CIN2 in the Era of Risk-Based Management and HPV Vaccination: Epidemiology, Natural History and Guidelines
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.1.1. Inclusion Criteria
- Prospective or retrospective clinical studies with specific data on isolated CIN2 (incidence, regression, progression, biological predictors).
- Population-based studies and screening trials using the CIN2+ endpoint, including RCTs (NTCC, ATHENA, Nordic studies) and population-based cohorts (KPNC, HPV-IMPACT).
- Studies on the impact of HPV vaccination with CIN2 or CIN2+ outcomes.
- Guidelines and consensus documents from scientific societies and institutions (ASCCP, ACOG, ESGO/EFC, GISCi, Ministry of Health, NHS, WHO).
- Studies on biomarkers (p16, Ki-67 dual stain, E6/E7 mRNA, methylation) relevant to the diagnosis or management of CIN2.
2.1.2. Exclusion Criteria
- Case reports and case series with <30 patients.
- Studies reporting exclusively on CIN3 without data on CIN2.
- Articles not accessible in full text and without abstracts.
2.2. Selection and Categorization
- Those reporting specific data on isolated CIN2, such as prospective or retrospective clinical studies dedicated to its natural history, regression, progression, and biomarkers;
- Those using the CIN2+ endpoint, typically screening trials, population-based cohorts, and studies on the impact of vaccination, in which CIN2 was aggregated with CIN3 for reasons of diagnostic stability and statistical power;
- Consensus documents and international guidelines, including ASCCP, ACOG, ESGO/EFC, GISCi, Ministry of Health, NHS, and WHO.
2.3. Methodological Considerations
3. Results
3.1. Epidemiology
3.2. Natural History of CIN2
3.2.1. Spontaneous Regression
3.2.2. Persistence
3.2.3. Progression
3.3. Prognostic Factors
3.3.1. Age
3.3.2. HPV Genotype
3.3.3. Biopsy-Associated Cytology
3.3.4. Immune Status
3.3.5. Cigarette Smoking
3.3.6. HPV Vaccination
3.4. Biomarkers
3.5. Guidelines
- ▪
- Active surveillance: an appropriate option for young women and those with reproductive desire, especially in the absence of persistent HPV16 and when the lesion is p16-confirmed but clinically “stable.” The goal is to avoid overtreatment and reduce the obstetric risks associated with excisional procedures (ASCCP; ESGO/EFC; GISCi; NICE/NHS).
- ▪
- Excisional treatment: indicated in cases of persistence (generally more than 24 months in adults), the presence of high-risk factors (persistent HPV16, immunocompromised), significant diagnostic discrepancies, or cytological/histological progression. Attention to reproductive implications remains central: many guidelines recommend minimizing the volume and depth of excision when indicated, and involving patients in a shared decision-making process.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bosch, F.X.; Lorincz, A.; Muñoz, N.; Meijer, C.J.; Shah, K.V. The causal relation between human papillomavirus and cervical cancer. J. Clin. Pathol. 2002, 55, 244–265. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ronco, G.; Dillner, J.; Elfström, K.M.; Tunesi, S.; Snijders, P.J.; Arbyn, M.; Kitchener, H.; Segnan, N.; Gilham, C.; Giorgi-Rossi, P.; et al. International HPV screening working group. Efficacy of HPV-based screening for prevention of invasive cervical cancer: Follow-up of four European randomised controlled trials. Lancet 2014, 383, 524–532, Erratum in Lancet 2015, 386, 1446. [Google Scholar] [CrossRef] [PubMed]
- Drolet, M.; Bénard, É.; Boily, M.C.; Ali, H.; Baandrup, L.; Bauer, H.; Beddows, S.; Brisson, J.; Brotherton, J.M.; Cummings, T.; et al. Population-level impact and herd effects following human papillomavirus vaccination programmes: A systematic review and meta-analysis. Lancet Infect. Dis. 2015, 15, 565–580. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ostör, A.G. Natural history of cervical intraepithelial neoplasia: A critical review. Int. J. Gynecol. Pathol. 1993, 12, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Stoler, M.H.; Schiffman, M. Atypical Squamous Cells of Undetermined Significance-Low-grade Squamous Intraepithelial Lesion Triage Study (ALTS) Group. Interobserver reproducibility of cervical cytologic and histologic interpretations: Realistic estimates from the ASCUS-LSIL Triage Study. JAMA 2001, 285, 1500–1505. [Google Scholar] [CrossRef] [PubMed]
