javali, M.; Acharya, P.T.; Srinivasa, R. Transcranial Doppler for Monitoring and Evaluation of Idiopathic Intracranial Hypertension. J. Neurosci. Rural. Pract. 2020, 11, 309–314. [Google Scholar] [CrossRef]
- Pinillos, O.M.; Rodríguez, C.N.; Hakimi, R. Transcranial Doppler Ultrasound Pulsatility Index: Utility and Clinical Interpre-tation. In Neurosonology in Critical Care; Rodríguez, C.N., Baracchini, C., Mejia-Mantilla, J.H., Czosnyka, M., Suarez, J.I., Csiba, L., Puppo, C., Bartels, E., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Kaloria, N.; Panda, N.B.; Bhagat, H. Pulsatility Index Reflects Intracranial Pressure Better than Resistive Index in Patients with Clinical Features of Intracranial Hypertension. J. Neurosci. Rural. Pract. 2020, 11, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Ficarrotta, K.R.; Passaglia, C.L. Intracranial Pressure Modulates Aqueous Humour Dynamics of the Eye. J. Physiol. 2020, 598, 403–413. [Google Scholar] [CrossRef] [PubMed]
- VanderZee, B.; Shafer, B.M.; Berdahl, J.P. Intracranial Pressure and Its Relationship to Glaucoma. Curr. Ophthalmol. Rep. 2021, 9, 83–87. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Y.; Lu, Y.; Liu, D.; Xu, E.; Jia, J.; Yang, D.; Zhang, X.; Yang, H.; Ma, D.; et al. Intraocular Pressure vs Intracranial Pressure in Disease Conditions: A Prospective Cohort Study (Beijing iCOP Study). BMC Neurol. 2012, 12, 66. [Google Scholar] [CrossRef] [PubMed]
- Lashutka, M.K.; Chandra, A.; Murray, H.N.; Phillips, G.S.; Hiestand, B.C. The Relationship of Intraocular Pressure to Intracranial Pressure. Ann. Emerg. Med. 2004, 43, 585–591. [Google Scholar] [CrossRef]
- Roy Chowdhury, U.; Fautsch, M.P. Intracranial Pressure and Its Relationship to Glaucoma: Current Understanding and Future Directions. Med. Hypothesis Discov. Innov. Ophthalmol. J. 2015, 4, 71–80. [Google Scholar]
- Bozić, M.; Hentova Senćanin, P.; Branković, A.; Marjanović, I.; Dordević Jocić, J.; Senćanin, I. Effect of a Tight Necktie on Intraocular Pressure. Med. Pregl. 2012, 65, 13–17. [Google Scholar] [CrossRef]
- Bain, W.E.S.; Maurice, D.M. Physiological Variations in the Intraocular Pressure. Trans. Opthalmol Soc. UK 1959, 79, 249–260. [Google Scholar]
- Woodbury, P.B.; Ulinski, P.S. Conduction Velocity, Size and Distribution of Optic Nerve Axons in the Turtle, Pseudemys Scripta Elegans. Anat. Embryol. 1986, 174, 253–263. [Google Scholar] [CrossRef]
- Sumitomo, I.; Ide, K.; Iwama, K. Conduction Velocity of Rat Optic Nerve Fibers. Brain Res. 1989, 12, 261–264. [Google Scholar] [CrossRef]
- Hoffmann, J.; Kreutz, K.M.; Csapó-Schmidt, C. The Effect of CSF Drain on the Optic Nerve in Idiopathic Intracranial Hypertension. J. Headache Pain 2019, 20, 59. [Google Scholar] [CrossRef]
- Morgan, W.H.; Yu, D.Y.; Alder, V.A. The Correlation between Cerebrospinal Fluid Pressure and Retrolaminar Tissue Pressure. Investig. Ophthalmol. Vis. Sci. 1998, 39, 1419–1428. [Google Scholar]
- Downs, J.C.; Girkin, C.A. Lamina Cribrosa in Glaucoma. Curr. Opin. Ophthalmol. 2017, 28, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Cruz, N.F.S.; Santos, K.S.; Matuoka, M.L.; Kasahara, N. Translaminar Pressure Difference and Ocular Perfusion Pressure in Glaucomatous Eyes with Different Optic Disc Sizes. J. Ophthalmic Vis. Res. 2021, 16, 171–177. [Google Scholar] [CrossRef]
