From Fluid Responsiveness to Prognosis: The Emerging Role of Point-of-Care Echocardiography in Sepsis
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Echocardiography-Guided Hemodynamic Management in Sepsis
- Preload and fluid responsiveness
- Inferior vena cava (IVC): Measurement of diameter and respiratory variations is useful for estimating intravascular volume and the probability of response to fluids.Ultrasound-driven fluid resuscitation strategies, particularly those that involve measuring the inferior vena cava (IVC) and conducting passive leg lift tests, have shown effectiveness in reducing the volume of fluids infused, shortening hospital stays, and decreasing the number of days spent in intensive care [22]. However, not all studies indicate a clear benefit concerning mortality rates. For example, a randomized controlled trial (RCT) found that respiratory variation in the diameter of the IVC did not improve survival at 30 days, although it did lead to a decrease in the volume of fluids administered [23,24]. The collapse index of the cava vein is actually a good indicator of the end-diastolic volume index during fluid resuscitation [25]. Nonetheless, ultrasound-guided fluid resuscitation is a useful and practical approach for patients with septic shock during the first seven days after admission. This method is associated with reduced early mortality, lower fluid administration, and a decreased incidence of pulmonary oedema compared to early goal-directed therapy [26].In summary, echocardiography is a crucial tool for personalized hemodynamic management, helping refine the administration of fluids and vasoactive support by using IVC parameters.
- Stroke volume variation (SVV): Change in systolic volume indicates relative hypovolemia and predicts response to fluid therapy. The fluid challenge involves rapidly administering 250–500 mL of fluid in less than 30 min. A 15% increase in stroke volume indicates fluid responsiveness [27].During sepsis and septic shock, stroke volume (SV) plays a crucial role in evaluating dynamic hemodynamics and fluid responsiveness, surpassing the limitations of static indices such as central pressure [28].SV is a reliable dynamic parameter that allows for the assessment of fluid responsiveness over time. A French observational study revealed that 51.3% of patients who initially respond to fluid therapy maintain this response 30 min after the start of fluid infusion, while only 41.3% exhibit a transient response. This insight is crucial for enabling effective therapy that lasts over time, ultimately enhancing patient outcomes [29].A narrative review highlights that, according to the Frank–Starling principle, increasing preload raises SV until optimum volume is reached. Beyond this point, additional fluid infusion may be harmful, leading to fluid overload, tissue oedema, and strain on already impaired cardiac function [30].Clinical studies demonstrate that dynamic measures, such as SVV, more accurately predict hemodynamic responses compared to static indices, achieving notable performance in assessing fluid responsiveness, even in ventilated patients. In cases where a septic patient requires mechanical ventilation, these parameters can be utilized to better manage the patient’s hemodynamic and enhance their fluid responsiveness to therapy [31].A meta-analysis involving ventilated patients with low tidal volumes (≤8 mL/kg) confirms that SVV has an area under the curve (AUC) of approximately 0.90 for predicting fluid responsiveness. This is further supported by dynamic tests such as the end-expiratory occlusion test and tidal volume challenge, both of which have an AUC of around 0.92 [32].An observational study indicated that septic patients who showed an improvement in SV during treatment received, on average, about 350 mL more fluids than those who did not show improvement (1241 mL vs. 893 mL; p = 0.018). This suggests that adequate volume expansion may be essential for increasing SV and, consequently, enhancing organ perfusion. Therefore, monitoring SV may serve as an excellent parameter for determining the appropriate volume of fluids to be administered to a patient for achieving genuine improvement [33].
- Cardiac output and perfusion
- LVOT VTI (Velocity Time Integral of the left ventricular outflow pathway) is a valuable tool for calculating cardiac output and evaluating tissue perfusion.
- The Velocity Time Integral (VTI), measured at the left ventricular outflow tract (LVOT), is increasingly recognized in the hemodynamic evaluation of patients with sepsis and septic shock due to its ability to noninvasively estimate systolic output and cardiac output. Studies conducted in emergency rooms and intensive care units have demonstrated its feasibility, reproducibility, and clinical usefulness [34].
- VTI has proven to be a reliable predictor of fluid responsiveness [35].
- Innovative applications, such as the VTI-VeXUS index, integrate output measurement with the assessment of venous congestion for a more complete hemodynamic evaluation and as a predictor of mortality [39].
- Other studies have illustrated a moderate concordance between VTI-LVOT and alternative measures of cardiac output, such as those obtained from the carotid artery. Nonetheless, VTI is considered superior to these alternative methods, increasing its relevance in emergency contexts [40]. Furthermore, point-of-care ultrasound has shown a significant clinical impact of VTI in assessing volume responsiveness and circulatory function in patients with septic shock, especially when compared to variations in the inferior vena cava diameter [41]. Overall, VTI is emerging as a dynamic and versatile parameter, supported by growing evidence that underscores its importance for personalizing fluid therapy [42], and optimizing tissue perfusion in sepsis, as well as for critically ill patients in general [38,43].
- Serial Monitoring
- Serial monitoring entails performing repeated echocardiographic assessments over time [44]. This approach allows us to track changes in cardiac function, highlighting potential prognostic implications [45], the effectiveness of fluid therapy, and the response to vasoactive drugs. It enables a personalized management strategy for sepsis.
- As demonstrated by the observational analysis conducted by Geri et al. (2019) [46], integrating echocardiographic parameters with clinical data can help identify different cardiovascular phenotypes in septic shock, thereby enhancing the personalization of therapeutic strategies. Specifically, echocardiography can distinguish patients for whom preload is the primary determinant of cardiac output from those in which myocardial dysfunction is dominant. This differentiation aids in deciding between volume expansion and inotropic support [46].
- In this context, Vignon (2020) underscores the importance of serial assessment over simple continuous monitoring of cardiac output, as echocardiography incorporates qualitative elements concerning ventricular function and cardiac filling [47].
- Recent literature indicates that echocardiography provides more comprehensive and contextualized information compared to cardiac flow monitors. This added detail is not only beneficial for predicting the response to fluids but also for guiding the timing and indications for utilizing inotropes [48].
