Molecular Diagnostics and Personalized Therapeutics in Differentiated Thyroid Carcinoma: A Clinically Oriented Review †
Abstract
1. Introduction
2. Molecular Diagnostics in DTC
2.1. Overview of Key Genetic Alterations
- BRAF Mutations: Mutations in the BRAF gene are common in PTC [13]. The BRAF V600E mutation is the most extensively studied variant. It is highly specific for malignancy, particularly PTC, and is rare in FTC or benign nodules. When detected on FNA, even in indeterminate or non-diagnostic samples, a diagnosis of thyroid cancer is strongly suspected [3,14]. While BRAF V600E is the most frequent, other BRAF variants and translocations also occur, especially in follicular-patterned tumors.
- RAS Mutations: Mutations in the RAS gene family, including HRAS, KRAS, and NRAS, are found in both benign and malignant thyroid lesions [11]. In thyroid cancer, RAS mutations are more commonly associated with FTC and can also be detected, albeit at lower frequencies (approximately 10% or less), in the follicular variant of PTC [15]. These genes encode proto-oncogenes involved in key signaling pathways regulating cell proliferation and differentiation.
- RET Fusions (RET/PTC): RET gene alterations, most commonly referred to as RET fusions, involve the fusion of the RET proto-oncogene—encoding a receptor tyrosine kinase—with various partner genes [16]. These fusions are characteristic genetic events in PTC. Inherited RET point mutations, in contrast, are associated with medullary thyroid carcinoma (MTC) [17].
- TERT Promoter Mutations: Mutations in the promoter region of the TERT gene (telomerase reverse transcriptase) are significant alterations. TERT promoter mutations are reported in DTC and are frequently found coexisting with BRAF or RAS mutations. These mutations are often associated with more aggressive disease across thyroid carcinoma subtypes and may serve as a marker of poor prognosis [18].
2.2. Role of Molecular Testing in Cytologically ITNs
2.3. Commercially Available Tests: Performance, Strengths, and Limitations
Test | Platform/Technology | Analytes | Output | Key Features | Validation Type [Ref] |
---|---|---|---|---|---|
Afirma GSC | Whole-transcriptome RNA sequencing + Machine Learning | mRNA expression | Benign/Suspicious | High NPV; reclassifies Bethesda III/IV nodules | Prospective, blinded, multicenter study [32] |
ThyroSeq v3 | Targeted next-generation DNA/RNA sequencing | Point mutations, gene fusions, CNVs, gene expression (112 genes) | Detailed genomic profile | Diagnostic, prognostic, and therapeutic information | Prospective, blinded, multicenter validation study [33] |
MPTX (ThyGeNEXT/ThyraMIR) | Targeted DNA sequencing + microRNA risk classifier | Gene mutations/rearrangements (DNA) + miRNA expression (RNA) | Benign/Moderate/High Risk score | Multiplatform approach combining DNA and microRNA analysis | Multicenter, blinded validation + real-world studies [34] |
ThyroidPrint | q-PCR-based ten-gene classifier | Gene expression (RNA) | Benign/Suspicious | High NPV; reclassifies Bethesda III/IV nodules | Multicenter validation [29] |
mir-THYpe | microRNA qPCR profiling on FNA cytology slides (no repeat aspiration required) | Panel of 11 microRNAs | Benign vs. malignant | High sensitivity (~95%) and specificity (~81%); high NPV (~96%); avoids unnecessary surgeries; uses existing cytology slides | Initial development and FNA-smear validation and a large real-world prospective multicenter validation [35,36] |
2.4. Diagnostic Implications and Clinical Decision-Making
3. Integration of Molecular Data into Risk Stratification
4. Personalized Therapeutic Approaches
4.1. Surgical Decision-Making Guided by Molecular Profile
4.2. Use of RAI: Indications, Refractoriness, and Molecular Predictors of Response
4.3. Targeted Therapies
4.3.1. TKIs
4.3.2. Novel Agents Targeting MEK, NTRK, BRAF
4.4. Criteria for Initiating Targeted Therapy and Monitoring Response
- Confirmed RR, usually established by cumulative RAI activity exceeding ~600 mCi or insufficient RAI uptake despite prior therapy [105].
- Serum thyroglobulin (Tg) levels serve as a biochemical marker of treatment efficacy when anti-Tg antibodies are absent [103].
4.5. Toxicity Management and Patient Selection
4.5.1. Adverse Event Profile and Monitoring
4.5.2. Management Strategies
4.5.3. Patient Selection and Dose Optimization
5. Clinical Implementation and Real-World Considerations
5.1. Challenges in Adopting Molecular Testing: Cost, Accessibility, Standardization
- High cost and uncertain reimbursement: Molecular assays, particularly next-generation sequencing (NGS) panels, can cost between USD 1700 and 3500 per test [25,111,112]. While the upfront cost may be offset in some healthcare settings by reducing diagnostic surgeries (e.g., diagnostic lobectomies), cost-effectiveness varies widely across regions and reimbursement systems [113]. In many middle- and low-income countries, these tests are either not covered by public funding or require substantial out-of-pocket payments, severely limiting patient access [112].
- Limitations in laboratory infrastructure and workflow: Many institutions lack the infrastructure and technical expertise necessary for high-quality NGS diagnostics. In Canada and parts of Europe, molecular testing remains centralized in academic centers, and community hospitals rarely have access to validated testing platforms or well-trained molecular pathologists [114,115]. Furthermore, inconsistency in sample processing, analytical validation, and reporting among different laboratories leads to variable results and undermines clinical confidence [116].
- Lack of standardization and harmonized guidelines: Although professional societies, such as the European Thyroid Association, recommend molecular testing in the evaluation of ITNs, they also underscore the need for standardized protocols regarding assay choice, mutation panels, and analytic thresholds [25,115,117]. Currently, wide variability exists in testing strategies (e.g., sequential single-gene assays versus broad-panel NGS) and interpretation frameworks, making it difficult to compare outcomes or implement uniform clinical pathways [114].
5.2. Multidisciplinary Team Approach to Interpretation and Application of Results
5.3. Disparities in Global Availability and Use
- Regional inequities: North America dominates the molecular diagnostics market, with widespread adoption in academic centers and reimbursement in many settings, although rural regions face reduced uptake due to workforce and funding limitations) [112,114,119]. In contrast, access in low- and middle-income countries is minimal, restricted by out-of-pocket costs and lack of public coverage [123].
- Uneven adoption within regions: In Europe, availability varies considerably. A multinational survey reported that while most clinicians prescribe molecular testing for aggressive thyroid cancers, barriers such as limited reimbursement, absence of standardized workflows, and restricted access to targeted therapies remain. Notably, only two-thirds of centers reported functioning molecular tumor boards [114].
5.4. Insights from Real-World Data and Practice Guidelines
- A decision-analytic cost-effectiveness model demonstrated that ThyroSeq v3 (TSv3) and Afirma Genomic Sequencing Classifier (GSC) are substantially more cost-efficient than upfront diagnostic lobectomies in the US healthcare setting. The cost per correct diagnosis was estimated at approximately USD 14,277 for TSv3, USD 17,873 for GSC, and USD 38,408 for lobectomy, making TSv3 the preferred strategy in robust sensitivity analyses [105,124,125].
- Another Markov model comparing reflexive versus selective molecular testing revealed an average cost of USD 8045 per patient in the reflexive strategy versus USD 6090, but resulted in fewer unnecessary lobectomies and a cost per surgery avoided of approximately USD 20,600 [126].
- A comprehensive health technology assessment found that molecular testing improved diagnostic accuracy (sensitivity), significantly reduced unnecessary surgeries (from ~75% to ~21%), and slightly increased quality-adjusted life years (QALYs), although the incremental cost-effectiveness ratio (ICER) was high (USD 220,572–298,653 per QALY), rendering it not cost-effective at traditional willingness-to-pay thresholds [124].