- Golzan, S.M.; Avolio, A.; Graham, S.L. Hemodynamic Interactions in the Eye: A Review. Ophthalmologica 2012, 228, 214–221. [Google Scholar] [CrossRef]
- Ren, R.; Jonas, J.B.; Tian, G.; Zhen, Y.; Ma, K.; Li, S.; Wang, H.; Li, B.; Zhang, X.; Wang, N. Cerebrospinal Fluid Pressure in Glaucoma. Ophthalmology 2010, 117, 259–266. [Google Scholar] [CrossRef]
- Rodriguez-Peralta, L.A. Hematic and Fluid Barriers in the Optic Nerve. J. Comp. Neurol. 1966, 126, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Spurlock, M.; An, W.; Reshetnikova, G. The Inflammasome-Dependent Dysfunction and Death of Retinal Ganglion Cells after Repetitive Intraocular Pressure Spikes. Cells 2023, 12, 2626. [Google Scholar] [CrossRef] [PubMed]
- Voorhees, A.P.; Jan, N.J.; Hua, Y.; Yang, B.; Sigal, I.A. Peripapillary Sclera Architecture Revisited: A Tangential Fiber Model and Its Biomechanical Implications. Acta Biomater. 2018, 79, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Waxman, S.; Wang, B. Interplay between Intraocular and Intracranial Pressure Effects on the Optic Nerve Head in Vivo. Exp. Eye Res. 2021, 213, 108809. [Google Scholar] [CrossRef]
- Siaudvytyte, L.; Januleviciene, I.; Daveckaite, A. Literature Review and Meta-Analysis of Translaminar Pressure Difference in Open-Angle Glaucoma. Eye Lond. 2015, 29, 1242–1250. [Google Scholar] [CrossRef]
- Jonas, J.B.; Berenshtein, E.; Holbach, L. Anatomic Relationship between Lamina Cribrosa, Intraocular Space, and Cerebrospinal Fluid Space. Investig. Ophthalmol. Vis. Sci. 2003, 44, 5189–5195. [Google Scholar] [CrossRef]
- Jonas, J.B.; Wang, Y.X.; Dong, L. Advances in myopia research anatomical findings in highly myopic eyes. Eye Vis. Lond. 2020, 7, 45. [Google Scholar] [CrossRef]
- Wostyn, P. Glaucoma as a Dangerous Interplay between Ocular Fluid and Cerebrospinal Fluid. Med. Hypotheses 2019, 127, 97–99. [Google Scholar] [CrossRef]
- Killer, H.E.; Laeng, H.R.; Flammer, J.; Groscurth, P. Architecture of Arachnoid Trabeculae, Pillars, and Septa in the Subarachnoid Space of the Human Optic Nerve: Anatomy and Clinical Considerations. Br. J. Ophthalmol. 2003, 87, 777–781. [Google Scholar] [CrossRef]
- Tong, X.J.; Akdemir, G.; Wadhwa, M.; Verkman, A.S.; Smith, A.J. Large Molecules from the Cerebrospinal Fluid Enter the Optic Nerve but Not the Retina of Mice. Fluids Barriers CNS 2024, 21, 1. [Google Scholar] [CrossRef]
- Lai, W.; Huang, J.; Fang, W. Optic Nerve Head: A Gatekeeper for Vitreous Infectious Insults? Front. Immunol. 2022, 13, 987771. [Google Scholar] [CrossRef] [PubMed]
- Tram, N.K.; Swindle-Reilly, K.E. Rheological Properties and Age-Related Changes of the Human Vitreous Humor. Front. Bioeng. Biotechnol. 2018, 6, 199. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Ren, T.; Wang, N. Biomechanical Homeostasis in Ocular Diseases: A Mini-Review. Front. Public Health 2023, 11, 1106728. [Google Scholar] [CrossRef] [PubMed]
- Carreon, T.; Merwe, E.; Fellman, R.L.; Johnstone, M.; Bhattacharya, S.K. Aqueous Outflow- A Continuum from Trabecular Meshwork to Episcleral Veins. Prog. Retin. Eye Res. 2017, 57, 108–133. [Google Scholar] [CrossRef]