- Darragh, T.M.; Colgan, T.J.; Thomas Cox, J.; Heller, D.S.; Henry, M.R.; Luff, R.D.; McCalmont, T.; Nayar, R.; Palefsky, J.M.; Stoler, M.H.; et al. The Lower Anogenital Squamous Terminology Standardization project for HPV-associated lesions: Background and consensus recommendations from the College of American Pathologists and the American Society for Colposcopy and Cervical Pathology. Int. J. Gynecol. Pathol. 2013, 32, 76–115, Erratum in Int. J. Gynecol. Pathol. 2013, 32, 432. Erratum in Int. J. Gynecol. Pathol. 2013, 32, 241. [Google Scholar] [CrossRef] [PubMed]
- Bruno, M.T.; Cassaro, N.; Mazza, G.; Guaita, A.; Boemi, S. Spontaneous regression of cervical intraepithelial neoplasia 3 in women with a biopsy-cone interval of greater than 11 weeks. BMC Cancer 2022, 22, 1072. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wright, T.C.; Stoler, M.H.; Behrens, C.M.; Sharma, A.; Zhang, G.; Wright, T.L. Primary cervical cancer screening with human papillomavirus: End of study results from the ATHENA study using HPV as the first-line screening test. Gynecol. Oncol. 2015, 136, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Ronco, G.; Giorgi-Rossi, P.; Carozzi, F.; Confortini, M.; Dalla Palma, P.; Del Mistro, A.; Ghiringhello, B.; Girlando, S.; Gillio-Tos, A.; De Marco, L.; et al. Efficacy of human papillomavirus testing for the detection of invasive cervical cancers and cervical intraepithelial neoplasia: A randomised controlled trial. Lancet Oncol. 2010, 11, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Moscicki, A.B.; Ma, Y.; Wibbelsman, C.; Darragh, T.M.; Powers, A.; Farhat, S.; Shiboski, S. Rate of and risks for regression of cervical intraepithelial neoplasia 2 in adolescents and young women. Obstet. Gynecol. 2010, 116, 1373–1380. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Loopik, D.L.; Doucette, S.; Bekkers, R.L.; Bentley, J.R. Regression and Progression Predictors of CIN2 in Women Younger Than 25 Years. J. Low. Genit. Tract Dis. 2016, 20, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Tainio, K.; Athanasiou, A.; Tikkinen, K.A.O.; Aaltonen, R.; Cárdenas, J.; Glazer-Livson, S.; Jakobsson, M.; Joronen, K.; Kiviharju, M.; Louvanto, K.; et al. Clinical course of untreated cervical intraepithelial neoplasia grade 2 under active surveillance: Systematic review and meta-analysis. BMJ 2018, 360, k499. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ehret, A.; Bark, V.N.; Mondal, A.; Fehm, T.N.; Hampl, M. Regression rate of high-grade cervical intraepithelial lesions in women younger than 25 years. Arch. Gynecol. Obstet. 2023, 307, 981–990. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Skorstengaard, M.; Lynge, E.; Suhr, J.; Napolitano, G. Conservative management of women with cervical intraepithelial neoplasia grade 2 in Denmark: A cohort study. BJOG Int. J. Obstet. Gynaecol. 2020, 127, 729–736. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Drolet, M.; Laprise, J.F.; Martin, D.; Jit, M.; Bénard, É.; Gingras, G.; Boily, M.C.; Alary, M.; Baussano, I.; Hutubessy, R.; et al. Optimal human papillomavirus vaccination strategies to prevent cervical cancer in low-income and middle-income countries in the context of limited resources: A mathematical modelling analysis. Lancet Infect. Dis. 2021, 21, 1598–1610. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Falcaro, M.; Castañon, A.; Ndlela, B.; Checchi, M.; Soldan, K.; Lopez-Bernal, J.; Elliss-Brookes, L.; Sasieni, P. The effects of the national HPV vaccination programme in England, UK, on cervical cancer and grade 3 cervical intraepithelial neoplasia incidence: A register-based observational study. Lancet 2021, 398, 2084–2092. [Google Scholar] [CrossRef] [PubMed]