6. Future Perspectives in Precision Management
6.1. Emerging Technologies: Liquid Biopsy, AI in Ultrasound and Cytology, Radiogenomics
- AI applied to ultrasound and cytology is revolutionizing thyroid nodule assessment. Deep learning algorithms have demonstrated diagnostic performance comparable to or superior to that of expert radiologists in stratifying nodules and reducing unnecessary biopsies, in the context of thyroid nodule risk stratification. For example, the S-Detect AI system achieved sensitivity and accuracy similar to experienced radiologists, and significantly improved diagnostic performance among trainees while lowering biopsy rates by up to 27% in a real-world prospective study [130,131].
- Radiogenomics, which integrates quantitative imaging features (radiomics) with tumor genomic signatures, has shown early potential in thyroid cancer. A recent systematic review demonstrated correlations between ultrasound CT/MRI-derived radiomic features and genomic alterations such as BRAF V600E and RET/PTC fusions, as well as prediction of nodal metastases [132].
6.2. Integration of Multi-Omics Approaches (Genomics, Proteomics, Transcriptomics)
6.3. Current and Future Clinical Trials Exploring Precision Therapy in DTC
- A Phase II study by the International Thyroid Oncology Group (ITOG) investigated pembrolizumab combined with Lenvatinib in progressive RR DTC (NCT02973997). Accrual has concluded, with results anticipated by late 2025.
- Another ITOG study evaluated Cabozantinib combined with nivolumab and ipilimumab (NCT03914300) in patients previously treated with VEGFR-targeted agents. Its completion is expected in early 2026.
- A randomized Phase II study (NCT02393690) assessed whether Selumetinib could restore iodine uptake in RAI-avid yet refractory metastatic disease. Final data are expected imminently.
- The caboNivoIpi trial (NCT01811212) evaluated Cabozantinib monotherapy as salvage therapy, showing encouraging disease control rates in TKI-resistant settings.
- The LIBRETTO-001 basket trial of Selpercatinib in RET fusion-positive thyroid cancers demonstrated an overall response rate (ORR) of ~79%, with a median progression-free survival (PFS) of 20 months.
- Future studies include neoadjuvant protocols evaluating Selpercatinib before surgery in RET-altered tumors, as well as novel agents targeting PI3K/mTOR pathways and additional multi-kinase inhibitors in phase II trials.
6.4. Vision for a Fully Personalized Care Pathway
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, S.; Wu, X.; Jiang, H. Trends and Projections of the Global Burden of Thyroid Cancer from 1990 to 2030. J. Glob. Health 2024, 14, 04084. [Google Scholar] [CrossRef]
- Esserman, L.J.; Thompson, I.M.; Reid, B. Overdiagnosis and Overtreatment in Cancer: An Opportunity for Improvement. JAMA 2013, 310, 797–798. [Google Scholar] [CrossRef]
- D’Cruz, A.K.; Vaish, R.; Vaidya, A.; Nixon, I.J.; Williams, M.D.; Vander Poorten, V.; López, F.; Angelos, P.; Shaha, A.R.; Khafif, A.; et al. Molecular Markers in Well-Differentiated Thyroid Cancer. Eur. Arch. Otorhinolaryngol. 2018, 275, 1375–1384. [Google Scholar] [CrossRef]
- Wang, C.-C.C.; Friedman, L.; Kennedy, G.C.; Wang, H.; Kebebew, E.; Steward, D.L.; Zeiger, M.A.; Westra, W.H.; Wang, Y.; Khanafshar, E.; et al. A Large Multicenter Correlation Study of Thyroid Nodule Cytopathology and Histopathology. Thyroid 2011, 21, 243–251. [Google Scholar] [CrossRef]
- Nayar, R.; Ivanovic, M. The Indeterminate Thyroid Fine-Needle Aspiration: Experience from an Academic Center Using Terminology Similar to That Proposed in the 2007 National Cancer Institute Thyroid Fine Needle Aspiration State of the Science Conference. Cancer 2009, 117, 195–202. [Google Scholar] [CrossRef]
- Patel, J.; Klopper, J.; Cottrill, E.E. Molecular Diagnostics in the Evaluation of Thyroid Nodules: Current Use and Prospective Opportunities. Front. Endocrinol. 2023, 14, 1101410. [Google Scholar] [CrossRef] [PubMed]
- Penna, G.C.; Vaisman, F.; Vaisman, M.; Sobrinho-Simões, M.; Soares, P. Molecular Markers Involved in Tumorigenesis of Thyroid Carcinoma: Focus on Aggressive Histotypes. Cytogenet. Genome Res. 2016, 150, 194–207. [Google Scholar] [CrossRef] [PubMed]
- Khatami, F.; Larijani, B.; Nikfar, S.; Hasanzad, M.; Fendereski, K.; Tavangar, S.M. Personalized Treatment Options for Thyroid Cancer: Current Perspectives. Pharmgenomics Pers. Med. 2019, 12, 235–245. [Google Scholar] [CrossRef]
- Acuña-Ruiz, A.; Carrasco-López, C.; Santisteban, P. Genomic and Epigenomic Profile of Thyroid Cancer. Best. Pract. Res. Clin. Endocrinol. Metab. 2023, 37, 101656. [Google Scholar] [CrossRef] [PubMed]
- Glass, R.E.; Marotti, J.D.; Kerr, D.A.; Levy, J.J.; Vaickus, L.J.; Gutmann, E.J.; Tafe, L.J.; Motanagh, S.A.; Sorensen, M.J.; Davies, L.; et al. Using Molecular Testing to Improve the Management of Thyroid Nodules with Indeterminate Cytology: An Institutional Experience with Review of Molecular Alterations. J. Am. Soc. Cytopathol. 2022, 11, 79–86. [Google Scholar] [CrossRef]
- Al-Jundi, M.; Thakur, S.; Gubbi, S.; Klubo-Gwiezdzinska, J. Novel Targeted Therapies for Metastatic Thyroid Cancer-A Comprehensive Review. Cancers 2020, 12, 2104. [Google Scholar] [CrossRef]
- Ferrari, S.M.; Fallahi, P.; Ruffilli, I.; Elia, G.; Ragusa, F.; Paparo, S.R.; Ulisse, S.; Baldini, E.; Giannini, R.; Miccoli, P.; et al. Molecular Testing in the Diagnosis of Differentiated Thyroid Carcinomas. Gland. Surg. 2018, 7, S19–S29. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Wang, X.; Xiong, J.; Li, C.; Liao, Y.; Zhu, Y.; Mao, J. Risk and Prognostic Factors for BRAFV600E Mutations in Papillary Thyroid Carcinoma. BioMed Res. Int. 2022, 2022, 9959649. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Lee, E.; Koo, J.S.; Yoon, J.H.; Nam, K.-H.; Lee, J.; Jo, Y.S.; Moon, H.J.; Park, V.Y.; Kwak, J.Y. Artificial Intelligence to Predict the BRAFV600E Mutation in Patients with Thyroid Cancer. PLoS ONE 2020, 15, e0242806. [Google Scholar] [CrossRef] [PubMed]
- Howell, G.M.; Hodak, S.P.; Yip, L. RAS Mutations in Thyroid Cancer. Oncologist 2013, 18, 926–932. [Google Scholar] [CrossRef]
- Nikiforov, Y.E. RET/PTC Rearrangement in Thyroid Tumors. Endocr. Pathol. 2002, 13, 3–16. [Google Scholar] [CrossRef]
- Nikiforov, Y.E.; Nikiforova, M.N. Molecular Genetics and Diagnosis of Thyroid Cancer. Nat. Rev. Endocrinol. 2011, 7, 569–580. [Google Scholar] [CrossRef]