- Ferstl, M.; Kühnel, A.; Klaus, J.; Lin, W.M.; Kroemer, N.B. Non-Invasive Vagus Nerve Stimulation Conditions Increased Invigoration and Wanting in Depression. Compr. Psychiatry 2024, 132, 152488. [Google Scholar] [CrossRef]
- Sampani, K.; Ness, S.; Tuz-Zahra, F. Neurodegenerative Biomarkers in Different Chambers of the Eye Relative to Plasma: An Agreement Validation Study. Alzheimers Res. Ther. 2024, 16, 192. [Google Scholar] [CrossRef]
- Miyake, K.; Miyake, T.; Kayazawa, F. Blood-Aqueous Barrier in Eyes with Retinal Vein Occlusion. Ophthalmology 1992, 99, 906–910. [Google Scholar] [CrossRef]
- Nichani, P.; Micieli, J.A. Retinal Manifestations of Idiopathic Intracranial Hypertension. Ophthalmol. Retin. 2021, 5, 429–437. [Google Scholar] [CrossRef]
- Natale, G.; Limanaqi, F.; Busceti, C.L. Glymphatic System as a Gateway to Connect Neurodegeneration From Periphery to CNS. Front. Neurosci. 2021, 15, 639140. [Google Scholar] [CrossRef] [PubMed]
- Tisi, A.; Feligioni, M.; Passacantando, M.; Ciancaglini, M.; Maccarone, R. The Impact of Oxidative Stress on Blood-Retinal Barrier Physiology in Age-Related Macular Degeneration. Cells 2021, 10, 64. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yu, X.W.; Zhang, D.D.; Fan, Z.G. Blood-Retinal Barrier as a Converging Pivot in Understanding the Initiation and Development of Retinal Diseases. Chin. Med. J. Engl. 2020, 133, 2586–2594. [Google Scholar] [CrossRef]
- Cunha-Vaz, J.; Bernardes, R.; Lobo, C. Blood-retinal barrier. Eur. J. Ophthalmol. 2011, 21, 3–9. [Google Scholar] [CrossRef]
- Haydinger, C.D.; Ferreira, L.B.; Williams, K.A.; Smith, J. Mechanisms of Macular Edema. Front. Med. 2023, 10, 1128811. [Google Scholar] [CrossRef]
- Vinores, S.A.; Derevjanik, N.L.; Ozaki, H.; Okamoto, N.; Campochiaro, P.A. Cellular Mechanisms of Blood-Retinal Barrier Dys-Function in Macular Edema. Doc. Ophthalmol. 1999, 97, 217–228. [Google Scholar] [CrossRef]
- Nguyen, N.X.; Küchle, M. Aqueous Flare and Cells in Eyes with Retinal Vein Occlusion–Correlation with Retinal Fluorescein Angiographic Findings. Br. J. Ophthalmol. 1993, 77, 280–283. [Google Scholar] [CrossRef]
- Chahal, P.S.; Fallon, T.J.; Kohner, E.M. Measurement of Blood-Retinal Barrier Function in Central Retinal Vein Occlusion. Arch. Ophthalmol. 1986, 104, 554–557. [Google Scholar] [CrossRef] [PubMed]
- Cunha-Vaz, J. Mechanisms of Retinal Fluid Accumulation and Blood-Retinal Barrier Breakdown. Dev. Ophthalmol. 2017, 58, 11–20. [Google Scholar] [CrossRef]
- Schmetterer, L. Retinal Vasculature Structure and Function. Acta Ophthalmol. 2015, 93. [Google Scholar] [CrossRef]
- Azzam, D.; Cypen, S.; Tao, J. Anatomy, Head and Neck: Eye Ophthalmic Vein; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Sunderland, D.K.; Sapra, A. Aqueous Humor Circulation in StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Huang, W.; Chen, S.; Gao, X.; Yang, M.; Zhang, J.; Li, X.; Wang, W.; Zhou, M.; Zhang, X.; Zhang, X. Inflammation-Related Cytokines of Aqueous Humor in Acute Primary Angle-Closure Eyes. Investig. Ophthalmol. Vis. Sci. 2014, 55, 1088–1094. [Google Scholar] [CrossRef]
- Philips, E. Glaucoma—A Disease of Multiple Pressures; New Glaucoma Pressures Discovered. J. Niger. Optom. Assoc. 2023, 25, 3–9. [Google Scholar] [CrossRef]