- Kyrgiou, M.; Bowden, S.J.; Ellis, L.B.; Hammer, A.; Lyons, D.; Freeman-Wang, T.; Kechagias, K.S.; Kalliala, I.; Preti, M.; Kesic, V.; et al. Active surveillance of cervical intraepithelial neoplasia grade 2: 2025 British Society of Colposcopy and Cervical Pathology and European Society of Gynaecologic Oncology consensus statement. Lancet Oncol. 2025, 26, e140–e151. [Google Scholar] [CrossRef] [PubMed]
- Bruno, M.T.; Scalia, G.; Cassaro, N.; Costanzo, M.; Boemi, S. Conservative management of CIN2 p16 positive lesions in women with multiple HPV infection. BMC Infect. Dis. 2020, 20, 801. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perkins, R.B.; Guido, R.L.; Saraiya, M.; Sawaya, G.F.; Wentzensen, N.; Schiffman, M.; Feldman, S. Summary of Current Guidelines for Cervical Cancer Screening and Management of Abnormal Test Results: 2016–2020. J. Women’s Health 2021, 30, 5–13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koeneman, M.M.; Hendriks, N.; Kooreman, L.F.; Winkens, B.; Kruitwagen, R.F.; Kruse, A.J. Prognostic factors for spontaneous regression of high-risk human papillomavirus-positive cervical intra-epithelial neoplasia grade 2. Int. J. Gynecol. Cancer 2019, 29, 1003–1009. [Google Scholar] [CrossRef] [PubMed]
- Silver, M.I.; Gage, J.C.; Schiffman, M.; Fetterman, B.; Poitras, N.E.; Lorey, T.; Cheung, L.C.; Katki, H.A.; Locke, A.; Kinney, W.K.; et al. Clinical Outcomes after Conservative Management of Cervical Intraepithelial Neoplasia Grade 2 (CIN2) in Women Ages 21–39 Years. Cancer Prev. Res. 2018, 11, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Lycke, K.D.; Kahlert, J.; Damgaard, R.K.; Eriksen, D.O.; Bennetsen, M.H.; Gravitt, P.E.; Petersen, L.K.; Hammer, A. Clinical course of cervical intraepithelial neoplasia grade 2: A population-based cohort study. Am. J. Obstet. Gynecol. 2023, 229, e1–e656. [Google Scholar] [CrossRef] [PubMed]
- Gargano, J.W.; Stefanos, R.; Dahl, R.M.; Castilho, J.L.; Bostick, E.A.; Niccolai, L.M.; Park, I.U.; Blankenship, S.; Brackney, M.M.; Chan, K.; et al. Trends in Cervical Precancers Identified Through Population-Based Surveillance—Human Papillomavirus Vaccine Impact Monitoring Project, Five Sites, United States, 2008–2022. MMWR. Morb. Mortal. Wkly. Rep. 2025, 74, 96–101. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brotherton, J.M.; Fridman, M.; May, C.L.; Chappell, G.; Saville, A.M.; Gertig, D.M. Early effect of the HPV vaccination programme on cervical abnormalities in Victoria, Australia: An ecological study. Lancet 2011, 377, 2085–2092. [Google Scholar] [CrossRef] [PubMed]
- Gertig, D.M.; Brotherton, J.M.; Budd, A.C.; Drennan, K.; Chappell, G.; Saville, A.M. Impact of a population-based HPV vaccination program on cervical abnormalities: A data linkage study. BMC Med. 2013, 11, 227. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baldur-Felskov, B.; Dehlendorff, C.; Junge, J.; Munk, C.; Kjaer, S.K. Incidence of cervical lesions in Danish women before and after implementation of a national HPV vaccination program. Cancer Causes Control 2014, 25, 915–922. [Google Scholar] [CrossRef] [PubMed]
- Sand, F.L.; Kjaer, S.K.; Frederiksen, K.; Dehlendorff, C. Risk of cervical intraepithelial neoplasia grade 2 or worse after conization in relation to HPV vaccination status. Int. J. Cancer 2020, 147, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Bruno, M.T.; Panella, M.M.; Valenti, G.; Ruggeri, Z.; Sgalambro, F.; Reina, S.; Mereu, L. Cervical Intraepithelial Neoplasia Grade 3 (CIN3) in Women Younger than 30 Years Was Significantly Associated with HPV16/18 Genotypes. Cancers 2024, 16, 2043. [Google Scholar] [CrossRef]