- Tan, G.; Jin, B.; Qian, X.; Wang, Y.; Zhang, G.; Agyekum, E.A.; Wang, F.; Shi, L.; Zhang, Y.; Mao, Z.; et al. TERT Promoter Mutations Contribute to Adverse Clinical Outcomes and Poor Prognosis in Radioiodine Refractory Differentiated Thyroid Cancer. Sci. Rep. 2024, 14, 23719. [Google Scholar] [CrossRef]
- Kroll, T.G.; Sarraf, P.; Pecciarini, L.; Chen, C.J.; Mueller, E.; Spiegelman, B.M.; Fletcher, J.A. PAX8-PPARgamma1 Fusion Oncogene in Human Thyroid Carcinoma [Corrected]. Science 2000, 289, 1357–1360. [Google Scholar] [CrossRef]
- Castro, P.; Rebocho, A.P.; Soares, R.J.; Magalhães, J.; Roque, L.; Trovisco, V.; Vieira de Castro, I.; Cardoso-de-Oliveira, M.; Fonseca, E.; Soares, P.; et al. PAX8-PPARgamma Rearrangement Is Frequently Detected in the Follicular Variant of Papillary Thyroid Carcinoma. J. Clin. Endocrinol. Metab. 2006, 91, 213–220. [Google Scholar] [CrossRef]
- Pakkianathan, J.; Yamauchi, C.R.; Barseghyan, L.; Cruz, J.; Simental, A.A.; Khan, S. Mutational Landmarks in Anaplastic Thyroid Cancer: A Perspective of a New Treatment Strategy. J. Clin. Med. 2025, 14, 2898. [Google Scholar] [CrossRef]
- Ringel, M.D.; Sosa, J.A.; Baloch, Z.; Bischoff, L.; Bloom, G.; Brent, G.A.; Brock, P.L.; Chou, R.; Flavell, R.R.; Goldner, W.; et al. 2025 American Thyroid Association Management Guidelines for Adult Patients with Differentiated Thyroid Cancer. Thyroid 2025, 35, 841–985. [Google Scholar] [CrossRef]
- Ali, S.Z.; Baloch, Z.W.; Cochand-Priollet, B.; Schmitt, F.C.; Vielh, P.; VanderLaan, P.A. The 2023 Bethesda System for Reporting Thyroid Cytopathology. Thyroid 2023, 33, 1039–1044. [Google Scholar] [CrossRef]
- Ohori, N.P. A Decade into Thyroid Molecular Testing: Where Do We Stand? J. Am. Soc. Cytopathol. 2022, 11, 59–61. [Google Scholar] [CrossRef] [PubMed]
- Paschke, R.; Cantara, S.; Crescenzi, A.; Jarzab, B.; Musholt, T.J.; Sobrinho Simoes, M. European Thyroid Association Guidelines Regarding Thyroid Nodule Molecular Fine-Needle Aspiration Cytology Diagnostics. Eur. Thyroid. J. 2017, 6, 115–129. [Google Scholar] [CrossRef]
- Rodríguez-Rodero, S.; Morales-Sánchez, P.; Tejedor, J.R.; Coca-Pelaz, A.; Mangas, C.; Peñarroya, A.; Fernández-Vega, I.; Fernández-Fernández, L.; Álvarez-López, C.M.; Fernández, A.F.; et al. Classification of Follicular-Patterned Thyroid Lesions Using a Minimal Set of Epigenetic Biomarkers. Eur. J. Endocrinol. 2022, 187, 335–347. [Google Scholar] [CrossRef]
- Vargas-Salas, S.; Martínez, J.R.; Urra, S.; Domínguez, J.M.; Mena, N.; Uslar, T.; Lagos, M.; Henríquez, M.; González, H.E. Genetic Testing for Indeterminate Thyroid Cytology: Review and Meta-Analysis. Endocr. Relat. Cancer 2018, 25, R163–R177. [Google Scholar] [CrossRef]
- Olmos, R.; Domínguez, J.M.; Vargas-Salas, S.; Mosso, L.; Fardella, C.E.; González, G.; Baudrand, R.; Guarda, F.; Valenzuela, F.; Arteaga, E.; et al. ThyroidPrint®: Clinical Utility for Indeterminate Thyroid Cytology. Endocr. Relat. Cancer 2023, 30, e220409. [Google Scholar] [CrossRef] [PubMed]
- Zafereo, M.; McIver, B.; Vargas-Salas, S.; Domínguez, J.M.; Steward, D.L.; Holsinger, F.C.; Kandil, E.; Williams, M.; Cruz, F.; Loyola, S.; et al. A Thyroid Genetic Classifier Correctly Predicts Benign Nodules with Indeterminate Cytology: Two Independent, Multicenter, Prospective Validation Trials. Thyroid 2020, 30, 704–712. [Google Scholar] [CrossRef]
- Livhits, M.J.; Zhu, C.Y.; Kuo, E.J.; Nguyen, D.T.; Kim, J.; Tseng, C.-H.; Leung, A.M.; Rao, J.; Levin, M.; Douek, M.L.; et al. Effectiveness of Molecular Testing Techniques for Diagnosis of Indeterminate Thyroid Nodules: A Randomized Clinical Trial. JAMA Oncol. 2021, 7, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Nikiforov, Y.E.; Ohori, N.P.; Hodak, S.P.; Carty, S.E.; LeBeau, S.O.; Ferris, R.L.; Yip, L.; Seethala, R.R.; Tublin, M.E.; Stang, M.T.; et al. Impact of Mutational Testing on the Diagnosis and Management of Patients with Cytologically Indeterminate Thyroid Nodules: A Prospective Analysis of 1056 FNA Samples. J. Clin. Endocrinol. Metab. 2011, 96, 3390–3397. [Google Scholar] [CrossRef]
- Patel, K.N.; Angell, T.E.; Babiarz, J.; Barth, N.M.; Blevins, T.; Duh, Q.-Y.; Ghossein, R.A.; Harrell, R.M.; Huang, J.; Kennedy, G.C.; et al. Performance of a Genomic Sequencing Classifier for the Preoperative Diagnosis of Cytologically Indeterminate Thyroid Nodules. JAMA Surg. 2018, 153, 817–824. [Google Scholar] [CrossRef]
- Steward, D.L.; Carty, S.E.; Sippel, R.S.; Yang, S.P.; Sosa, J.A.; Sipos, J.A.; Figge, J.J.; Mandel, S.; Haugen, B.R.; Burman, K.D.; et al. Performance of a Multigene Genomic Classifier in Thyroid Nodules with Indeterminate Cytology: A Prospective Blinded Multicenter Study. JAMA Oncol. 2019, 5, 204–212. [Google Scholar] [CrossRef]
- Lupo, M.A.; Walts, A.E.; Sistrunk, J.W.; Giordano, T.J.; Sadow, P.M.; Massoll, N.; Campbell, R.; Jackson, S.A.; Toney, N.; Narick, C.M.; et al. Multiplatform Molecular Test Performance in Indeterminate Thyroid Nodules. Diagn. Cytopathol. 2020, 48, 1254–1264. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.T.D.; Buzolin, A.L.; Gama, R.R.; da Silva, E.C.A.; Dufloth, R.M.; Figueiredo, D.L.A.; Carvalho, A.L. Molecular Classification of Thyroid Nodules with Indeterminate Cytology: Development and Validation of a Highly Sensitive and Specific New miRNA-Based Classifier Test Using Fine-Needle Aspiration Smear Slides. Thyroid 2018, 28, 1618–1626. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.T.; Rodrigues, B.M.; Shizukuda, S.; Oliveira, A.F.; Oliveira, M.; Figueiredo, D.L.A.; Melo, G.M.; Silva, R.A.; Fainstein, C.; Dos Reis, G.F.; et al. Clinical Decision Support Analysis of a microRNA-Based Thyroid Molecular Classifier: A Real-World, Prospective and Multicentre Validation Study. EBioMedicine 2022, 82, 104137. [Google Scholar] [CrossRef] [PubMed]
- Niciporuka, R.; Nazarovs, J.; Ozolins, A.; Narbuts, Z.; Miklasevics, E.; Gardovskis, J. Can We Predict Differentiated Thyroid Cancer Behavior? Role of Genetic and Molecular Markers. Medicina 2021, 57, 1131. [Google Scholar] [CrossRef]
- Hamidi, S.; Hofmann, M.-C.; Iyer, P.C.; Cabanillas, M.E.; Hu, M.I.; Busaidy, N.L.; Dadu, R. Review Article: New Treatments for Advanced Differentiated Thyroid Cancers and Potential Mechanisms of Drug Resistance. Front. Endocrinol. 2023, 14, 1176731. [Google Scholar] [CrossRef]