- Overall, echocardiography stands out as a central and multimodal tool, capable of addressing the limitations of standard monitoring and supporting a tailored strategy in managing septic shock (Table 1).
3.2. Pathophysiology of Septic Cardiomyopathy
3.3. Prognostic Role of Echocardiography
3.4. Comparison Between POC-Echo and Invasive Hemodynamic Monitoring in Sepsis
3.5. Clinical Relevance of Echocardiography in Early Sepsis Management vs. Accuracy of Cardiac Magnetic Resonance (CMR)
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
POC-Echo | Point-of-Care Echocardiography |
qSOFA | quick Sequential Organ Failure Assessment |
SIRS | Systemic Inflammatory Response Syndrome |
EWS | Early Warning Score |
SV | Stroke Volume |
SVV | Stroke Volume Variation |
LVOT | Left Ventricular Outflow Tract |
VTI | Velocity Time Integral |
VTI-LVOT | Velocity Time Integral measured at the Left Ventricular Outflow Tract |
VTI-VeXUS | VTI-Venous Excess Ultrasound Score |
IVC | Inferior Vena Cava |
RCT | Randomized Controlled Trial |
LV | Left Ventricle |
RV | Right Ventricle |
LVEF | Left Ventricular Ejection Fraction |
TAPSE | Tricuspid Annular plane systolic excursion |
MRI | Magnetic Resonance Imaging |
CMR | Cardiac Magnetic Resonance |
References
- Srzić, I.; Adam, V.N.; Pejak, D.T. Sepsis definition: What’s new in the Treatment Guidelines. Acta Clin. Croat. 2022, 61, 61–72. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensiv. Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef] [PubMed]
- Arina, P.; Hofmaenner, D.A.; Singer, M. Definition and Epidemiology of Sepsis. Semin. Respir. Crit. Care Med. 2024, 45, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Ko, R.-E.; Lim, S.Y.; Park, S.; Suh, G.Y.; Lee, Y.J. Sepsis Alert Systems, Mortality, and Adherence in Emergency Departments. JAMA Netw. Open 2024, 7, e2422823. [Google Scholar] [CrossRef] [PubMed]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef]
- Chua, W.L.; Rusli KDBin Aitken, L.M. Early warning scores for sepsis identification and prediction of in-hospital mortality in adults with sepsis: A systematic review and meta-analysis. J. Clin. Nurs. 2024, 33, 2005–2018. [Google Scholar] [CrossRef]
- Velissaris, D.; Zareifopoulos, N.; Lagadinou, M.; Platanaki, C.; Tsiotsios, K.; Stavridis, E.L.; Kasartzian, D.; Pierrakos, C.; Karamouzos, V. Procalcitonin and sepsis in the emergency department: An update. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 466–479. [Google Scholar] [CrossRef]
- Piccioni, A.; Baroni, S.; Rozzi, G.; Belvederi, F.; Leggeri, S.; Spagnuolo, F.; Novelli, M.; Pignataro, G.; Candelli, M.; Covino, M.; et al. Evaluation of Presepsin for Early Diagnosis of Sepsis in the Emergency Department. J. Clin. Med. 2025, 14, 2480. [Google Scholar] [CrossRef]
- Piccioni, A.; Santoro, M.C.; de Cunzo, T.; Tullo, G.; Cicchinelli, S.; Saviano, A.; Valletta, F.; Pascale, M.M.; Candelli, M.; Covino, M.; et al. Presepsin as early marker of sepsis in emergency department: A narrative review. Medicina 2021, 57, 770. [Google Scholar] [CrossRef]
- Kellum, J.A.; Formeck, C.L.; Kernan, K.F.; Gómez, H.; Carcillo, J.A. Subtypes and Mimics of Sepsis. Crit. Care Clin. 2022, 38, 195–211. [Google Scholar] [CrossRef]
- Lelubre, C.; Vincent, J.L. Mechanisms and treatment of organ failure in sepsis. Nat. Rev. Nephrol. 2018, 14, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Ranjit, S.; Natraj, R. Hemodynamic Management Strategies in Pediatric Septic Shock: Ten Concepts for the Bedside Practitioner. Indian Pediatr. 2024, 61, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Girardis, M.; David, S.; Ferrer, R.; Helms, J.; Juffermans, N.P.; Martin-Loeches, I.; Povoa, P.; Russell, L.; Shankar-Hari, M.; Iba, T.; et al. Understanding, assessing and treating immune, endothelial and haemostasis dysfunctions in bacterial sepsis. Intensiv. Care Med. 2024, 50, 1580–1592. [Google Scholar] [CrossRef] [PubMed]
- Burgdorff, A.M.; Bucher, M.; Schumann, J. Vasoplegia in patients with sepsis and septic shock: Pathways and mechanisms. J. Int. Med. Res. 2018, 46, 1303–1310. [Google Scholar] [CrossRef]
- Ratnani, I.; Ochani, R.K.; Shaikh, A.; Jatoi, H.N. Vasoplegia: A Review. Methodist Debakey Cardiovasc. J. 2023, 19, 38–47. [Google Scholar] [CrossRef]
- De Backer, D.; Ricottilli, F.; Ospina-Tascón, G.A. Septic shock: A microcirculation disease. Curr. Opin. Anaesthesiol. 2021, 34, 85–91. [Google Scholar] [CrossRef]
- Yang, C.; Xia, W.; Liu, X.; Lin, J.; Wu, A. Role of TXNIP/NLRP3 in sepsis-induced myocardial dysfunction. Int. J. Mol. Med. 2019, 44, 417–426. [Google Scholar] [CrossRef]
- Hestenes, S.M.; Halvorsen, P.S.; Skulstad, H.; Remme, E.W.; Espinoza, A.; Hyler, S.; Bugge, J.F.; Fosse, E.; Nielsen, E.W.; Edvardsen, T. Advantages of strain echocardiography in assessment of myocardial function in severe sepsis: An experimental study. Crit. Care Med. 2014, 42, e432–e440. [Google Scholar] [CrossRef]