- Stein, J.D.; Khawaja, A.P.; Weizer, J.S. Glaucoma in Adults-Screening, Diagnosis, and Management: A Review. JAMA 2021, 325, 164–174. [Google Scholar] [CrossRef]
- Russo, R.; Varano, G.P.; Adornetto, A.; Nucci, C.; Corasaniti, M.T.; Bagetta, G.; Morrone, L.A. Retinal Ganglion Cell Death in Glaucoma: Exploring the Role of Neuroinflammation. Eur. J. Pharmacol. 2016, 787, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Sakka, L.; Coll, G.; Chazal, J. Anatomy and physiology of cerebrospinal fluid. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2011, 128, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Boote, C.; Sigal, I.A.; Grytz, R.; Hua, Y.; Nguyen, T.D.; Girard, M.J.A. Scleral Structure and Biomechanics. Prog. Retin. Eye Res. 2020, 74, 100773. [Google Scholar] [CrossRef]
- Battaglioli, J.L.; Kamm, R.D. Measurements of the Compressive Properties of Scleral Tissue. Investig. Ophthalmol. Vis. Sci. 1984, 25, 59–65. [Google Scholar]
- Gharbiya, M.; Trebbastoni, A.; Parisi, F.; Manganiello, S.; Cruciani, F.; D’ANtonio, F.; de Vico, U.; Imbriano, L.; Campanelli, A.; de Lena, C. Choroidal Thinning as a New Finding in Alzheimer’s Disease: Evidence from Enhanced Depth Imaging Spectral Domain Optical Coherence Tomography. J. Alzheimers Dis. 2014, 40, 907–917. [Google Scholar] [CrossRef]
- Kim, C.Y.; Lee, E.J.; Kim, J.A.; Kim, H.; Kim, T.W. Progressive Retinal Nerve Fibre Layer Thinning and Choroidal Microvasculature Dropout at the Location of Disc Haemorrhage in Glaucoma. Br. J. Ophthalmol. 2021, 105, 674–680. [Google Scholar] [CrossRef]
- Weinreb, R.N.; Aung, T.; Medeiros, F.A. The Pathophysiology and Treatment of Glaucoma: A Review. JAMA 2014, 311, 1901–1911. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, J.D.; Anatomy, D.H. Head and Neck: Eye Nerves. In StatPearls; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- McDougal, D.H.; Gamlin, P.D. Autonomic Control of the Eye. Compr. Physiol. 2015, 5, 439–473. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Zhao, Y.; Zhang, H. Ocular Autonomic Nervous System: An Update from Anatomy to Physiological Functions. Vision 2022, 6, 6. [Google Scholar] [CrossRef]
- Sepehri, S.; Sheikhhoseini, R.; Piri, H.; Sayyadi, P. The Effect of Various Therapeutic Exercises on Forward Head Posture, Round-ed Shoulder, and Hyperkyphosis among People with Upper Crossed Syndrome: A Systematic Review and Meta-Analysis. BMC Musculoskelet. Disord. 2024, 25, 105. [Google Scholar] [CrossRef]
- Bokaee, F.; Rezasoltani, A.; Manshadi, F.D.; Naimi, S.S.; Baghban, A.A.; Azimi, H. Comparison of Cervical Muscle Thickness Between Asymptomatic Women with and without Forward Head Posture. Braz. J. Phys. Ther. 2017, 21, 206–211. [Google Scholar] [CrossRef]
- Copp, S.R.; LeBlanc, C. A Case of Ophthalmic Branch Trigeminal Neuralgia in the Emergency Department. Cureus 2019, 11, e3831. [Google Scholar] [CrossRef]
- Mehra, D.; Mangwani-Mordani, S.; Acuna, K.; Hwang, J.C.; Felix, E.R.; Galor, A. Long-Term Trigeminal Nerve Stimulation as a Treatment for Ocular Pain. Neuromodulation 2021, 24, 1107–1114. [Google Scholar] [CrossRef]