- Reuschenbach, M.; Stephan, A.J.; Saxena, K.; Prabhu, V.S.; Jacob, C.; Schneider, K.M.; Greiner, W.; Wölle, R.; Hampl, M. Burden of CIN2+ diagnoses and conizations in women aged 18–45 years-a retrospective secondary data analysis of German statutory health insurance claims data. Arch. Gynecol. Obstet. 2022, 306, 2077–2092. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wentzensen, N.; Clarke, M.A.; Bremer, R.; Poitras, N.; Tokugawa, D.; Goldhoff, P.E.; Castle, P.E.; Schiffman, M.; Kingery, J.D.; Grewal, K.K.; et al. Clinical Evaluation of Human Papillomavirus Screening With p16/Ki-67 Dual Stain Triage in a Large Organized Cervical Cancer Screening Program. JAMA Intern. Med. 2019, 179, 881–888. [Google Scholar] [CrossRef]
- Massad, L.S.; Einstein, M.H.; Huh, W.K.; Katki, H.A.; Kinney, W.K.; Schiffman, M.; Solomon, D.; Wentzensen, N.; Lawson, H.W. 2012 ASCCP Consensus Guidelines Conference. 2012 updated consensus guidelines for the management of abnormal cervical cancer screening tests and cancer precursors. Obstet. Gynecol. 2013, 121, 829–846. [Google Scholar] [CrossRef] [PubMed]
- Wentzensen, N.; Fetterman, B.; Castle, P.E.; Schiffman, M.; Wood, S.N.; Stiemerling, E.; Tokugawa, D.; Bodelon, C.; Poitras, N.; Lorey, T.; et al. p16/Ki-67 Dual Stain Cytology for Detection of Cervical Precancer in HPV-Positive Women. J. Natl. Cancer Inst. 2015, 107, djv257. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bruno, M.T.; Cassaro, N.; Vitale, S.G.; Guaita, A.; Boemi, S. Possible role of negative human papillomavirus E6/E7 mRNA as a predictor of regression of cervical intraepithelial neoplasia 2 lesions in hr-HPV positive women. Virol. J. 2022, 19, 95. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Galgano, M.T.; Castle, P.E.; Atkins, K.A.; Brix, W.K.; Nassau, S.R.; Stoler, M.H. Using biomarkers as objective standards in the diagnosis of cervical biopsies. Am. J. Surg. Pathol. 2010, 34, 1077–1087. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wentzensen, N.; Schwartz, L.; Zuna, R.E.; Smith, K.; Mathews, C.; Gold, M.A.; Allen, R.A.; Zhang, R.; Dunn, S.T.; Walker, J.L.; et al. Performance of p16/Ki-67 immunostaining to detect cervical cancer precursors in a colposcopy referral population. Clin. Cancer Res. 2012, 18, 4154–4162. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arbyn, M.; Redman, C.W.E.; Verdoodt, F.; Kyrgiou, M.; Tzafetas, M.; Ghaem-Maghami, S.; Petry, K.U.; Leeson, S.; Bergeron, C.; Nieminen, P.; et al. Incomplete excision of cervical precancer as a predictor of treatment failure: A systematic review and meta-analysis. Lancet Oncol. 2017, 18, 1665–1679. [Google Scholar] [CrossRef] [PubMed]
- Wright, T.C., Jr.; Behrens, C.M.; Ranger-Moore, J.; Rehm, S.; Sharma, A.; Stoler, M.H.; Ridder, R. Triaging HPV-positive women with p16/Ki-67 dual-stained cytology: Results from a sub-study nested into the ATHENA trial. Gynecol. Oncol. 2017, 144, 51–56. [Google Scholar] [CrossRef]
- Clarke, M.A.; Wentzensen, N.; Perkins, R.B.; Garcia, F.; Arrindell, D.; Chelmow, D.; Cheung, L.C.; Darragh, T.M.; Egemen, D.; Guido, R.; et al. Recommendations for Use of p16/Ki67 Dual Stain for Management of Individuals Testing Positive for Human Papillomavirus. J. Low. Genit. Tract Dis. 2024, 28, 124–130, Erratum in J. Low. Genit. Tract Dis. 2024, 28, 316. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bruno, M.T.; Valenti, G.; Ruggeri, Z.; Incognito, G.G.; Coretti, P.; Montana, G.D.; Panella, M.M.; Mereu, L. Correlation of the HPV 16 Genotype Persistence in Women Undergoing LEEP for CIN3 with the Risk of CIN2+ Relapses in the First 18 Months of Follow-Up: A Multicenter Retrospective Study. Diagnostics 2024, 14, 509. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Prete, R.D.; Ronga, L.; Addati, G.; Magrone, R.; Abbasciano, A.; Carlo, D.D.; Santacroce, L. A Retrospective Study about the Impact of Switching from Nested PCR to Multiplex Real-Time PCR on the Distribution of the Human Papillomavirus (HPV) Genotypes. Medicina 2019, 55, 418. [Google Scholar] [CrossRef]