- Santos, T.M.; Franci, D.; Schweller, M.; Ribeiro, D.L.; Gontijo-Coutinho, C.M.; Matos-Souza, J.R.; de Carvalho-Filho, M.A. Left ventricle tissue doppler imaging predicts disease severity in septic patients newly admitted in an emergency unit. J. Emerg. Med. 2015, 49, 907–915. [Google Scholar] [CrossRef]
- Lan, P.; Wang, T.-T.; Li, H.-Y.; Yan, R.-S.; Liao, W.-C.; Yu, B.-W.; Wang, Q.-Q.; Lin, L.; Pan, K.-H.; Yu, Y.-S.; et al. Utilization of echocardiography during septic shock was associated with a decreased 28-day mortality: A propensity score-matched analysis of the MIMIC-III database. Ann. Transl. Med. 2019, 7, 662. [Google Scholar] [CrossRef]
- Feng, M.; McSparron, J.I.; Kien, D.T.; Stone, D.J.; Roberts, D.H.; Schwartzstein, R.M.; Vieillard-Baron, A.; Celi, L.A. Transthoracic echocardiography and mortality in sepsis: Analysis of the MIMIC-III database. Intensiv. Care Med. 2018, 44, 884–892. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Han, X.; Liu, Y.; Wang, M.; Wang, B.; Wang, L.; Jin, H. Ultrasound-guided fluid resuscitation versus usual care guided fluid resuscitation in patients with septic shock: A systematic review and meta-analysis. Emerg. Crit. Care Med. 2024, 4, 82–89. [Google Scholar] [CrossRef]
- Musikatavorn, K.; Plitawanon, P.; Lumlertgul, S.; Narajeenron, K.; Rojanasarntikul, D.; Tarapan, T.; Saoraya, J. Randomized controlled trial of ultrasound-guided fluid resuscitation of sepsis-induced hypoperfusion and septic shock. West. J. Emerg. Med. 2021, 22, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Dai, L.; Cheng, L.; Lu, J.; Pei, Y.; Wang, J. Inferior vena cava diameter combined with lung ultrasound B-line score to guide fluid resuscitation in patients with septic shock. Chin. Crit. Care Med. 2020, 32, 1356–1360. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, G. Inferior vena cava collapsibility index is a valuable and non-invasive index for elevated general heart end-diastolic volume index estimation in septic shock patients. Med. Sci. Monit. 2016, 22, 3843–3848. [Google Scholar] [CrossRef]
- Yuan, J.; Yang, X.; Yuan, Q.; Li, M.; Chen, Y.; Dong, C. Systematic review of ultrasound-guided fluid resuscitation vs. early goal-directed therapy in patients with septic shock. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2020, 32, 56–61. [Google Scholar] [CrossRef]
- Martin, G.S.; Kaufman, D.A.; Marik, P.E.; Shapiro, N.I.; Levett, D.Z.H.; Whittle, J.; MacLeod, D.B.; Chappell, D.; Lacey, J.; Woodcock, T.; et al. Perioperative Quality Initiative (POQI) consensus statement on fundamental concepts in perioperative fluid management: Fluid responsiveness and venous capacitance. Perioper. Med. 2020, 9, 12. [Google Scholar] [CrossRef]
- Kenny, J.É.S.; Prager, R.; Rola, P.; Haycock, K.; Gibbs, S.O.; Johnston, D.H.; Horner, C.; Eibl, J.K.; Lau, V.C.; Kemp, B.O. Simultaneous Venous-Arterial Doppler Ultrasound During Early Fluid Resuscitation to Characterize a Novel Doppler Starling Curve: A Prospective Observational Pilot Study. J. Intensiv. Care Med. 2024, 39, 628–635. [Google Scholar] [CrossRef]
- Roger, C.; Zieleskiewicz, L.; Demattei, C.; Lakhal, K.; Piton, G.; Louart, B.; Constantin, J.-M.; Chabanne, R.; Faure, J.-S.; Mahjoub, Y.; et al. Time course of fluid responsiveness in sepsis: The fluid challenge revisiting (FCREV) study. Crit. Care 2019, 23, 179. [Google Scholar] [CrossRef]
- Weigl, W.; Adamski, J.; Onichimowski, D.; Nowakowski, P.; Wagner, B. Methods of assessing fluid responsiveness in septic shock patients: A narrative review. Anaesthesiol. Intensiv. Ther. 2022, 54, 175–183. [Google Scholar] [CrossRef]
- de Freitas Chaves, R.C.; Barbas, C.S.V.; Queiroz, V.N.F.; Serpa Neto, A.; Deliberato, R.O.; Pereira, A.J.; Timenetsky, K.T.; Júnior, J.M.S.; Takaoka, F.; de Backer, D.; et al. Assessment of fluid responsiveness using pulse pressure variation, stroke volume variation, plethysmographic variability index, central venous pressure, and inferior vena cava variation in patients undergoing mechanical ventilation: A systematic review and meta-analysis. Crit. Care 2024, 28, 289. [Google Scholar] [CrossRef]
- Alvarado Sánchez, J.I.; Caicedo Ruiz, J.D.; Diaztagle Fernández, J.J.; Amaya Zuñiga, W.F.; Ospina-Tascón, G.A.; Cruz Martínez, L.E. Predictors of fluid responsiveness in critically ill patients mechanically ventilated at low tidal volumes: Systematic review and meta-analysis. Ann. Intensiv. Care 2021, 11, 28. [Google Scholar] [CrossRef]
- Latham, H.; Harenski, K.; Javed, M.; Rickelman, J.; Sahatjian, J.; Boggerty, K.; Hansell, D. 158: Treatment Fluid Volume May Predict Stroke Volume Improvement. Crit. Care Med. 2023, 51, 62. [Google Scholar] [CrossRef]
- McGregor, D.; Sharma, S.; Gupta, S.; Ahmad, S.; Godec, T.; Harris, T. Emergency department non-invasive cardiac output study (EDNICO): A feasibility and repeatability study. Scand. J. Trauma, Resusc. Emerg. Med. 2019, 27, 30. [Google Scholar] [CrossRef] [PubMed]