- Liu, J.B.; Baugh, K.A.; Ramonell, K.M.; McCoy, K.L.; Karslioglu-French, E.; Morariu, E.M.; Ohori, N.P.; Nikiforova, M.N.; Nikiforov, Y.E.; Carty, S.E.; et al. Molecular Testing Predicts Incomplete Response to Initial Therapy in Differentiated Thyroid Carcinoma Without Lateral Neck or Distant Metastasis at Presentation: Retrospective Cohort Study. Thyroid 2023, 33, 705–714. [Google Scholar] [CrossRef]
- Baloch, Z.W.; Fleisher, S.; LiVolsi, V.A.; Gupta, P.K. Diagnosis of “Follicular Neoplasm”: A Gray Zone in Thyroid Fine-Needle Aspiration Cytology. Diagn. Cytopathol. 2002, 26, 41–44. [Google Scholar] [CrossRef]
- Bongiovanni, M.; Spitale, A.; Faquin, W.C.; Mazzucchelli, L.; Baloch, Z.W. The Bethesda System for Reporting Thyroid Cytopathology: A Meta-Analysis. Acta Cytol. 2012, 56, 333–339. [Google Scholar] [CrossRef] [PubMed]
- American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer; Cooper, D.S.; Doherty, G.M.; Haugen, B.R.; Kloos, R.T.; Lee, S.L.; Mandel, S.J.; Mazzaferri, E.L.; McIver, B.; Pacini, F.; et al. Revised American Thyroid Association Management Guidelines for Patients with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2009, 19, 1167–1214. [Google Scholar] [CrossRef]
- Teodoriu, L.; Leustean, L.; Ungureanu, M.-C.; Bilha, S.; Grierosu, I.; Matei, M.; Preda, C.; Stefanescu, C. Personalized Diagnosis in Differentiated Thyroid Cancers by Molecular and Functional Imaging Biomarkers: Present and Future. Diagnostics 2022, 12, 944. [Google Scholar] [CrossRef]
- Trimboli, P.; Nasrollah, N.; Amendola, S.; Crescenzi, A.; Guidobaldi, L.; Chiesa, C.; Maglio, R.; Nigri, G.; Pontecorvi, A.; Romanelli, F.; et al. A Cost Analysis of Thyroid Core Needle Biopsy vs. Diagnostic Surgery. Gland. Surg. 2015, 4, 307–311. [Google Scholar] [CrossRef]
- Tavares, C.; Melo, M.; Cameselle-Teijeiro, J.M.; Soares, P.; Sobrinho-Simões, M. ENDOCRINE TUMOURS: Genetic Predictors of Thyroid Cancer Outcome. Eur. J. Endocrinol. 2016, 174, R117–R126. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.A.; Bunnell, H.; Cook, H.A.; Williams, E.D.; Nerovnya, A.; Cherstvoy, E.D.; Tronko, N.D.; Bogdanova, T.I.; Chiappetta, G.; Viglietto, G.; et al. High Prevalence of RET/PTC Rearrangements in Ukrainian and Belarussian Post-Chernobyl Thyroid Papillary Carcinomas: A Strong Correlation between RET/PTC3 and the Solid-Follicular Variant. J. Clin. Endocrinol. Metab. 1999, 84, 4232–4238. [Google Scholar] [CrossRef]
- Song, Y.S.; Lim, J.A.; Choi, H.; Won, J.-K.; Moon, J.H.; Cho, S.W.; Lee, K.E.; Park, Y.J.; Yi, K.H.; Park, D.J.; et al. Prognostic Effects of TERT Promoter Mutations Are Enhanced by Coexistence with BRAF or RAS Mutations and Strengthen the Risk Prediction by the ATA or TNM Staging System in Differentiated Thyroid Cancer Patients. Cancer 2016, 122, 1370–1379. [Google Scholar] [CrossRef]
- Xing, M.; Liu, R.; Liu, X.; Murugan, A.K.; Zhu, G.; Zeiger, M.A.; Pai, S.; Bishop, J. BRAF V600E and TERT Promoter Mutations Cooperatively Identify the Most Aggressive Papillary Thyroid Cancer with Highest Recurrence. J. Clin. Oncol. 2014, 32, 2718–2726. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, R.T.; Karunamurthy, A.; Amin, K.; Nikiforov, Y.E.; Caramori, M.L. Multiple Mutations Detected Preoperatively May Predict Aggressive Behavior of Papillary Thyroid Cancer and Guide Management–A Case Report. Thyroid 2015, 25, 1375–1378. [Google Scholar] [CrossRef]
- Nikiforov, Y.E.; Nikiforova, M.N.; Gnepp, D.R.; Fagin, J.A. Prevalence of Mutations of Ras and P53 in Benign and Malignant Thyroid Tumors from Children Exposed to Radiation after the Chernobyl Nuclear Accident. Oncogene 1996, 13, 687–693. [Google Scholar]
- Tirrò, E.; Martorana, F.; Romano, C.; Vitale, S.R.; Motta, G.; Di Gregorio, S.; Massimino, M.; Pennisi, M.S.; Stella, S.; Puma, A.; et al. Molecular Alterations in Thyroid Cancer: From Bench to Clinical Practice. Genes 2019, 10, 709. [Google Scholar] [CrossRef]
- Manzella, L.; Stella, S.; Pennisi, M.S.; Tirrò, E.; Massimino, M.; Romano, C.; Puma, A.; Tavarelli, M.; Vigneri, P. New Insights in Thyroid Cancer and P53 Family Proteins. Int. J. Mol. Sci. 2017, 18, 1325. [Google Scholar] [CrossRef]
- Morita, N.; Ikeda, Y.; Takami, H. Clinical Significance of P53 Protein Expression in Papillary Thyroid Carcinoma. World J. Surg. 2008, 32, 2617–2622. [Google Scholar] [CrossRef]
- Nikiforova, M.N.; Wald, A.I.; Roy, S.; Durso, M.B.; Nikiforov, Y.E. Targeted Next-Generation Sequencing Panel (ThyroSeq) for Detection of Mutations in Thyroid Cancer. J. Clin. Endocrinol. Metab. 2013, 98, E1852–E1860. [Google Scholar] [CrossRef]
- García-Rostán, G.; Costa, A.M.; Pereira-Castro, I.; Salvatore, G.; Hernandez, R.; Hermsem, M.J.A.; Herrero, A.; Fusco, A.; Cameselle-Teijeiro, J.; Santoro, M. Mutation of the PIK3CA Gene in Anaplastic Thyroid Cancer. Cancer Res. 2005, 65, 10199–10207. [Google Scholar] [CrossRef]
- Pita, J.M.; Figueiredo, I.F.; Moura, M.M.; Leite, V.; Cavaco, B.M. Cell Cycle Deregulation and TP53 and RAS Mutations Are Major Events in Poorly Differentiated and Undifferentiated Thyroid Carcinomas. J. Clin. Endocrinol. Metab. 2014, 99, E497–E507. [Google Scholar] [CrossRef] [PubMed]
- Eloy, C.; Ferreira, L.; Salgado, C.; Soares, P.; Sobrinho-Simões, M. Poorly Differentiated and Undifferentiated Thyroid Carcinomas. Turk. Patoloji Derg. 2015, 31 (Suppl. 1), 48–59. [Google Scholar] [CrossRef] [PubMed]
- Ricarte-Filho, J.C.; Ryder, M.; Chitale, D.A.; Rivera, M.; Heguy, A.; Ladanyi, M.; Janakiraman, M.; Solit, D.; Knauf, J.A.; Tuttle, R.M.; et al. Mutational Profile of Advanced Primary and Metastatic Radioactive Iodine-Refractory Thyroid Cancers Reveals Distinct Pathogenetic Roles for BRAF, PIK3CA, and AKT1. Cancer Res. 2009, 69, 4885–4893. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network. Integrated Genomic Characterization of Papillary Thyroid Carcinoma. Cell 2014, 159, 676–690. [Google Scholar] [CrossRef]
- Yoo, S.-K.; Lee, S.; Kim, S.-J.; Jee, H.-G.; Kim, B.-A.; Cho, H.; Song, Y.S.; Cho, S.W.; Won, J.-K.; Shin, J.-Y.; et al. Comprehensive Analysis of the Transcriptional and Mutational Landscape of Follicular and Papillary Thyroid Cancers. PLoS Genet. 2016, 12, e1006239. [Google Scholar] [CrossRef]
- WHO Classification of Tumours Editorial Board WHO Classification of Tumours, 5th Edition, Volume 10: Endocrine and Neuroendocrine Tumours. In WHO Classification of Tumours, 5th ed.; International Agency for Research on Cancer: Lyon, France, 2022; Volume 10, ISBN 978-92-832-9185-1.