- Montes, T.L.; Gurnani, B.; Stokkermans, T.J. Assessment of the Watery Eye. In StatPearls; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Thiagarajan, P.; Ciuffreda, K.J. Accommodative and Pupillary Dysfunctions in Concussion/Mild Traumatic Brain Injury: A Review. NeuroRehabilitation 2022, 50, 261–278. [Google Scholar] [CrossRef]
- Hussaindeen, J.R.; Murali, A. Accommodative Insufficiency: Prevalence, Impact and Treatment Options. Clin. Optom. Auckl. 2020, 12, 135–149. [Google Scholar] [CrossRef] [PubMed]
- Lanigan, L.P.; Birche, R.; Clark, C.V.; Hill, D.W. The Effect of Cervical Sympathectomy on Retinal Vessel Responses to Systemic Autonomic Stimulation. Eye 1990, 4, 181–189. [Google Scholar] [CrossRef]
- Reiner, A.; Fitzgerald, M.E.C.; Del Mar, N.; Li, C. Neural control of choroidal blood flow. Prog. Retin. Eye Res. 2018, 64, 96–130. [Google Scholar] [CrossRef]
- Dieguez, H.H.; Romeo, H.E.; Fleitas, M.F.G.; Aranda, M.L.; Milne, G.A.; Rosenstein, R.E.; Dorfman, D. Superior Cervical Gangliectomy Induces Non-Exudative Age-Related Macular Degeneration in Mice. Model. Mech. 2018, 11, dmm031641. [Google Scholar] [CrossRef]
- Sato, I.; Sato, T.; Shimada, K. Communication between the Superior Cervical Sympathetic Ganglion and the Inferior Laryngeal Nerve. J. Anat. 1997, 190, 147–148. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, H.H.; Schnitzlein, H.N. The Numbers of Nerve Fibers in the Vagus Nerve in Man. Anat. Rec. 1961, 139, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Bahney, J.; Bartheld, C.S. The Cellular Composition and Glia-Neuron Ratio in the Spinal Cord of a Human and a Non-Human Primate: Comparison With Other Species and Brain Regions. Anat. Rec. 2018, 301, 697–710. [Google Scholar] [CrossRef] [PubMed]
- Fleming, M.A.; Ehsan, L.; Moore, S.R.; Levin, D.E. The Enteric Nervous System and Its Emerging Role as a Therapeutic Target. Gastroenterol. Res. Pract. 2020, 2020, 8024171. [Google Scholar] [CrossRef]
- Belau, E.; Pelz, J. Reference Values for the Cross-Sectional Area of the Vagus Nerve in Healthy Subjects—A High-Resolution Ultrasound Study. Clin. Neurophysiol. 2017, 128, e339. [Google Scholar] [CrossRef]
- Sherman, J.L.; Nassaux, P.Y.; Citrin, C.M. Measurements of the Normal Cervical Spinal Cord on MR Imaging. Am. J. Neuroradiol. 1990, 11, 369–372. [Google Scholar]
- Chawla, J.C.; Falconer, M.A. Glossopharyngeal and Vagal Neuralgia. Br. Med. J. 1967, 3, 529–531. [Google Scholar] [CrossRef]
- Anterieu, P.; Vassal, F.; Sindou, M. Vagoglossopharyngeal Neuraligia Revealed through Predominant Digestive Vagal Manifestations. Case report and literature review. Neurochirugie 2016, 62, 174–177. [Google Scholar] [CrossRef]
- Mul Fedele, M.L.; Galiana, M.D.; Golombek, D.A.; Muñoz, E.M.; Plano, S.A. Alterations in Metabolism and Diurnal Rhythms Following Bilateral Surgical Removal of the Superior Cervical Ganglia in Rats. Front. Endocrinol. 2018, 8, 370. [Google Scholar] [CrossRef]
- Cardinali, D.P.; Vacas, M.I.; Gejman, P.V. The sympathetic superior cervical ganglia as peripheral neuroendocrine centers. J. Neural Transm. 1981, 52, 1–21. [Google Scholar] [CrossRef]
- Gasser, P.; Flammer, J. Influence of Vasospasm on Visual Function. Doc. Ophthalmol. 1987, 66, 3–18. [Google Scholar] [CrossRef]