- Parker, C.W.; Kolimas, A.M.; Kotini-Shah, P. Velocity-Time Integral: A Bedside Echocardiography Technique Finding a Place in the Emergency Department. J. Emerg. Med. 2022, 63, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhou, S.; Zhou, Z.; Liu, B. A 10-second fluid challenge guided by transthoracic echocardiography can predict fluid responsiveness. Crit. Care 2014, 18, R108. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, D.; Gao, Y.; Wu, Z.; Wang, X.; Lv, C. Effect of VTILVOTvariation rate on the assessment of fluid responsiveness in septic shock patients. Medicine 2020, 99, e22702. [Google Scholar] [CrossRef]
- Sasidharan, P.; Kaeley, N.; Sharma, P.; Jain, G.; Shankar, T.; Jayachandran, S.; Kumar, B.; Kumar, M.A.; Jose, J.R.; Lalotra, D.K. The Left Ventricular Outflow Tract Velocity Time Integral as a Predictor of Fluid Responsiveness in Patients with Sepsis-Related Acute Circulatory Failure. Cureus 2025, 17, e77353. [Google Scholar] [CrossRef]
- Prager, R.; Pupulin, S.; Chakera, H.; Saha, R.; Orozco, N.; Kenny, J.-E.; Rola, P.; Wong, M.Y.S.; Slessarev, M.; Lewis, K.; et al. The VTI-VeXUS Index in Septic Shock: An Exploratory Proof-of-Concept Observational Study of a Novel Hemodynamic Parameter. J. Clin. Med. 2025, 14, 5774. [Google Scholar] [CrossRef]
- Chanthawatthanarak, S.; Boonasa, K.; Apiratwarakul, K.; Cheung, L.W.; Tiamkao, S.; Ienghong, K. Agreement between carotid and LVOT non-invasive cardiac output measurements in ED septic shock patients: A prospective observational study. Sci. Rep. 2025, 15, 19911. [Google Scholar] [CrossRef]
- Dai, R.; Zhang, X.; Wang, H.; Zhang, F.; Qin, B. Clinical value of point of care ultrasound on cardiac output and volume responsiveness in patients with septic shock. Chin. Crit. Care Med. 2021, 33, 1479–1483. [Google Scholar] [CrossRef]
- Saji, S.Z.; Murga, O.; Khurana, S.; Hung Phan, B.; Khalil, B.; Nagra, A.M.; Aragon, S.F.; Kolagatla, D.; Arruarana, V.S.; Herrera, D.A.; et al. Utilization of left ventricular outflow tract velocity time integral in the assessment of fluid responsiveness in adult patients with sepsis or septic shock—A systematic review. J. Ultrasound 2025, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Blanco, P. Rationale for using the velocity–time integral and the minute distance for assessing the stroke volume and cardiac output in point-of-care settings. Ultrasound J. 2020, 12, 21. [Google Scholar] [CrossRef] [PubMed]
- Soliman-Aboumarie, H.; Pastore, M.C.; Galiatsou, E.; Gargani, L.; Pugliese, N.R.; Mandoli, G.E.; Valente, S.; Hurtado-Doce, A.; Lees, N.; Cameli, M. Echocardiography in the intensive care unit: An essential tool for diagnosis, monitoring and guiding clinical decision-making. Imaging 2021, 1, 1–15. [Google Scholar] [CrossRef]
- de Braga Lima Carvalho Canesso, M.; Borges, I.N.; de Deus Queiroz Santos, T.A.; Ris, T.H.; de Barros, M.V.L.; Nobre, V.; Nunes, M.C.P. Value of speckle-tracking echocardiography changes in monitoring myocardial dysfunction during treatment of sepsis: Potential prognostic implications. Int. J. Cardiovasc. Imaging 2019, 35, 855–859. [Google Scholar] [CrossRef]
- Geri, G.; Vignon, P.; Aubry, A.; Fedou, A.L.; Charron, C.; Silva, S.; Repessé, X.; Vieillard-Baron, A. Cardiovascular clusters in septic shock combining clinical and echocardiographic parameters: A post hoc analysis. Intensiv. Care Med. 2019, 45, 657–667. [Google Scholar] [CrossRef]
- Vignon, P. Continuous cardiac output assessment or serial echocardiography during septic shock resuscitation? Ann. Transl. Med. 2020, 8, 797. [Google Scholar] [CrossRef]
- Suh, G.J.; Shin, T.G.; Kwon, W.Y.; Kim, K.; Jo, Y.H.; Choi, S.H.; Chung, S.P.; Kim, W.Y.; Korean Shock Society Investigators. Hemodynamic management of septic shock: Beyond the Surviving Sepsis Campaign guidelines. Clin. Exp. Emerg. Med. 2023, 10, 255–264. [Google Scholar] [CrossRef]
- Carbone, F.; Liberale, L.; Preda, A.; Schindler, T.H.; Montecucco, F. Septic Cardiomyopathy: From Pathophysiology to the Clinical Setting. Cells 2022, 11, 2833. [Google Scholar] [CrossRef]
- Wang, R.; Xu, Y.; Fang, Y.; Wang, C.; Xue, Y.; Wang, F.; Cheng, J.; Ren, H.; Wang, J.; Guo, W.; et al. Pathogenetic mechanisms of septic cardiomyopathy. J. Cell. Physiol. 2022, 237, 49–58. [Google Scholar] [CrossRef]
- Martin, L.; Derwall, M.; Thiemermann, C.; Schürholz, T. Herz in der Sepsis. Anaesthesist 2017, 66, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, D.; Ishisaka, Y.; Maeda, T.; Prasitlumkum, N.; Nishida, K.; Dugar, S.; Sato, R. Prevalence and Prognosis of Sepsis-Induced Cardiomyopathy: A Systematic Review and Meta-Analysis. J. Intensiv. Care Med. 2023, 38, 797–808. [Google Scholar] [CrossRef] [PubMed]
- Ince, M.E.; Turgut, K.; Akar, A.; Naseri, A.; Sen, I.; Süleymanoglu, H.; Ertan, M.; Sagmanligil, V. Prognostic importance of tissue Doppler imaging of systolic and diastolic functions in dogs with severe sepsis and septic shock. Acta Vet. Hung. 2019, 67, 517–528. [Google Scholar] [CrossRef]
- Cao, Y.; Han, X.; Pan, H.; Jiang, Y.; Peng, X.; Xiao, W.; Rong, J.; Chen, F.; He, J.; Zou, L.; et al. Retraction Note: Emerging protective roles of shengmai injection in septic cardiomyopathy in mice by inducing myocardial mitochondrial autophagy via caspase-3/Beclin-1 axis. Inflamm. Res. 2023, 72, 745. [Google Scholar] [CrossRef]