- Tang, A.L.; Kloos, R.T.; Aunins, B.; Holm, T.M.; Roth, M.Y.; Yeh, M.W.; Randolph, G.W.; Tabangin, M.E.; Altaye, M.; Steward, D.L. Pathologic Features Associated With Molecular Subtypes of Well-Differentiated Thyroid Cancer. Endocr. Pract. 2021, 27, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Chiosea, S.; Hodak, S.P.; Yip, L.; Abraham, D.; Baldwin, C.; Baloch, Z.; Gulec, S.A.; Hannoush, Z.C.; Haugen, B.R.; Joseph, L.; et al. Molecular Profiling of 50 734 Bethesda III-VI Thyroid Nodules by ThyroSeq v3: Implications for Personalized Management. J. Clin. Endocrinol. Metab. 2023, 108, 2999–3008. [Google Scholar] [CrossRef] [PubMed]
- Parpounas, C.; Constantinides, V. Advances in Molecular Profiling and Their Potential Influence on the Extent of Surgery in Well-Differentiated Thyroid Carcinoma (WDTC). Life 2023, 13, 1382. [Google Scholar] [CrossRef]
- Melo, M.; da Rocha, A.G.; Vinagre, J.; Sobrinho-Simões, M.; Soares, P. Coexistence of TERT Promoter and BRAF Mutations in Papillary Thyroid Carcinoma: Added Value in Patient Prognosis? J. Clin. Oncol. 2015, 33, 667–668. [Google Scholar] [CrossRef]
- Nair, S.R. Personalized Medicine: Striding from Genes to Medicines. Perspect. Clin. Res. 2010, 1, 146–150. [Google Scholar] [CrossRef]
- Sherman, S.I. Targeted Therapy of Thyroid Cancer. Biochem. Pharmacol. 2010, 80, 592–601. [Google Scholar] [CrossRef]
- Lubitz, C.C.; Sadow, P.M.; Daniels, G.H.; Wirth, L.J. Progress in Treating Advanced Thyroid Cancers in the Era of Targeted Therapy. Thyroid 2021, 31, 1451–1462. [Google Scholar] [CrossRef]
- Drilon, A.; Laetsch, T.W.; Kummar, S.; DuBois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Doebele, R.C.; Farago, A.F.; Pappo, A.S.; et al. Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. N. Engl. J. Med. 2018, 378, 731–739. [Google Scholar] [CrossRef]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch Repair Deficiency Predicts Response of Solid Tumors to PD-1 Blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef]
- Dhingra, J.K. Office-Based Ultrasound-Guided FNA with Molecular Testing for Thyroid Nodules. Otolaryngol. Head Neck Surg. 2016, 155, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Bishop, J.; Zhu, G.; Zhang, T.; Ladenson, P.W.; Xing, M. Mortality Risk Stratification by Combining BRAF V600E and TERT Promoter Mutations in Papillary Thyroid Cancer: Genetic Duet of BRAF and TERT Promoter Mutations in Thyroid Cancer Mortality. JAMA Oncol. 2017, 3, 202–208. [Google Scholar] [CrossRef]
- Vignali, P.; Macerola, E.; Poma, A.M.; Sparavelli, R.; Basolo, F. Indeterminate Thyroid Nodules: From Cytology to Molecular Testing. Diagnostics 2023, 13, 3008. [Google Scholar] [CrossRef]
- Issa, P.P.; Omar, M.; Issa, C.P.; Buti, Y.; Hussein, M.; Aboueisha, M.; Abdelhady, A.; Shama, M.; Lee, G.S.; Toraih, E.; et al. Radiofrequency Ablation of Indeterminate Thyroid Nodules: The First North American Comparative Analysis. Int. J. Mol. Sci. 2022, 23, 11493. [Google Scholar] [CrossRef]
- Jeelani, S.; Reddy, R.C.J.; Maheswaran, T.; Asokan, G.S.; Dany, A.; Anand, B. Theranostics: A Treasured Tailor for Tomorrow. J. Pharm. Bioallied Sci. 2014, 6, S6–S8. [Google Scholar] [CrossRef]
- Lee, J.W.; Min, H.S.; Lee, S.M.; Kwon, H.W.; Chung, J.-K. Relations Between Pathological Markers and Radioiodine Scan and (18)F-FDG PET/CT Findings in Papillary Thyroid Cancer Patients with Recurrent Cervical Nodal Metastases. Nucl. Med. Mol. Imaging 2015, 49, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.M.; Ahn, B.-C.; Jeong, S.Y.; Lee, S.-W.; Lee, J. Distant Metastatic Lesions in Patients with Differentiated Thyroid Carcinoma. Clinical Implications of Radioiodine and FDG Uptake. Nuklearmedizin 2013, 52, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Plantinga, T.S.; Heinhuis, B.; Gerrits, D.; Netea, M.G.; Joosten, L.A.B.; Hermus, A.R.M.M.; Oyen, W.J.G.; Schweppe, R.E.; Haugen, B.R.; Boerman, O.C.; et al. mTOR Inhibition Promotes TTF1-Dependent Redifferentiation and Restores Iodine Uptake in Thyroid Carcinoma Cell Lines. J. Clin. Endocrinol. Metab. 2014, 99, E1368–E1375. [Google Scholar] [CrossRef]
- Micali, S.; Bulotta, S.; Puppin, C.; Territo, A.; Navarra, M.; Bianchi, G.; Damante, G.; Filetti, S.; Russo, D. Sodium Iodide Symporter (NIS) in Extrathyroidal Malignancies: Focus on Breast and Urological Cancer. BMC Cancer 2014, 14, 303. [Google Scholar] [CrossRef] [PubMed]
- Buffet, C.; Wassermann, J.; Hecht, F.; Leenhardt, L.; Dupuy, C.; Groussin, L.; Lussey-Lepoutre, C. Redifferentiation of Radioiodine-Refractory Thyroid Cancers. Endocr. Relat. Cancer 2020, 27, R113–R132. [Google Scholar] [CrossRef]
- Rothenberg, S.M.; McFadden, D.G.; Palmer, E.L.; Daniels, G.H.; Wirth, L.J. Redifferentiation of Iodine-Refractory BRAF V600E-Mutant Metastatic Papillary Thyroid Cancer with Dabrafenib. Clin. Cancer Res. 2015, 21, 1028–1035. [Google Scholar] [CrossRef]
- Paladino, S.; Melillo, R.M. Editorial: Novel Mechanism of Radioactive Iodine Refractivity in Thyroid Cancer. J. Natl. Cancer Inst. 2017, 109, djx106. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Xing, M. TERT Promoter Mutations in Thyroid Cancer. Endocr. Relat. Cancer 2016, 23, R143–R155. [Google Scholar] [CrossRef]
- Pestana, A.; Vinagre, J.; Sobrinho-Simões, M.; Soares, P. TERT Biology and Function in Cancer: Beyond Immortalisation. J. Mol. Endocrinol. 2017, 58, R129–R146. [Google Scholar] [CrossRef]
- Schlumberger, M.; Tahara, M.; Wirth, L.J.; Robinson, B.; Brose, M.S.; Elisei, R.; Habra, M.A.; Newbold, K.; Shah, M.H.; Hoff, A.O.; et al. Lenvatinib versus Placebo in Radioiodine-Refractory Thyroid Cancer. N. Engl. J. Med. 2015, 372, 621–630. [Google Scholar] [CrossRef]
- Brose, M.S.; Nutting, C.M.; Jarzab, B.; Elisei, R.; Siena, S.; Bastholt, L.; de la Fouchardiere, C.; Pacini, F.; Paschke, R.; Shong, Y.K.; et al. Sorafenib in Radioactive Iodine-Refractory, Locally Advanced or Metastatic Differentiated Thyroid Cancer: A Randomised, Double-Blind, Phase 3 Trial. Lancet 2014, 384, 319–328. [Google Scholar] [CrossRef]
