Kidneys on the Frontline: Nephrologists Tackling the Wilds of Acute Kidney Injury in Trauma Patients—From Pathophysiology to Early Biomarkers
Abstract
1. Overview of the Incidence Rates and Significance of Acute Kidney Injury (AKI) in Trauma Patients
2. Breaking Down Trauma-Related AKI
2.1. Trauma-Induced Shock and Its Impact on Renal Function: Mechanisms of Injury and Recovery
2.1.1. Hemodynamic Instability and Shock
2.1.2. Immune Thrombosis and Inflammatory Pathways in Trauma
2.2. Integrative Pathophysiological Mechanisms of Trauma-Induced Kidney Injury: Dysregulation of Glomerular, Tubular, and Endothelial Components
3. Diverse Pathways to Renal Injury: Exploring AKI Triggers in the Trauma ICU
3.1. Trauma-Related Rhabdomyolysis (TRR)
Rhabdomyolysis-Associated Acute Kidney Injury: Pathophysiological Insights and Systemic Consequences
3.2. Kidney–Organ Crosstalk in Trauma Patients in the ICU
3.2.1. AKI Associated with Traumatic Brain Injury
3.2.2. AKI Associated with Thoracic Trauma
3.2.3. AKI Associated with Abdominal Trauma
3.3. Postoperative AKI in Trauma Patients in the ICU
3.4. Contrast-Induced AKI
3.5. Drug-Induced AKI
4. Emerging Biomarkers for Early Detection and Prognosis of Trauma-Related Acute Kidney Injury
4.1. Beyond Creatinine: Biomarker Insights into Early AKI in Trauma
4.2. Tracking TRAKI with Sequential Urinary Biomarkers (FENa, FEU, and FEK)
Biomarker | Mechanism | Key Observations | Strengths | Limitations | References |
---|---|---|---|---|---|
Urinary Sodium (UNa) | Reflects sodium handling by the kidney. Early drop in UNa can indicate renal microcirculatory stress (RMS) rather than just “pre-renal” hypoperfusion. | -Can be low even with normal or ↑ renal blood flow (e.g., sepsis). -Declines ~1–2 days before AKI diagnosis in both transient and persistent AKI. -Recovers if AKI is transient; remains low if AKI persists. -Not significantly altered by diuretic use. | -Sensitive for early AKI detection. -Magnifies subtle changes in FENa. | -Influenced by GFR changes, tubular damage severity, and backleak. -No universal threshold validated across all populations. | [203,320,321,322,323,325] |
Fractional Excretion of Sodium (FENa) | Measures the proportion of filtered sodium excreted. Often used to distinguish “pre-renal” from intrinsic AKI but can be misleading in critically ill or diuretic-treated patients. | -Frequently ~0.5% in ICU patients, showing little change even with early AKI. -May be unreliable under diuretic use, high-output states, or sepsis. | -Simple, established index in stable, non-ICU settings. | -Insensitive for early AKI in critically ill patients. -Heavily confounded by diuretics and hyperdynamic circulation. | [203,320,321,326] |
Fractional Excretion of Urea (FEU) | Based on urea transport, relatively independent of sodium transport, and proposed to be more reliable in diuretic therapy. | -KDIGO suggests FEU < 35% to evaluate AKI etiology in diuretic users. -Some studies: FEU < 40% distinguishes transient vs. persistent AKI. -Other studies: no consistent predictive value in older adults or sepsis. -Loop diuretics can significantly affect FEU. | -May be helpful in patients on diuretics where FENa is misleading. | -Confounded by loop diuretics, age, and sepsis (altered urea transport). -Not consistently predictive across diverse ICU populations. | [322,326,329,330,332] |
Fractional Excretion of Potassium (FEK) | Reflects renal potassium handling. Rising FEK may signal early tubular stress/injury. | -Increases 1–2 days prior to AKI diagnosis; remains high if AKI persists or returns to normal if transient. -Unaffected or minimally influenced by diuretic use. -Correlates with creatinine clearance in ICU patients. | -Early marker of tubular injury. -Less confounded by diuretics. | -Requires more large-scale validation. -May be affected by other electrolyte or acid–base disturbances. | [323,335,336,337] |
- UNa: This is emphasized as a potentially earlier signal of tubular or microcirculatory stress, especially 1–2 days prior to traditional AKI markers (e.g., sCr).
- FENa: This is widely known but often unhelpful in critically ill and diuretic-treated patients.
- FEU: This is recommended by KDIGO in diuretic settings, but recent studies show inconsistencies (particularly in older or septic patients).
- FEK: This is emerging as a reliable, sensitive tool for early AKI detection; it is especially valuable because it appears to be less influenced by standard ICU interventions (e.g., loop diuretics).