- Naseri, A.; Akyuz, E.; Turgut, K.; Guzelbektes, H.; Sen, I. Sepsis-induced cardiomyopathy in animals: From experimental studies to echocardiography-based clinical research. Can. Vet. J. 2023, 64, 871–877. [Google Scholar]
- Lu, N.-F.; Niu, H.-X.; Liu, A.-Q.; Chen, Y.-L.; Liu, H.-N.; Zhao, P.-H.; Shao, J.; Xi, X.-M. Types of Septic Cardiomyopathy: Prognosis and Influencing Factors—A Clinical Study. Risk Manag. Healthc. Policy 2024, 17, 1015–1025. [Google Scholar] [CrossRef]
- Liu, C.; Wang, H.; Liu, C.; Cao, M. The predictive value of SOFA and APSIII scores for 28-day mortality risk in SIMI: A cohort study based on the MIMIC-IV database. Front. Cell. Infect. Microbiol. 2025, 15, 1574625. [Google Scholar] [CrossRef]
- Ravikumar, N.; Sayed, M.A.; Poonsuph, C.J.; Sehgal, R.; Shirke, M.M.; Harky, A. Septic Cardiomyopathy: From Basics to Management Choices. Curr. Probl. Cardiol. 2021, 46, 100767. [Google Scholar] [CrossRef]
- Stevens, D.L.; Bryant, A.E. Complexities of cardiomyopathy in septic shock. Curr. Opin. Infect. Dis. 2025, 38, 214–221. [Google Scholar] [CrossRef]
- El Mokadem, M.; El Maraghi, S.; El Hosseiny, R.; Moawad, A.; Yassin, A. The Usefulness of Strain Echocardiography as Diagnostic and Prognostic Index of Cardiac Dysfunction in Septic Patients in Correlation with Cardiac Biomarkers. J. Cardiovasc. Echogr. 2024, 34, 114–119. [Google Scholar] [CrossRef]
- Tucker, R.V.; Williams, K.; Theyyunni, N.; Fung, C.M. Sepsis-Induced Cardiomyopathy Detected with Focused Cardiac Ultrasound in the Emergency Department. J. Emerg. Med. 2022, 63, e91–e99. [Google Scholar] [CrossRef]
- Zakynthinos, G.E.; Giamouzis, G.; Xanthopoulos, A.; Oikonomou, E.; Kalogeras, K.; Karavidas, N.; Dimeas, I.E.; Gialamas, I.; Gounaridi, M.I.; Siasos, G.; et al. Septic Cardiomyopathy: Difficult Definition, Challenging Diagnosis, Unclear Treatment. J. Clin. Med. 2025, 14, 986. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zheng, R.; Yang, P.; Wang, D. Construction of a predictive model and prognosis of left ventricular systolic dysfunction in patients with sepsis based on the diagnosis using left ventricular global longitudinal strain. J. Intensiv. Care 2022, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Innocenti, F.; Palmieri, V.; Guzzo, A.; Stefanone, V.T.; Donnini, C.; Pini, R. SOFA score and left ventricular systolic function as predictors of short-term outcome in patients with sepsis. Intern. Emerg. Med. 2018, 13, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Vallabhajosyula, S.; Rayes, H.A.; Sakhuja, A.; Murad, M.H.; Geske, J.B.; Jentzer, J.C. Global Longitudinal Strain Using Speckle-Tracking Echocardiography as a Mortality Predictor in Sepsis: A Systematic Review. J. Intensiv. Care Med. 2019, 34, 87–93. [Google Scholar] [CrossRef]
- Zhao, J.L.; Wang, R.; Dai, Q.C.; Dong, S.M. The value of right ventricular ultrasound assessment and cardiac biomarkers in the prognosis of sepsis. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 7891–7897. [Google Scholar] [CrossRef]
- Lima, M.R.; Silva, D. Septic cardiomyopathy: A narrative review. Rev. Port. Cardiol. 2023, 42, 471–481. [Google Scholar] [CrossRef]
- Thockchom, N.; Bairwa, M.; Kant, R.; Kumar, B.; Bahurupi, Y.; Goyal, B. Prognostic Significance of Diastolic Dysfunction in Type 2 Diabetes Mellitus Patients with Sepsis and Septic Shock: Insights from a Longitudinal Tertiary Care Study. Cureus 2023, 15, e45894. [Google Scholar] [CrossRef]
- Lin, Y.M.; Lee, M.C.; Toh, H.S.; Chang, W.T.; Chen, S.Y.; Kuo, F.H.; Tang, H.-J.; Hua, Y.-M.; Wei, D.; Melgarejo, J.; et al. Association of sepsis-induced cardiomyopathy and mortality: A systematic review and meta-analysis. Ann. Intensiv. Care 2022, 12, 112. [Google Scholar] [CrossRef]
- Koowattanatianchai, S.; Kochaiyapatana, P.; Eungsuwat, N.; Rangsrisaeneepitak, V.; Thammakumpee, K.; Kaladee, K. Significance of Right Ventricular Dysfunction in Predicting Short-Term Survival Among Patients with Sepsis and Septic Shock: A Prognostic Analysis. Crit. Care Res. Pract. 2025, 2025, 5511135. [Google Scholar] [CrossRef]
- Lanspa, M.J.; Cirulis, M.M.; Wiley, B.M.; Olsen, T.D.; Wilson, E.L.; Beesley, S.J.; Brown, S.M.; Hirshberg, E.L.; Grissom, C.K. Right Ventricular Dysfunction in Early Sepsis and Septic Shock. Chest 2021, 159, 1055–1063. [Google Scholar] [CrossRef]
- Innocenti, F.; Palmieri, V.; Stefanone, V.T.; Donnini, C.; D’Argenzio, F.; Cigana, M.; Tassinari, I.; Pini, R. Epidemiology of right ventricular systolic dysfunction in patients with sepsis and septic shock in the emergency department. Intern. Emerg. Med. 2020, 15, 1281–1289. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kim, Y.J.; Kim, M.; Ryoo, S.M.; Kim, W.Y. Association between right ventricle dysfunction and poor outcome in patients with septic shock. Heart 2020, 106, 1665–1671. [Google Scholar] [CrossRef] [PubMed]