- Flammer, J.; Konieczka, K.; Flammer, A.J. The Primary Vascular Dysregulation Syndrome: Implications for Eye Diseases. EPMA J. 2013, 4, 14. [Google Scholar] [CrossRef]
- Li, C.; Fitzgerald, M.E.C.; Del Mar, N.; Haughey, C.; Reiner, A. Defective Choroidal Blood Flow Baroregulation and Retinal Dysfunction and Pathology Following Sympathetic Denervation of Choroid. Investig. Ophthalmol. Vis. Sci. 2018, 59, 5032–5044. [Google Scholar] [CrossRef]
- Gufoni, M.; Casani, A.P. The Pupillary (Hippus) Nystagmus”: A Possible Clinical Hallmark to Support the Diagnosis of Vestibular Migraine. J. Clin. Med. 2023, 12, 1957. [Google Scholar] [CrossRef]
- Berger, A.; Beckers, E.; Joris, V. Locus Coeruleus Features Are Linked to Vagus Nerve Stimulation Response in Drug-Resistant Epilepsy. Front. Neurosci. 2024, 18, 1296161. [Google Scholar] [CrossRef] [PubMed]
- Seminck, N.; Khatoun, A.; Kerstens, S.; Nuttin, B.; Mc Laughlin, M. External Stimulation of the Trigeminal Nerve Causes Pupil Dilation in Healthy Volunteers, Suggesting Locus Coeruleus Modulation. Brain Stimul. 2024, 17, 678–680. [Google Scholar] [CrossRef] [PubMed]
- Feroze, K.B.; Gurnani, B.; O’Rourke, M.C. Transient Loss of Vision. In StatPearls; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Gasser, P.; Flammer, J.; Guthauser, U.; Mahler, F. Do vasospasms provoke ocular diseases? Angiology 1990, 41, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Flammer, J.; Pache, M.; Resink, T. Vasospasm, Its Role in the Pathogenesis of Diseases with Particular Reference to the Eye. Prog. Retin. Eye Res. 2001, 20, 319–349. [Google Scholar] [CrossRef]
- Prünte-Glowazki, A.; Flammer, J. Teil 4: Klinische Beispiele [Ocular vasospasm. 4: Clinical examples]. Klin. Monatsbl. Augenheilkd. 1991, 198, 415–418. [Google Scholar] [CrossRef]
- Huguenard, A.L.; Tan, G.; Rivet, D.J. Auricular Vagus Nerve Stimulation for Mitigation of Inflammation and Vasospasm in Subarachnoid Hemorrhage: A Single-Institution Randomized Controlled Trial. J. Neurosurg. 2025, 24, 1720–1731. [Google Scholar] [CrossRef]
- Gao, H.M.; Hong, J.S. Why Neurodegenerative Diseases Are Progressive: Uncontrolled Inflammation Drives Disease Progression. Trends Immunol. 2008, 29, 357–365. [Google Scholar] [CrossRef]
- Merlini, G.; Bellotti, V.; Andreola, A. Protein Aggregation. Clin. Chem. Lab. Med. 2001, 39, 1065–1075. [Google Scholar] [CrossRef]
- Blasiak, J.; Pawlowska, E.; Szczepanska, J.; Kaarniranta, K. Interplay between Autophagy and the Ubiquitin-Proteasome System and Its Role in the Pathogenesis of Age-Related Macular Degeneration. Int. J. Mol. Sci. 2019, 20, 210. [Google Scholar] [CrossRef]
- Greiner, J.V.; Glonek, T. Adenosine Triphosphate (ATP) and Protein Aggregation in Age-Related Vision-Threatening Ocular Diseases. Metabolites 2023, 13, 1100. [Google Scholar] [CrossRef]
- Ray, N.J. Biophysical chemistry of the ageing eye lens. Biophys. Rev. 2015, 7, 353–368. [Google Scholar] [CrossRef] [PubMed]
- Moustafa, I.M.; Diab, A.A.; Hegazy, F.; Harrison, D.E. Demonstration of Central Conduction Time and Neuroplastic Changes after Cervical Lordosis Rehabilitation in Asymptomatic Subjects: A Randomized, Placebo-Controlled Trial. Sci. Rep. 2021, 11, 15379. [Google Scholar] [CrossRef] [PubMed]