- Wells, S.A.; Robinson, B.G.; Gagel, R.F.; Dralle, H.; Fagin, J.A.; Santoro, M.; Baudin, E.; Elisei, R.; Jarzab, B.; Vasselli, J.R.; et al. Vandetanib in Patients with Locally Advanced or Metastatic Medullary Thyroid Cancer: A Randomized, Double-Blind Phase III Trial. J. Clin. Oncol. 2012, 30, 134–141. [Google Scholar] [CrossRef]
- Elisei, R.; Schlumberger, M.J.; Müller, S.P.; Schöffski, P.; Brose, M.S.; Shah, M.H.; Licitra, L.; Jarzab, B.; Medvedev, V.; Kreissl, M.C.; et al. Cabozantinib in Progressive Medullary Thyroid Cancer. J. Clin. Oncol. 2013, 31, 3639–3646. [Google Scholar] [CrossRef]
- Sherman, S.I.; Wirth, L.J.; Droz, J.-P.; Hofmann, M.; Bastholt, L.; Martins, R.G.; Licitra, L.; Eschenberg, M.J.; Sun, Y.-N.; Juan, T.; et al. Motesanib Diphosphate in Progressive Differentiated Thyroid Cancer. N. Engl. J. Med. 2008, 359, 31–42. [Google Scholar] [CrossRef]
- Carr, L.L.; Mankoff, D.A.; Goulart, B.H.; Eaton, K.D.; Capell, P.T.; Kell, E.M.; Bauman, J.E.; Martins, R.G. Phase II Study of Daily Sunitinib in FDG-PET-Positive, Iodine-Refractory Differentiated Thyroid Cancer and Metastatic Medullary Carcinoma of the Thyroid with Functional Imaging Correlation. Clin. Cancer Res. 2010, 16, 5260–5268. [Google Scholar] [CrossRef] [PubMed]
- Cohen, E.E.W.; Rosen, L.S.; Vokes, E.E.; Kies, M.S.; Forastiere, A.A.; Worden, F.P.; Kane, M.A.; Sherman, E.; Kim, S.; Bycott, P.; et al. Axitinib Is an Active Treatment for All Histologic Subtypes of Advanced Thyroid Cancer: Results from a Phase II Study. J. Clin. Oncol. 2008, 26, 4708–4713. [Google Scholar] [CrossRef] [PubMed]
- Hoy, S.M. Cabozantinib: A Review of Its Use in Patients with Medullary Thyroid Cancer. Drugs 2014, 74, 1435–1444. [Google Scholar] [CrossRef]
- Subbiah, V.; Wolf, J.; Konda, B.; Kang, H.; Spira, A.; Weiss, J.; Takeda, M.; Ohe, Y.; Khan, S.; Ohashi, K.; et al. Tumour-Agnostic Efficacy and Safety of Selpercatinib in Patients with RET Fusion-Positive Solid Tumours Other than Lung or Thyroid Tumours (LIBRETTO-001): A Phase 1/2, Open-Label, Basket Trial. Lancet Oncol. 2022, 23, 1261–1273. [Google Scholar] [CrossRef]
- Subbiah, V.; Gainor, J.F.; Rahal, R.; Brubaker, J.D.; Kim, J.L.; Maynard, M.; Hu, W.; Cao, Q.; Sheets, M.P.; Wilson, D.; et al. Precision Targeted Therapy with BLU-667 for RET-Driven Cancers. Cancer Discov. 2018, 8, 836–849. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Velcheti, V.; Tuch, B.B.; Ebata, K.; Busaidy, N.L.; Cabanillas, M.E.; Wirth, L.J.; Stock, S.; Smith, S.; Lauriault, V.; et al. Selective RET Kinase Inhibition for Patients with RET-Altered Cancers. Ann. Oncol. 2018, 29, 1869–1876. [Google Scholar] [CrossRef]
- Subbiah, V.; Hu, M.I.; Wirth, L.J.; Schuler, M.; Mansfield, A.S.; Curigliano, G.; Brose, M.S.; Zhu, V.W.; Leboulleux, S.; Bowles, D.W.; et al. Pralsetinib for Patients with Advanced or Metastatic RET-Altered Thyroid Cancer (ARROW): A Multi-Cohort, Open-Label, Registrational, Phase 1/2 Study. Lancet Diabetes Endocrinol. 2021, 9, 491–501. [Google Scholar] [CrossRef]
- Wirth, L.J.; Sherman, E.; Robinson, B.; Solomon, B.; Kang, H.; Lorch, J.; Worden, F.; Brose, M.; Patel, J.; Leboulleux, S.; et al. Efficacy of Selpercatinib in RET-Altered Thyroid Cancers. N. Engl. J. Med. 2020, 383, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Tiedje, V.; Fagin, J.A. Therapeutic Breakthroughs for Metastatic Thyroid Cancer. Nat. Rev. Endocrinol. 2020, 16, 77–78. [Google Scholar] [CrossRef] [PubMed]
- Khatami, F.; Larijani, B.; Tavangar, S.M. Circulating Tumor BRAF Mutation and Personalized Thyroid Cancer Treatment. Asian Pac. J. Cancer Prev. 2017, 18, 293–294. [Google Scholar] [CrossRef]
- Ho, A.L.; Grewal, R.K.; Leboeuf, R.; Sherman, E.J.; Pfister, D.G.; Deandreis, D.; Pentlow, K.S.; Zanzonico, P.B.; Haque, S.; Gavane, S.; et al. Selumetinib-Enhanced Radioiodine Uptake in Advanced Thyroid Cancer. N. Engl. J. Med. 2013, 368, 623–632. [Google Scholar] [CrossRef]
- Laetsch, T.W.; DuBois, S.G.; Mascarenhas, L.; Turpin, B.; Federman, N.; Albert, C.M.; Nagasubramanian, R.; Davis, J.L.; Rudzinski, E.; Feraco, A.M.; et al. Larotrectinib for Paediatric Solid Tumours Harbouring NTRK Gene Fusions: Phase 1 Results from a Multicentre, Open-Label, Phase 1/2 Study. Lancet Oncol. 2018, 19, 705–714. [Google Scholar] [CrossRef]
- Fukuda, N.; Takahashi, S. Clinical Indications for Treatment with Multi-Kinase Inhibitors in Patients with Radioiodine-Refractory Differentiated Thyroid Cancer. Cancers 2021, 13, 2279. [Google Scholar] [CrossRef] [PubMed]
- Jaber, T.; Waguespack, S.G.; Cabanillas, M.E.; Elbanan, M.; Vu, T.; Dadu, R.; Sherman, S.I.; Amit, M.; Santos, E.B.; Zafereo, M.; et al. Targeted Therapy in Advanced Thyroid Cancer to Resensitize Tumors to Radioactive Iodine. J. Clin. Endocrinol. Metab. 2018, 103, 3698–3705. [Google Scholar] [CrossRef]
- Tuttle, R.M.; Brose, M.S.; Grande, E.; Kim, S.W.; Tahara, M.; Sabra, M.M. Novel Concepts for Initiating Multitargeted Kinase Inhibitors in Radioactive Iodine Refractory Differentiated Thyroid Cancer. Best. Pract. Res. Clin. Endocrinol. Metab. 2017, 31, 295–305. [Google Scholar] [CrossRef]
- Choudhary, A.K.; Abraham, G.; Patil, V.M.; Menon, N.; Mandal, T.; Jacob, S.; Garg, K.; Sekar, A.; Sarma, R.J.; Reddy, L.; et al. Audit of Demographics, Treatment Patterns and Outcomes of Differentiated Thyroid Cancers Treated with Tyrosine Kinase Inhibitors. Indian J. Surg. Oncol. 2022, 13, 81–86. [Google Scholar] [CrossRef]
- Iwasaki, H.; Yamazaki, H.; Takasaki, H.; Suganuma, N.; Sakai, R.; Nakayama, H.; Hatori, S.; Toda, S.; Masudo, K. Treatment Outcomes of Differentiated Thyroid Cancer with Distant Metastasis Improve by Tyrosine Kinase Inhibitors. Oncol. Lett. 2019, 17, 5292–5300. [Google Scholar] [CrossRef]