- Vallabhajosyula, S.; Kumar, M.; Pandompatam, G.; Sakhuja, A.; Kashyap, R.; Kashani, K.; Gajic, O.; Geske, J.B.; Jentzer, J.C. Prognostic impact of isolated right ventricular dysfunction in sepsis and septic shock: An 8-year historical cohort study. Ann. Intensiv. Care 2017, 7, 94. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Huang, W.; Zhang, Q.; Chen, X.; Wang, X.; Liu, D. Prevalence and prognostic value of various types of right ventricular dysfunction in mechanically ventilated septic patients. Ann. Intensiv. Care 2021, 11, 108. [Google Scholar] [CrossRef]
- Vallabhajosyula, S.; Shankar, A.; Vojjini, R.; Cheungpasitporn, W.; Sundaragiri, P.R.; DuBrock, H.M.; Sekiguchi, H.; Frantz, R.P.; Cajigas, H.R.; Kane, G.C.; et al. Impact of Right Ventricular Dysfunction on Short-term and Long-term Mortality in Sepsis: A Meta-analysis of 1,373 Patients. Chest 2021, 159, 2254–2263. [Google Scholar] [CrossRef]
- Perencin, A.; Curreri, C.; Zanforlini, B.M.; Bertocco, A.; Ceolin, C.; Papa, M.V.; Sergi, G.; De Rui, M. Beyond APACHE II: The role of TAPSE in predicting mortality among septic patients and septic shock; a systematic review and metanalysis Right heart, right prognosis: TAPSE, a new tool for predicting mortality among septic patients and septic shock; a systematic review and metanalysis. Clin. Res. Cardiol. 2025, 1–12. [Google Scholar] [CrossRef]
- Liu, H.; He, H.; Lin, Z.; Lin, X.; Jiang, L.; Huang, L.; Shang, X.; Wang, X. Prognostic value of TAPSE in patients with septic cardiomyopathy: A retrospective observational cohort study. Front. Med. 2025, 12, 1632964. [Google Scholar] [CrossRef]
- Sanderson, T.; Samuels, T. A cohort study evaluating myocardial work and right ventricle strain in sepsis in critical care. Sci. Rep. 2025, 15, 16606. [Google Scholar] [CrossRef]
- Innocenti, F.; Palmieri, V.; Stefanone, V.T.; D’Argenzio, F.; Cigana, M.; Montuori, M.; Capretti, E.; De Paris, A.; Calcagno, S.; Tassinari, I.; et al. Comparison of Troponin I levels versus myocardial dysfunction on prognosis in sepsis. Intern. Emerg. Med. 2022, 17, 223–231. [Google Scholar] [CrossRef]
- Gajardo, A.I.J.; Ferrière-Steinert, S.; Valenzuela Jiménez, J.; Heskia Araya, S.; Kouyoumdjian Carvajal, T.; Ramos-Rojas, J.; Medel, J.N. Early high-sensitivity troponin elevation and short-term mortality in sepsis: A systematic review with meta-analysis. Crit. Care 2025, 29, 76. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.T.; Jiang, L. Relationship between highly sensitive cardiac troponin T and sepsis and outcome in critically ill patients. Zhonghua Nei Ke Za Zhi 2017, 56, 738–742. [Google Scholar] [PubMed]
- Vallabhajosyula, S.; Pruthi, S.; Shah, S.; Wiley, B.M.; Mankad, S.V.; Jentzer, J.C. Basic and advanced echocardiographic evaluation of myocardial dysfunction in sepsis and septic shock. Anaesth. Intensiv. Care 2018, 46, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Innocenti, F.; Palmieri, V.; Stefanone, V.T.; D’Argenzio, F.; Cigana, M.; Montuori, M.; Capretti, E.; De Paris, A.; Calcagno, S.; Tassinari, I.; et al. Prognostic stratification in septic patients with overt and cryptic shock by speckle tracking echocardiography. Intern. Emerg. Med. 2021, 16, 757–764. [Google Scholar] [CrossRef]
- Iyer, S.; Kennedy, J.N.; Jentzer, J.C.; Senussi, M.H.; Seymour, C.W. Cardiac Function Before Sepsis and Clinical Outcomes. JAMA 2024, 331, 1496. [Google Scholar] [CrossRef]
- Guérin, L.; Vieillard-Baron, A. The Use of Ultrasound in Caring for Patients with Sepsis. Clin. Chest Med. 2016, 37, 299–307. [Google Scholar] [CrossRef]
- Nemani, L.; Palmer, L.J.; Nabzdyk, C.G.S. Echocardiography in Sepsis: Can One Snapshot Tell the Whole Story? J. Cardiothorac. Vasc. Anesth. 2024, 38, 1620–1622. [Google Scholar] [CrossRef]
- Griffee, M.J.; Merkel, M.J.; Wei, K.S. The Role of Echocardiography in Hemodynamic Assessment of Septic Shock. Crit. Care Clin. 2010, 26, 365–382. [Google Scholar] [CrossRef]
- Sato, R.; Hasegawa, D.; Guo, S.C.; Nishida, K.; Dugar, S. Invasive hemodynamic monitoring with pulmonary artery catheter in sepsis-associated cardiogenic shock. Shock 2024, 61, 712–717. [Google Scholar] [CrossRef]
- Sato, R.; Hasegawa, D.; Guo, S.; Nuqali, A.E.; Moreno, J.E.P. Sepsis-induced cardiogenic shock: Controversies and evidence gaps in diagnosis and management. J. Intensiv. Care 2025, 13, 1. [Google Scholar] [CrossRef]
- Ford, V.J.; Applefeld, W.N.; Wang, J.; Sun, J.; Solomon, S.B.; Klein, H.G.; Feng, J.; Lertora, J.; Parizi-Torabi, P.; Danner, R.L.; et al. In a Canine Model of Septic Shock, Cardiomyopathy Occurs Independent of Catecholamine Surges and Cardiac Microvascular Ischemia. J. Am. Hear. Assoc. 2024, 13, e034027. [Google Scholar] [CrossRef]
- Ford, V.J.; Applefeld, W.N.; Wang, J.; Sun, J.; Solomon, S.B.; Sidenko, S.; Feng, J.; Sheffield, C.; Klein, H.G.; Yu, Z.; et al. Cardiac Magnetic Resonance Studies in a Large Animal Model that Simulates the Cardiac Abnormalities of Human Septic Shock. J. Am. Hear. Assoc. 2024, 13, e034026. [Google Scholar] [CrossRef]