- Schiffman, M.; Clifford, G.; Buonaguro, F.M. Classification of weakly carcinogenic human papillomavirus types: Addressing the limits of epidemiology at the borderline. Infect. Agents Cancer 2009, 4, 8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Katki, H.A.; Schiffman, M.; Castle, P.E.; Fetterman, B.; Poitras, N.E.; Lorey, T.; Cheung, L.C.; Raine-Bennett, T.; Gage, J.C.; Kinney, W.K. Five-year risks of CIN 3+ and cervical cancer among women with HPV testing of ASC-US Pap results. J. Low. Genit. Tract Dis. 2013, 17 (Suppl. 1), S36–S42. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schiffman, M.; Wentzensen, N.; Wacholder, S.; Kinney, W.; Gage, J.C.; Castle, P.E. Human papillomavirus testing in the prevention of cervical cancer. J. Natl. Cancer Inst. 2011, 103, 368–383. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Strickler, H.D.; Burk, R.D.; Fazzari, M.; Anastos, K.; Minkoff, H.; Massad, L.S.; Hall, C.; Bacon, M.; Levine, A.M.; Watts, D.H.; et al. Natural history and possible reactivation of human papillomavirus in human immunodeficiency virus-positive women. J. Natl. Cancer Inst. 2005, 97, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Denslow, S.A.; Rositch, A.F.; Firnhaber, C.; Ting, J.; Smith, J.S. Incidence and progression of cervical lesions in women with HIV: A systematic global review. Int. J. STD AIDS 2014, 25, 163–177. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Clifford, G.M.; Gonçalves, M.A.; Franceschi, S.; HPV and HIV Study Group. Human papillomavirus types among women infected with HIV: A meta-analysis. Aids 2006, 20, 2337–2344. [Google Scholar] [CrossRef] [PubMed]
- Abraham, A.G.; D’Souza, G.; Jing, Y.; Gange, S.J.; Sterling, T.R.; Silverberg, M.J.; Saag, M.S.; Rourke, S.B.; Rachlis, A.; Napravnik, S.; et al. Invasive cervical cancer risk among HIV-infected women: A North American multicohort collaboration prospective study. AIDS J. Acquir. Immune Defic. Syndr. 2013, 62, 405–413. [Google Scholar] [CrossRef]
- Del Pino, M.; Martí, C.; Torras, I.; Henere, C.; Munmany, M.; Marimon, L.; Saco, A.; Torné, A.; Ordi, J. HPV Vaccination as Adjuvant to Conization in Women with Cervical Intraepithelial Neoplasia: A Study under Real-Life Conditions. Vaccines 2020, 8, 245. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garland, S.M.; Paavonen, J.; Jaisamrarn, U.; Naud, P.; Salmerón, J.; Chow, S.N.; Apter, D.; Castellsagué, X.; Teixeira, J.C.; Skinner, S.R.; et al. Prior human papillomavirus-16/18 AS04-adjuvanted vaccination prevents recurrent high grade cervical intraepithelial neoplasia after definitive surgical therapy: Post-hoc analysis from a randomized controlled trial. Int. J. Cancer 2016, 139, 2812–2826. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kechagias, K.S.; Kalliala, I.; Bowden, S.J.; Athanasiou, A.; Paraskevaidi, M.; Paraskevaidis, E.; Dillner, J.; Nieminen, P.; Strander, B.; Sasieni, P.; et al. Role of human papillomavirus (HPV) vaccination on HPV infection and recurrence of HPV related disease after local surgical treatment: Systematic review and meta-analysis. BMJ 2022, 378, e070135. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Machalek, D.A.; Garland, S.M.; Brotherton, J.M.L.; Bateson, D.; McNamee, K.; Stewart, M.; Rachel Skinner, S.; Liu, B.; Cornall, A.M.; Kaldor, J.M.; et al. Very Low Prevalence of Vaccine Human Papillomavirus Types Among 18- to 35-Year Old Australian Women 9 Years Following Implementation of Vaccination. J. Infect. Dis. 2018, 217, 1590–1600. [Google Scholar] [CrossRef] [PubMed]