- Oakley, P.A.; Kallan, S.Z.; Harrison, D.E. Structural Rehabilitation of the Cervical Lordosis and Forward Head Posture: A Selective Review of Chiropractic BioPhysics® Case Reports. J. Phys. Ther. Sci. 2022, 34, 759–771. [Google Scholar] [CrossRef]
- Hackett, G.S.; Hemwall, G.A.; Montgomery, G.A. Ligament and Tendon Relaxation Treated by Prolotherapy, 5th ed.; Gustav, A., Ed.; Hemwall: Oak Park, IL, USA, 1993. [Google Scholar]
- Giordano, L.; Murrell, W.D.; Maffulli, N. Prolotherapy for Chronic Low Back Pain: A Review of Literature. Br. Med. Bull. 2021, 138, 96–111. [Google Scholar] [CrossRef] [PubMed]
- Hackett, G. Joint Stabilization an Experimental, Histologic Study with Comments on the Clinical Application in Ligament Proliferation. Am. J. Surg. 1955, 89, 967–973. [Google Scholar]
- Liu, Y.; Tipton, C.; Matthes, R.; Bedford, T.G.; Maynard, J.A.; Walmer, H.C. An Insitu Study of the Influence of a Sclerosing Solution in Rabbit Medial Collateral Ligaments and Its Junction Strength. Connect. Tissue Res. 1983, 11, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.; Dorman, T.; Johnson, C. Proliferant Injections for low Back Pain Histologic Changes of Injected Ligaments and Objective Measurements of Lumbar Spine Mobility before and after Treatment. J. Neuro Ortho Med. Surg. 1989, 10, 123–126. [Google Scholar]
- Hauser, R.; Dolan, E.; Phillips, H.; Newlin, A.; Moore, R.; Woldin, B. Ligament Injury and Healing: A Review of Current Clinical Diagnostics and Therapeutics. Open Rehabil. J. 2013, 6, 1–20. [Google Scholar] [CrossRef]
- Kamińska, A.; Pinkas, J.; Wrześniewska-Wal, I.; Ostrowski, J.; Jankowski, M. Awareness of Common Eye Diseases and Their Risk Factors-A Nationwide Cross-Sectional Survey among Adults in Poland. Int. J. Environ. Res. Public Health 2023, 20, 3594. [Google Scholar] [CrossRef]
- Pieńczykowska, K.; Bryl, A.; Mrugacz, M. Link Between Metabolic Syndrome, Inflammation, and Eye Diseases. Int. J. Mol. Sci. 2025, 26, 2174. [Google Scholar] [CrossRef] [PubMed]























Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hauser, R.A.; Griffiths, M.; Matias, D.; Rawlings, B.R. Cervical Oculopathy: The Cervical Spine Etiology of Visual Symptoms and Eye Diseases—A Hypothesis Exploring Mechanisms Linking the Neck and the Eye. Diagnostics 2025, 15, 2650. https://doi.org/10.3390/diagnostics15202650
Hauser RA, Griffiths M, Matias D, Rawlings BR. Cervical Oculopathy: The Cervical Spine Etiology of Visual Symptoms and Eye Diseases—A Hypothesis Exploring Mechanisms Linking the Neck and the Eye. Diagnostics. 2025; 15(20):2650. https://doi.org/10.3390/diagnostics15202650
Chicago/Turabian StyleHauser, Ross A., Morgan Griffiths, Danielle Matias, and Benjamin R. Rawlings. 2025. "Cervical Oculopathy: The Cervical Spine Etiology of Visual Symptoms and Eye Diseases—A Hypothesis Exploring Mechanisms Linking the Neck and the Eye" Diagnostics 15, no. 20: 2650. https://doi.org/10.3390/diagnostics15202650
APA StyleHauser, R. A., Griffiths, M., Matias, D., & Rawlings, B. R. (2025). Cervical Oculopathy: The Cervical Spine Etiology of Visual Symptoms and Eye Diseases—A Hypothesis Exploring Mechanisms Linking the Neck and the Eye. Diagnostics, 15(20), 2650. https://doi.org/10.3390/diagnostics15202650