- Muehlberg, F.; Blaszczyk, E.; Will, K.; Wilczek, S.; Brederlau, J.; Schulz-Menger, J. Characterization of critically ill patients with septic shock and sepsis-associated cardiomyopathy using cardiovascular MRI. ESC Heart Fail. 2022, 9, 2147–2156. [Google Scholar] [CrossRef]
- Myatra, S.N.; Prabu, N.R.; DIvatia, J.V.; Monnet, X.; Kulkarni, A.P.; Teboul, J.L. The Changes in Pulse Pressure Variation or Stroke Volume Variation after a “tidal Volume Challenge” Reliably Predict Fluid Responsiveness during Low Tidal Volume Ventilation. Crit. Care Med. 2017, 45, 415–421. [Google Scholar] [CrossRef]
Reference | Year | Study Type | Population/Model | Echocardiographic Focus | Prognostic Implications |
---|---|---|---|---|---|
Chen Z et al. [22] | 2024 | Systematic review & meta-analysis | Patients with septic shock | Ultrasound-guided fluid resuscitation (IVC, PLR) | ↓ mortality, ↓ infused fluids, ↓ hospital/ICU stay |
Musikatavorn K et al. [23] | 2021 | Randomized Controlled Trial | 202 patients, sepsis/septic shock | Point-of-care ultrasound vs. clinical management | Reduced infused fluids, no clear survival benefit |
Yan Z et al. [24] | 2020 | Clinical study | 40 patients with septic shock | IVC diameter + lung ultrasound B-lines | Better assessment of fluid responsiveness, ↓ risk of fluid overload |
Zhao J & Wang G [25] | 2016 | Observational | 42 septic shock patients | IVC collapsibility index vs. GEDVI, CI, CVP | IVCCI correlated with GEDVI; useful non-invasive index of intravascular volume |
Yuan J et al. [26] | 2020 | Systematic review | Septic shock patients | Ultrasound vs. Early Goal-Directed Therapy (EGDT) | ↓ early mortality (7 d), ↓ fluids, ↓ pulmonary edema; no benefit at 28 days mortality |
Martin GS et al. [27] | 2020 | Consensus statement (POQI) | Perioperative/critically ill patients | Fluid responsiveness & venous capacitance | Defines concepts and recommends dynamic ultrasound assessment |
Kenny JÉS et al. [28] | 2024 | Prospective observational pilot | Patients in early resuscitation | Simultaneous venous-arterial Doppler (Starling curve) | Feasibility study; proposes a novel hemodynamic index |
Roger C et al. [29] | 2019 | Observational (FCREV study) | 143 Septic patients | Fluid challenge + echocardiography | Fluid responsiveness is dynamic and changes over time |
Latham H et al. [33] | 2023 | Observational (abstract, CCM) | Sepsis/shock patients | Infused fluid volume vs. stroke volume change | Early fluid volume may predict hemodynamic response |
Parker CW et al. [35] | 2022 | Review/Educational | Emergency Department | VTI (Velocity-Time Integral) | VTI useful for bedside stroke volume and CO assessment |
Wu Y et al. [36] | 2014 | Clinical study | Septic patients | 10-second fluid challenge + TTE (VTI-LVOT) | Change in VTI predicts fluid responsiveness |
Wang J et al. [37] | 2020 | Clinical study | Septic shock patients | VTILVOT variation rate | Useful for assessing fluid responsiveness |
Sasidharan P et al. [38] | 2025 | Clinical study | Sepsis-related acute circulatory failure | LVOT VTI | LVOT VTI predictive of fluid responsiveness |
Prager R et al. [39] | 2025 | Exploratory observational | Septic shock patients | VTI-VeXUS index (novel hemodynamic marker) | Promising tool to stratify congestion and response |
Chanthawatthanarak S et al. [40] | 2025 | Prospective study | ED septic shock patients | Carotid vs. LVOT cardiac output (non-invasive) | Good correlation; feasible alternative method, VTI better performance |
Saji SZ et al. [42] | 2025 | Systematic review | Adults with sepsis/septic shock | LVOT VTI | LVOT VTI is accurate for fluid management |
Blanco P [43] | 2020 | Review | Critically ill patients | VTI & stroke volume | Provides rationale for using VTI as reliable bedside measure |
Soliman-Aboumarie H et al. [44] | 2021 | Review | ICU patients | Multiparametric echocardiography | Essential ICU tool for diagnosis and decision-making |
de Braga Lima Carvalho Canesso M et al. [45] | 2019 | Clinical study | 50 septic patients | Speckle-tracking echocardiography (GLS) | GLS changes correlated with dysfunction and prognosis |
Suh GJ et al. [48] | 2023 | Narrative review | Septic shock | Hemodynamic management beyond SSC guidelines | Echo central to advanced hemodynamic strategies |
Reference | Year | Study Type | Population/Model | Echocardiographic Focus | Prognostic Implications |
---|---|---|---|---|---|
Carbone F, Liberale L, et al. [49] | 2022 | Narrative Review | Human/experimental | General echo in SCM | Describes diagnostic & prognostic potential |
Hasegawa D, Ishisaka Y, et al. [52] | 2023 | Systematic review/meta-analysis | 23 studies, >2000 patients | LV/RV dysfunction | SCM associated with ↑ mortality |
Ince ME, Turgut K, et al. [53] | 2019 | Observational | Dogs | Tissue Doppler (systolic/diastolic) | Abnormal indices predicted worse prognosis |
Lu N-F, Niu H-X, et al. [56] | 2024 | Clinical study | Septic patients (~184) | LV vs. RV vs. biventricular | Phenotypes linked to different prognoses-RV dysfunction ↑ mortality |