- Drolet, M.; Bénard, É.; Pérez, N.; Brisson, M.; HPV Vaccination Impact Study Group. Population-level impact and herd effects following the introduction of human papillomavirus vaccination programmes: Updated systematic review and meta-analysis. Lancet 2019, 394, 497–509. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hall, M.T.; Simms, K.T.; Lew, J.B.; Smith, M.A.; Brotherton, J.M.; Saville, M.; Frazer, I.H.; Canfell, K. The projected timeframe until cervical cancer elimination in Australia: A modelling study. Lancet Public Health 2019, 4, e19–e27. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Ploner, A.; Elfström, K.M.; Wang, J.; Roth, A.; Fang, F.; Sundström, K.; Dillner, J.; Sparén, P. HPV Vaccination and the Risk of Invasive Cervical Cancer. N. Engl. J. Med. 2020, 383, 1340–1348. [Google Scholar] [CrossRef] [PubMed]
- Garland, S.M.; Kjaer, S.K.; Muñoz, N.; Block, S.L.; Brown, D.R.; DiNubile, M.J.; Lindsay, B.R.; Kuter, B.J.; Perez, G.; Dominiak-Felden, G.; et al. Impact and Effectiveness of the Quadrivalent Human Papillomavirus Vaccine: A Systematic Review of 10 Years of Real-world Experience. Clin. Infect. Dis. 2016, 63, 519–527. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bruno, M.T.; Guaita, A.; Boemi, S.; Mazza, G.; Sudano, M.C.; Palumbo, M. Performance of p16/Ki67 Immunostaining for Triage of Elderly Women with Atypical Squamous Cells of Undetermined Significance. J. Clin. Med. 2023, 12, 3400. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De Strooper, L.M.A.; Verhoef, V.M.J.; Berkhof, J.; Hesselink, A.T.; de Bruin, H.M.E.; van Kemenade, F.J.; Bosgraaf, R.P.; Bekkers, R.L.M.; Massuger, L.F.A.G.; Melchers, W.J.G.; et al. Validation of the FAM19A4/mir124-2 DNA methylation test for both lavage- and brush-based self-samples to detect cervical (pre)cancer in HPV-positive women. Gynecol. Oncol. 2016, 141, 341–347. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Verhoef, V.M.; Bosgraaf, R.P.; van Kemenade, F.J.; Rozendaal, L.; Heideman, D.A.; Hesselink, A.T.; Bekkers, R.L.; Steenbergen, R.D.; Massuger, L.F.; Melchers, W.J.; et al. Triage by methylation-marker testing versus cytology in women who test HPV-positive on self-collected cervicovaginal specimens (PROHTECT-3): A randomised controlled non-inferiority trial. Lancet Oncol. 2014, 15, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Luttmer, R.; de Strooper, L.M.A.; Berkhof, J.; Snijders, P.J.F.; Dijkstra, M.G.; Uijterwaal, M.H.; Steenbergen, R.D.M.; van Kemenade, F.J.; Rozendaal, L.; Helmerhorst, T.J.M.; et al. Comparing the performance of FAM19A4 methylation analysis, cytology and HPV16/18 genotyping for the detection of cervical (pre)cancer in high-risk HPV-positive women of a gynecologic outpatient population (COMETH study). Int. J. Cancer 2016, 138, 992–1002. [Google Scholar] [CrossRef]
- Perkins, R.B.; Guido, R.S.; Castle, P.E.; Chelmow, D.; Einstein, M.H.; Garcia, F.; Huh, W.K.; Kim, J.J.; Moscicki, A.B.; Nayar, R.; et al. 2019 ASCCP Risk-Based Management Consensus Guidelines for Abnormal Cervical Cancer Screening Tests and Cancer Precursors. J. Low. Genit. Tract Dis. 2020, 24, 102–131, Erratum in J. Low. Genit. Tract Dis. 2020, 24, 427. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- American College of Obstetricians and Gynecologists. Practice Advisory: Updated Guidelines for Management of Cervical Cancer Screening Abnormalities; ACOG: Washington, DC, USA, 2020. [Google Scholar]
- American College of Obstetricians and Gynecologists. Practice Bulletin No. 229: Cervical Cancer Screening. Obstet. Gynecol. 2021, 138, e55–e75. [Google Scholar]
- Kyrgiou, M.; Arbyn, M.; Bergeron, C.; Bosch, F.X.; Dillner, J.; Jit, M.; Kim, J.; Poljak, M.; Nieminen, P.; Sasieni, P.; et al. Cervical screening: ESGO-EFC position paper of the European Society of Gynaecologic Oncology (ESGO) and the European Federation of Colposcopy (EFC). Br. J. Cancer 2020, 123, 510–517. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- National Institute for Health and Care Excellence (NICE). Cervical Screening—Clinical Knowledge Summaries (CKS); NICE: London UK, 2024; Available online: https://cks.nice.org.uk/topics/cervical-screening/ (accessed on 28 August 2025).