- Guo, M.; Sun, Y.; Wei, Y.; Xu, J.; Zhang, C. Advances in Targeted Therapy and Biomarker Research in Thyroid Cancer. Front. Endocrinol. 2024, 15, 1372553. [Google Scholar] [CrossRef] [PubMed]
- Cabanillas, M.E.; Hu, M.I.; Durand, J.-B.; Busaidy, N.L. Challenges Associated with Tyrosine Kinase Inhibitor Therapy for Metastatic Thyroid Cancer. J. Thyroid. Res. 2011, 2011, 985780. [Google Scholar] [CrossRef] [PubMed]
- Haddad, R.I.; Schlumberger, M.; Wirth, L.J.; Sherman, E.J.; Shah, M.H.; Robinson, B.; Dutcus, C.E.; Teng, A.; Gianoukakis, A.G.; Sherman, S.I. Incidence and Timing of Common Adverse Events in Lenvatinib-Treated Patients from the SELECT Trial and Their Association with Survival Outcomes. Endocrine 2017, 56, 121–128. [Google Scholar] [CrossRef]
- Brose, M.S.; Robinson, B.G.; Sherman, S.I.; Jarzab, B.; Lin, C.-C.; Vaisman, F.; Hoff, A.O.; Hitre, E.; Bowles, D.W.; Sen, S.; et al. Cabozantinib for Previously Treated Radioiodine-Refractory Differentiated Thyroid Cancer: Updated Results from the Phase 3 COSMIC-311 Trial. Cancer 2022, 128, 4203–4212. [Google Scholar] [CrossRef]
- Dharampal, N.; Smith, K.; Harvey, A.; Paschke, R.; Rudmik, L.; Chandarana, S. Cost-Effectiveness Analysis of Molecular Testing for Cytologically Indeterminate Thyroid Nodules. J. Otolaryngol. Head Neck Surg. 2022, 51, 46. [Google Scholar] [CrossRef]
- Nylén, C.; Mechera, R.; Maréchal-Ross, I.; Tsang, V.; Chou, A.; Gill, A.J.; Clifton-Bligh, R.J.; Robinson, B.G.; Sywak, M.S.; Sidhu, S.B.; et al. Molecular Markers Guiding Thyroid Cancer Management. Cancers 2020, 12, 2164. [Google Scholar] [CrossRef] [PubMed]
- Sciacchitano, S.; Rugge, M.; Bartolazzi, A. The Unappreciated Value of a Cheap, “Good Enough” Method of Detecting Thyroid Cancer. J. Clin. Med. 2024, 13, 7290. [Google Scholar] [CrossRef] [PubMed]
- de la Fouchardière, C.; Fugazzola, L.; Locati, L.D.; Alvarez, C.V.; Peeters, R.P.; Camacho, P.; Simon, I.M.; Jarząb, B.; Netea-Maier, R. Improved Guidance Is Needed to Optimise Diagnostics and Treatment of Patients with Thyroid Cancer in Europe. Endocrine 2024, 83, 585–593. [Google Scholar] [CrossRef]
- Snow, S.; Brezden-Masley, C.; Carter, M.D.; Dhani, N.; Macaulay, C.; Ramjeesingh, R.; Raphael, M.J.; Slovinec D’Angelo, M.; Servidio-Italiano, F. Barriers and Unequal Access to Timely Molecular Testing Results: Addressing the Inequities in Cancer Care Delays across Canada. Curr. Oncol. 2024, 31, 1359–1375. [Google Scholar] [CrossRef]
- Horgan, D.; Führer-Sakel, D.; Soares, P.; Alvarez, C.V.; Fugazzola, L.; Netea-Maier, R.T.; Jarzab, B.; Kozaric, M.; Bartes, B.; Schuster-Bruce, J.; et al. Tackling Thyroid Cancer in Europe-The Challenges and Opportunities. Healthcare 2022, 10, 1621. [Google Scholar] [CrossRef]
- Durante, C.; Hegedüs, L.; Czarniecka, A.; Paschke, R.; Russ, G.; Schmitt, F.; Soares, P.; Solymosi, T.; Papini, E. 2023 European Thyroid Association Clinical Practice Guidelines for Thyroid Nodule Management. Eur. Thyroid. J. 2023, 12, e230067. [Google Scholar] [CrossRef]
- Ezzat, S.; Pasternak, J.D.; Rajaraman, M.; Abdel-Rahman, O.; Boucher, A.; Chau, N.G.; Chen, S.; Gill, S.; Hyrcza, M.D.; Lamond, N.; et al. Multidisciplinary Canadian Consensus on the Multimodal Management of High-Risk and Radioactive Iodine-Refractory Thyroid Carcinoma. Front. Oncol. 2024, 14, 1437360. [Google Scholar] [CrossRef] [PubMed]
- Mete, O.; Boucher, A.; Schrader, K.A.; Abdel-Rahman, O.; Bahig, H.; Ho, C.; Hasan, O.K.; Lemieux, B.; Winquist, E.; Wong, R.; et al. Consensus Statement: Recommendations on Actionable Biomarker Testing for Thyroid Cancer Management. Endocr. Pathol. 2024, 35, 293–308. [Google Scholar] [CrossRef]
- Shonka, D.C.; Ho, A.; Chintakuntlawar, A.V.; Geiger, J.L.; Park, J.C.; Seetharamu, N.; Jasim, S.; Abdelhamid Ahmed, A.H.; Bible, K.C.; Brose, M.S.; et al. American Head and Neck Society Endocrine Surgery Section and International Thyroid Oncology Group Consensus Statement on Mutational Testing in Thyroid Cancer: Defining Advanced Thyroid Cancer and Its Targeted Treatment. Head Neck 2022, 44, 1277–1300. [Google Scholar] [CrossRef]
- Kelley, S.; Beck, A.C.; Weigel, R.J.; Howe, J.R.; Sugg, S.L.; Lal, G. Influence of Endocrine Multidisciplinary Tumor Board on Patient Management and Treatment Decision Making. Am. J. Surg. 2022, 223, 76–80. [Google Scholar] [CrossRef]
- Díez, J.J.; Galofré, J.C.; Oleaga, A.; Grande, E.; Mitjavila, M.; Moreno, P. Characteristics of Professionalism of Specialists and Advantages of Multidisciplinary Teams in Thyroid Cancer: Results of a National Opinion Survey. Endocrinol. Diabetes Nutr. 2019, 66, 74–82. [Google Scholar] [CrossRef]
- Tessler, I.; Leshno, M.; Feinmesser, G.; Alon, E.E.; Avior, G. Is There a Role for Molecular Testing for Low-Risk Differentiated Thyroid Cancer? A Cost-Effectiveness Analysis. Cancers 2023, 15, 786. [Google Scholar] [CrossRef] [PubMed]
- Ontario Health (Quality). Molecular Testing for Thyroid Nodules of Indeterminate Cytology: A Health Technology Assessment. Ont. Health Technol. Assess. Ser. 2022, 22, 1–111. [Google Scholar]
- Nicholson, K.J.; Roberts, M.S.; McCoy, K.L.; Carty, S.E.; Yip, L. Molecular Testing Versus Diagnostic Lobectomy in Bethesda III/IV Thyroid Nodules: A Cost-Effectiveness Analysis. Thyroid 2019, 29, 1237–1243. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.L.; Schumm, M.A.; Zanocco, K.A.; Yeh, M.W.; Livhits, M.J.; Wu, J.X. Cost Analysis of Reflexive versus Selective Molecular Testing for Indeterminate Thyroid Nodules. Surgery 2022, 171, 147–154. [Google Scholar] [CrossRef]
- Chowdhury, R.; Hier, J.; Payne, K.E.; Abdulhaleem, M.; Dimitstein, O.; Eisenbach, N.; Forest, V.-I.; Payne, R.J. Impact of Molecular Testing on Surgical Decision-Making in Indeterminate Thyroid Nodules: A Systematic Review and Meta-Analysis of Recent Advancements. Cancers 2025, 17, 1156. [Google Scholar] [CrossRef]