Ravikumar N, Sayed MA, et al. [58] | 2021 | Review | Human | LV/RV dysfunction | Presence of SIC ↑ mortality |
El Mokadem M, El Maraghi S, et al. [60] | 2024 | Clinical observational | 50 septic patients | LV strain, biomarkers | GLS predictor of in-hospital mortality |
Tucker RV, Williams K, et al. [61] | 2022 | Observational | 110 ED septic patients | Focused cardiac US | SIC is associated with increased 90-day mortality. |
Yu J, Zheng R, et al. [63] | 2022 | Cohort study | 124 Septic patients | LV-GLS | LV-GLS predicted LV systolic dysfunction & death |
Innocenti F, Palmieri V, et al. [64] | 2018 | Observational | Septic patients (~200) | LV systolic-GLS | GLS predicts short-term outcomes, independent of SOFA |
Vallabhajosyula S, Rayes HA, et al. [65] | 2019 | Systematic review | Septic patients (120 studies) | Speckle-tracking echocardiography (STE) | STE strong predictor of mortality |
Zhao JL, Wang R, et al. [66] | 2023 | Observational | 58 Septic patients | RV echo + GLS + biomarkers | GLS + biomarkers predicted mortality |
Thockchom N, Bairwa M, et al. [68] | 2023 | Longitudinal study | 132 patients Sepsis + diabetes | LV diastolic | Diastolic dysfunction predicted worse outcome |
Lin YM, Lee MC, et al. [69] | 2022 | Meta-analysis | >20 studies | LV/RV | SICM linked with increased mortality |
Koowattanatianchai S, Kochaiyapatana P, et al. [70] | 2025 | Prognostic analysis | 104 Septic patients | RV systolic | RV dysfunction predicted short-term survival |
Lanspa MJ, Cirulis MM, et al. [71] | 2021 | Cohort study | 393 Septic shock patients | RV parameters | RV dysfunction associated with worse outcomes |
Innocenti F, Palmieri V, et al. [72] | 2020 | Observational | 252 ED septic patients | RV systolic | RV dysfunction frequent, prognostic role |
Kim JS, Kim YJ, et al. [73] | 2020 | Observational | 778 Septic shock patients | RV function | RV dysfunction linked with mortality |
Vallabhajosyula S, Kumar M, et al. [74] | 2017 | Historical cohort (8 years) | 388 ICU septic patients | RV dysfunction | RV dysfunction independently predicted mortality |
Zhang H, Huang W, et al. [75] | 2021 | Observational | 215 Ventilated septic pts | Various RV dysfunction types | RV failure and RV dysfunction are associated with 30 days mortality |
Vallabhajosyula S, Shankar A, et al. [76] | 2021 | Meta-analysis | 1373 patients | RV dysfunction | RV dysfunction ↑ short- & long-term mortality |
Perencin A, Curreri C, et al. [77] | 2025 | Systematic review/meta-analysis | 1812 Septic/septic shock patients | TAPSE | TAPSE predictive of mortality |
Liu H, He H, et al. [78] | 2025 | Retrospective cohort | 93 SCM patients | TAPSE | Low TAPSE predicted poor outcome |
Sanderson T, Samuels T. et al. [79] | 2025 | Cohort study | ICU septic patients | RV strain, myocardial work | Both associated with mortality |
Sukrisd Koowattanatianchai et al. [70] | 2025 | prospective cohort study | 104 adult septic patients | RV dysfunction | RV dysfunction ↑ mortality |
Innocenti F, Palmieri V, et al. [80] | 2022 | Observational | Septic patients | Echo vs. troponin | Echo predicts the short- and medium-term mortality rate |
Gajardo AIJ, Ferrière-Steinert S, et al. [81] | 2025 | Systematic review/meta-analysis | 6242 patients from 17 studies | Biomarkers (not echo) | Elevated troponin not predicted higher mortality in sepsis |
Wang TT, Jiang L. [82] | 2017 | Observational | 125 Critically ill septic patients | Biomarker study | hs-cTnT not associated with severity of sepsis |
Innocenti F, Palmieri V, et al. [85] | 2021 | Observational | Septic shock pts | Speckle tracking | LV and RV dysfunction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccioni, A.; Rozzi, G.; Spaziani, G.; Novelli, M.; Fuorlo, M.; Candelli, M.; Pignataro, G.; Santarelli, L.; Covino, M.; Gasbarrini, A.; et al. From Fluid Responsiveness to Prognosis: The Emerging Role of Point-of-Care Echocardiography in Sepsis. Diagnostics 2025, 15, 2612. https://doi.org/10.3390/diagnostics15202612
Piccioni A, Rozzi G, Spaziani G, Novelli M, Fuorlo M, Candelli M, Pignataro G, Santarelli L, Covino M, Gasbarrini A, et al. From Fluid Responsiveness to Prognosis: The Emerging Role of Point-of-Care Echocardiography in Sepsis. Diagnostics. 2025; 15(20):2612. https://doi.org/10.3390/diagnostics15202612
Chicago/Turabian StylePiccioni, Andrea, Gloria Rozzi, Giacomo Spaziani, Michela Novelli, Mariella Fuorlo, Marcello Candelli, Giulia Pignataro, Luca Santarelli, Marcello Covino, Antonio Gasbarrini, and et al. 2025. "From Fluid Responsiveness to Prognosis: The Emerging Role of Point-of-Care Echocardiography in Sepsis" Diagnostics 15, no. 20: 2612. https://doi.org/10.3390/diagnostics15202612
APA StylePiccioni, A., Rozzi, G., Spaziani, G., Novelli, M., Fuorlo, M., Candelli, M., Pignataro, G., Santarelli, L., Covino, M., Gasbarrini, A., & Franceschi, F. (2025). From Fluid Responsiveness to Prognosis: The Emerging Role of Point-of-Care Echocardiography in Sepsis. Diagnostics, 15(20), 2612. https://doi.org/10.3390/diagnostics15202612