- NHS England. Cervical Screening Programme and Colposcopy Management: NHS CSP; NHS: London, UK, 2024. Available online: https://www.gov.uk/government/publications/cervical-screening-programme-and-colposcopy-management (accessed on 29 August 2025).
- NHS England. NHS Rolls Out More Personalised Cervical Screening for Millions; NHS: London, UK, 2025; Available online: https://www.england.nhs.uk/2025/06/nhs-rolls-out-more-personalised-cervical-screening-for-millions/ (accessed on 26 August 2025).
- Italian Cervical Screening Group (GISCi). Recommendations for the Management of CIN2; Italian Guidelines, GISCi 2021; GISCi: Rome, Italy, 2021; Available online: https://gisci.it/documenti/lg-condivise/LLGG-197-GISCi-cervice-utero_14ott_Racc2.pdf (accessed on 26 August 2025).
- Ministry of Health. National Guidelines for the Prevention and Management of Precancerous Cervical Lesions; Italian National Guidelines 2024; Ministry of Health: Rome, Italy, 2024. Available online: https://gisci.it/documenti/linee-guida/LG_197_GISCi_Biomarcatori-screening-cervicale_29ago24.pdf (accessed on 26 August 2025).
- World Health Organization. WHO Guideline for Screening and Treatment of Cervical Pre-Cancer Lesions for Cervical Cancer Prevention, 2nd ed.; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- World Health Organization. Guidance on p16/Ki-67 Dual-Stain Cytology for Triage of HPV-Positive Women; WHO: Geneva, Switzerland, 2024. [Google Scholar]
- Kyrgiou, M.; Koliopoulos, G.; Martin-Hirsch, P.; Arbyn, M.; Prendiville, W.; Paraskevaidis, E. Obstetric outcomes after conservative treatment for intraepithelial or early invasive cervical lesions: Systematic review and meta-analysis. Lancet 2006, 367, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Arbyn, M.; Kyrgiou, M.; Simoens, C.; Raifu, A.O.; Koliopoulos, G.; Martin-Hirsch, P.; Prendiville, W.; Paraskevaidis, E. Perinatal mortality and other severe adverse pregnancy outcomes associated with treatment of cervical intraepithelial neoplasia: Meta-analysis. BMJ 2008, 337, a1284. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kyrgiou, M.; Athanasiou, A.; Kalliala, I.E.J.; Paraskevaidi, M.; Mitra, A.; Martin-Hirsch, P.P.; Arbyn, M.; Bennett, P.; Paraskevaidis, E. Obstetric outcomes after conservative treatment for cervical intraepithelial lesions and early invasive disease. Cochrane Database Syst. Rev. 2017, 11, CD012847. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Reference | Study Design | Population | N | Follow-Up | Regression Rate | Progression Rate | Notes/Relevance |
---|---|---|---|---|---|---|---|
Ostör, A.G., 1993 [4] | Critical review | CIN1-3 | NA | Various | 60% | 10% | Supports 50–70% regression, 10–15% progression |
Moscicki, A.B., 2010 [10] | Prospective cohort | Adolescents/young women with CIN2 | 237 | 36 mo | 68% | 12% | Regression higher in young women |
Loopik, D.L., 2016 [11] | Cohort | Women <25 years with CIN2 | 112 | 24 mo | 65% | 13% | Age <25 predictive of regression |
Tainio, K., 2018 [12] | Systematic review & meta-analysis | CIN2 under surveillance | 1635 | 24–36 mo | 55–63% | 11–14% | Aggregated data supporting summary figures |
Ehret, A., 2023 [13] | Cohort | Women <25 years with high-grade lesions | 89 | 24 mo | 62% | 10% | Young age and lesion size influence regression |
Skorstengaard, M., 2020 [14] | Cohort | CIN2 women, Denmark | 275 | 24 mo | 58% | 12% | Supports conservative management evidence |
Silver, M.I., 2018 [21] | Cohort | Women 21–39 years, CIN2 | 270 | 18 mo | 57% | 13% | Regression consistent with 50–70% range |
ASCCP (USA) [60] | 2019 | p16 as adjudication (LAST); HPV testing for follow-up | Recommended observation: colposcopy + HPV testing every 6–12 months up to 24 months | Excisional treatment preferred; observation acceptable if reproductive desire and visible transformation zone | Risk-based model: personalized management based on the estimated risk of CIN3+ |
ACOG (USA) [61] | 2020 | Accepts use of p16 | Same as ASCCP | Same as ASCCP | Joins the ASCCP 2019 |