- Toraih, E.A.; Elshazli, R.M.; Trinh, L.N.; Hussein, M.H.; Attia, A.A.; Ruiz, E.M.L.; Zerfaoui, M.; Fawzy, M.S.; Kandil, E. Diagnostic and Prognostic Performance of Liquid Biopsy-Derived Exosomal MicroRNAs in Thyroid Cancer Patients: A Systematic Review and Meta-Analysis. Cancers 2021, 13, 4295. [Google Scholar] [CrossRef]
- Romano, C.; Martorana, F.; Pennisi, M.S.; Stella, S.; Massimino, M.; Tirrò, E.; Vitale, S.R.; Di Gregorio, S.; Puma, A.; Tomarchio, C.; et al. Opportunities and Challenges of Liquid Biopsy in Thyroid Cancer. Int. J. Mol. Sci. 2021, 22, 7707. [Google Scholar] [CrossRef]
- Cao, C.-L.; Li, Q.-L.; Tong, J.; Shi, L.-N.; Li, W.-X.; Xu, Y.; Cheng, J.; Du, T.-T.; Li, J.; Cui, X.-W. Artificial Intelligence in Thyroid Ultrasound. Front. Oncol. 2023, 13, 1060702. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Xiao, J.; Yan, L.; Yang, Z.; Li, X.; Zhang, M.; Luo, Y. Clinical Value of Artificial Intelligence in Thyroid Ultrasound: A Prospective Study from the Real World. Eur. Radiol. 2023, 33, 4513–4523. [Google Scholar] [CrossRef]
- Luciano, N.; Orlandella, F.M.; Braile, M.; Cavaliere, C.; Aiello, M.; Franzese, M.; Salvatore, G. Association of Radiomic Features with Genomic Signatures in Thyroid Cancer: A Systematic Review. J. Transl. Med. 2024, 22, 1088. [Google Scholar] [CrossRef]
- Jin, X.; Fu, C.; Qi, J.; Chen, C. Revolutionary Multi-Omics Analysis Revealing Prognostic Signature of Thyroid Cancer and Subsequent in Vitro Validation of SNAI1 in Mediating Thyroid Cancer Progression through EMT. Clin. Exp. Med. 2024, 24, 127. [Google Scholar] [CrossRef]
- Boufraqech, M.; Nilubol, N. Multi-Omics Signatures and Translational Potential to Improve Thyroid Cancer Patient Outcome. Cancers 2019, 11, 1988. [Google Scholar] [CrossRef]
- Kim, Y.H.; Yoon, S.J.; Kim, M.; Kim, H.H.; Song, Y.S.; Jung, J.W.; Han, D.; Cho, S.W.; Kwon, S.W.; Park, Y.J. Integrative Multi-Omics Analysis Reveals Different Metabolic Phenotypes Based on Molecular Characteristics in Thyroid Cancer. Clin. Cancer Res. 2024, 30, 883–894. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Han, Q.; Hu, X.; Wang, X.; Sun, R.; Huang, S.; Chen, W. Multi-Omics Clustering Analysis Carries out the Molecular-Specific Subtypes of Thyroid Carcinoma: Implicating for the Precise Treatment Strategies. Genes. Immun. 2025, 26, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Dhuli, K.; Medori, M.C.; Donato, K.; Donato, K.; Maltese, P.E.; Tanzi, B.; Tezzele, S.; Mareso, C.; Miertus, J.; Generali, D.; et al. Omics Sciences and Precision Medicine in Thyroid Cancer. Clin. Ter. 2023, 174, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Liu, J.; Zhang, X.; Ma, Y.; Wang, Y.; Li, P.; Huang, R.; Li, Z.; MDT of Advanced Thyroid Cancer of West China Hospital. Precision Treatment Guided by Patient-Derived Organoids-Based Drug Testing for Locally Advanced Thyroid Cancer: A Single Arm, Phase 2 Study. Endocrine 2025, 89, 186–196. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Lin, L.; Xing, M. Efficacy and Safety of Targeted Therapy for Radioiodine-Refractory Differentiated Thyroid Cancer. J. Clin. Endocrinol. Metab. 2025, 110, 873–886. [Google Scholar] [CrossRef]
- Lu, Q.; Wu, Y.; Chang, J.; Zhang, L.; Lv, Q.; Sun, H. Application Progress of Artificial Intelligence in Managing Thyroid Disease. Front. Endocrinol. 2025, 16, 1578455. [Google Scholar] [CrossRef]
- Ha, H.; Lee, H.Y.; Kim, J.H.; Kim, D.Y.; An, H.J.; Bae, S.; Park, H.-S.; Kang, J.H. Precision Oncology Clinical Trials: A Systematic Review of Phase II Clinical Trials with Biomarker-Driven, Adaptive Design. Cancer Res. Treat. 2024, 56, 991–1013. [Google Scholar] [CrossRef]
Drug [Ref] | Key Adverse Events (≥Grade 2) | Monitoring | Management |
---|---|---|---|
Sorafenib [86] | HFSR, rash, diarrhea, hypertension, fatigue, elevated liver enzymes | BP monitoring weekly (first 8 weeks); dermatologic evaluation | Emollients, urea-based creams for HFSR; loperamide for diarrhea; antihypertensives for BP control; temporary dose reduction for persistent ≥G2 AEs |
Lenvatinib [85,109] | Hypertension, diarrhea, proteinuria, weight loss, fatigue, mucositis | BP monitoring weekly (first 6–8 weeks); urine protein every 4–6 weeks | ACE inhibitors/CCBs for hypertension; dietary modification and loperamide for diarrhea; dose interruption for proteinuria >2 g/24 h |
Cabozantinib [110] | Diarrhea, mucositis, hand–foot syndrome, hypertension, thromboembolic events | Regular BP checks; dental exams for mucositis | Mouth rinses (salt/soda) for mucositis; HFSR prophylaxis with moisturizers; anticoagulation assessment if thrombotic risk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coca-Pelaz, A.; Rodrigo, J.P.; Zafereo, M.; Nixon, I.; Pace-Asciak, P.; Randolph, G.W.; Suárez, C.; Ferlito, A. Molecular Diagnostics and Personalized Therapeutics in Differentiated Thyroid Carcinoma: A Clinically Oriented Review. Diagnostics 2025, 15, 2493. https://doi.org/10.3390/diagnostics15192493
Coca-Pelaz A, Rodrigo JP, Zafereo M, Nixon I, Pace-Asciak P, Randolph GW, Suárez C, Ferlito A. Molecular Diagnostics and Personalized Therapeutics in Differentiated Thyroid Carcinoma: A Clinically Oriented Review. Diagnostics. 2025; 15(19):2493. https://doi.org/10.3390/diagnostics15192493
Chicago/Turabian StyleCoca-Pelaz, Andrés, Juan Pablo Rodrigo, Mark Zafereo, Iain Nixon, Pia Pace-Asciak, Gregory W. Randolph, Carlos Suárez, and Alfio Ferlito. 2025. "Molecular Diagnostics and Personalized Therapeutics in Differentiated Thyroid Carcinoma: A Clinically Oriented Review" Diagnostics 15, no. 19: 2493. https://doi.org/10.3390/diagnostics15192493
APA StyleCoca-Pelaz, A., Rodrigo, J. P., Zafereo, M., Nixon, I., Pace-Asciak, P., Randolph, G. W., Suárez, C., & Ferlito, A. (2025). Molecular Diagnostics and Personalized Therapeutics in Differentiated Thyroid Carcinoma: A Clinically Oriented Review. Diagnostics, 15(19), 2493. https://doi.org/10.3390/diagnostics15192493