ESGO/EFC (Europe) [63] | 2020 | Mandatory use of p16 for all CIN2; optional Ki-67/mRNA | Active surveillance is recommended; follow-up with colposcopy + HPV testing every 6–12 months | Treatment recommended if persistence >24 months or HPV 16 persistent; surveillance possible in selected cases | Conservative and personalized approach, strong role of biomarkers |
NHS CSP (UK) [65] | 2024 | p16 recommended as triage | Recommended observation in patients <25 years of age or with reproductive desire | Treatment or surveillance if justified | Emphasis on auditing and overtreatment reduction |
GISCi (Italy) [67] | 2021 | p16 mandatory; dual stain in reference centers | Active surveillance in <25 or in women with reproductive desire | Treatment or follow-up if compliance is high | Aligned with ESGO, strong use of biomarkers |
Ministry of Health (Italy) [68] | 2024 | Confirm p16 use; HPV test for follow-up | Recommended observation | Standard treatment, observation in selected cases | National organized screening policy |
WHO [69,70] | 2021–24 | Not recommended for LMIC; focus on HPV testing | Not distinguished from those ≥25 years | Not distinguished from <25 years | Screen-and-treat approach: immediate treatment of all HSIL (CIN2/3) without histological confirmation in low-income countries |
Aspect | Yesterday—Pre-Vaccine/Traditional Approach | Today—Post-Vaccine Era/Risk-Based Management |
---|---|---|
Endpoint reported | Prevalence/incidence often in CIN2+ for statistical power and greater diagnostic reproducibility [2,3,4,5]. | In clinical trials, CIN2 is distinct from CIN3; in screening/vaccination, the CIN2+ public health endpoint remains [8,9,15,16,17]. |
Natural history | CIN2 frequently treated as “in need of treatment” HSIL. Historical data: prevalence ~0.2–0.4% [4,5]. | High regression of CIN2 (≈40–70% in young women), rare progression; basis for active surveillance [10,14,20,21,22]. |
Key findings | Trial/registers: NTCC, ATHENA, KPNC [8,9,19]. | Prospective studies/meta-analysis on isolated CIN2: Moscicki, Loopik, Tainio, Koeneman, Bruno, Lycke [10,11,12,18,20,22]. |
Biomarkers | Limited/heterogeneous use (p16 sometimes ancillary). | Triage p16/Ki 67, HPV mRNA E6/E7 and other markers to estimate regression/persistence and select who to monitor [18,35,37,38,56]. |
Management strategy | Prevalence of excisional treatment for HSIL. | Risk-based management: selective active surveillance (especially <25–30 years/reproductive desire); treatment if high risk or persistent [60,61,62]. |
Impact of vaccination | Not available / irrelevant. | Significant decline in CIN2+ at population level (−51% global meta-analysis; up to −79% 20–24 years USA; −33% Norway) and marked reduction in isolated CIN2 in vaccinated women (~0.2% vs. ~1%) [15,16,23]. |
Main purpose | Demonstrate test performance and screening coverage. | Integrating epidemiology and clinical practice: measuring population impact (CIN2+) and optimizing individual decisions (CIN2). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruno, M.T.; Pagana, A.; Lo Giudice, C.; Panella, M.M.; Mascellino, G.; Laganà, A.S. CIN2 in the Era of Risk-Based Management and HPV Vaccination: Epidemiology, Natural History and Guidelines. Diagnostics 2025, 15, 2512. https://doi.org/10.3390/diagnostics15192512
Bruno MT, Pagana A, Lo Giudice C, Panella MM, Mascellino G, Laganà AS. CIN2 in the Era of Risk-Based Management and HPV Vaccination: Epidemiology, Natural History and Guidelines. Diagnostics. 2025; 15(19):2512. https://doi.org/10.3390/diagnostics15192512
Chicago/Turabian StyleBruno, Maria Teresa, Alessia Pagana, Carla Lo Giudice, Marco Marzio Panella, Giuseppe Mascellino, and Antonio Simone Laganà. 2025. "CIN2 in the Era of Risk-Based Management and HPV Vaccination: Epidemiology, Natural History and Guidelines" Diagnostics 15, no. 19: 2512. https://doi.org/10.3390/diagnostics15192512
APA StyleBruno, M. T., Pagana, A., Lo Giudice, C., Panella, M. M., Mascellino, G., & Laganà, A. S. (2025). CIN2 in the Era of Risk-Based Management and HPV Vaccination: Epidemiology, Natural History and Guidelines. Diagnostics, 15(19), 2512. https://doi.org/10.3390/diagnostics15192512