4.3. Risk Stratification Tools
4.4. Guidelines, Recommendations, and Clinical Integration of AKI Biomarkers in Critical Care
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Thani, H.; Ramzee, A.F.; Asim, M.; El-Menyar, A. Predisposing Factors and Outcome of Acute Kidney Injury After Blunt Trauma: A 10-Year Study. J. Surg. Res. 2023, 284, 193–203. [Google Scholar] [CrossRef]
- Craig, H.A.; Lowe, D.J.; Khan, A.; Paton, M.; Gordon, M.W. Exploring the impact of traumatic injury on mortality: An analysis of the certified cause of death within one year of serious injury in the Scottish population. Injury 2024, 55, 111470. [Google Scholar] [CrossRef]
- Lassola, S.; Cundari, F.; Marini, G.; Corradi, F.; De Rosa, S. Advancements in Trauma-Induced Acute Kidney Injury: Diagnostic and Therapeutic Innovations. Life 2024, 14, 1005. [Google Scholar] [CrossRef]
- Emigh, B.J.; Sahi, S.L.; Teal, L.N.; Blake, J.C.; Heron, C.H.; Teixeira, P.G.; Coopwood, B.; Cardenas, T.C.; Trust, M.D.; Brown, C.V. Incidence and Risk Factors for Acute Kidney Injury in Severely Injured Patients Using Current Kidney Disease: Improving Global Outcomes Definitions. J. Am. Coll. Surg. 2020, 231, 326–332. [Google Scholar] [CrossRef]
- Chertow, G.M.; Burdick, E.; Honour, M.; Bonventre, J.V.; Bates, D.W. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J. Am. Soc. Nephrol. 2005, 16, 3365–3370. [Google Scholar] [CrossRef]
- Kane-Gill, S.L.; Sileanu, F.E.; Murugan, R.; Trietley, G.S.; Handler, S.M.; Kellum, J.A. Risk factors for acute kidney injury in older adults with critical illness: A retrospective cohort study. Am. J. Kidney Dis. 2015, 65, 860–869. [Google Scholar] [CrossRef]
- Kirwan, C.J.; Blunden, M.J.; Dobbie, H.; James, A.; Nedungadi, A.; Prowle, J.R. Critically ill patients requiring acute renal replacement therapy are at an increased risk of long-term renal dysfunction, but rarely receive specialist nephrology follow-up. Nephron 2015, 129, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Pickkers, P.; Darmon, M.; Hoste, E.; Joannidis, M.; Legrand, M.; Ostermann, M.; Prowle, J.R.; Schneider, A.; Schetz, M. Acute kidney injury in the critically ill: An updated review on pathophysiology and management. Intensive Care Med. 2021, 47, 835–850. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Mathew, R.O.; Kuo, Y.; Asif, A. Risk of in-hospital mortality in severe acute kidney injury after traumatic injuries: A national trauma quality program study. Trauma Surg. Acute Care Open 2021, 6, e000635. [Google Scholar] [CrossRef] [PubMed]
- Haines, R.W.; Fowler, A.J.; Kirwan, C.J.; Prowle, J.R. The incidence and associations of acute kidney injury in trauma patients admitted to critical care: A systematic review and meta-analysis. J. Trauma Acute Care Surg. 2019, 86, 141–147. [Google Scholar] [CrossRef]
- Hatton, G.E.; Harvin, J.A.; Wade, C.E.; Kao, L.S. Importance of duration of acute kidney injury after severe trauma: A cohort study. Trauma Surg. Acute Care Open 2021, 6, e000689. [Google Scholar] [CrossRef]
- Bagshaw, S.M.; George, C.; Gibney, R.T.; Bellomo, R. A multi-center evaluation of early acute kidney injury in critically ill trauma patients. Ren. Fail. 2008, 30, 581–589. [Google Scholar] [CrossRef]
- Bihorac, A.; Delano, M.J.; Schold, J.D.; Lopez, M.C.; Nathens, A.B.; Maier, R.V.; Layon, A.J.; Baker, H.V.; Moldawer, L.L. Incidence, clinical predictors, genomics, and outcome of acute kidney injury among trauma patients. Ann. Surg. 2010, 252, 158–165. [Google Scholar] [CrossRef]
- Søvik, S.; Isachsen, M.S.; Nordhuus, K.M.; Tveiten, C.K.; Eken, T.; Sunde, K.; Brurberg, K.G.; Beitland, S. Acute kidney injury in trauma patients admitted to the ICU: A systematic review and meta-analysis. Intensive Care Med. 2019, 45, 407–419. [Google Scholar] [CrossRef]
- Perkins, Z.B.; Captur, G.; Bird, R.; Gleeson, L.; Singer, B.; O’Brien, B. Trauma induced acute kidney injury. PLoS ONE 2019, 14, e0211001. [Google Scholar] [CrossRef]
- Golino, G.; Greco, M.; Rigobello, A.; Danzi, V.; De Cal, M.; Malchiorna, N.; Zannella, M.; Navalesi, P.; Costa-Pinto, R.; Ronco, C.; et al. Incidence of Acute Kidney Injury in Polytrauma Patients and Predictive Performance of TIMP2 × IGFBP7 Biomarkers for Early Identification of Acute Kidney Injury. Diagnostics 2022, 12, 2481. [Google Scholar] [CrossRef]
- Moore, E.M.; Bellomo, R.; Nichol, A.; Harley, N.; Macisaac, C.; Cooper, D.J. The incidence of acute kidney injury in patients with traumatic brain injury. Ren. Fail. 2010, 32, 1060–1065. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhang, J.; Xu, J.; He, M.; Xu, J. Incidence and Burden of Acute Kidney Injury among Traumatic Brain-Injury Patients. Risk Manag. Healthc. Policy 2021, 14, 4571–4580. [Google Scholar] [CrossRef] [PubMed]
- de Cássia Almeida Vieira, R.; de Barros, G.L.; Paiva, W.S.; de Oliveira, D.V.; de Souza, C.P.E.; Santana-Santos, E.; de Sousa, R.M.C. Severe traumatic brain injury and acute kidney injury patients: Factors associated with in-hospital mortality and unfavorable outcomes. Brain Inj. 2024, 38, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Robba, C.; Banzato, E.; Rebora, P.; Iaquaniello, C.; Huang, C.Y.; Wiegers, E.J.A.; Meyfroidt, G.; Citerio, G. Acute Kidney Injury in Traumatic Brain Injury Patients: Results from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury Study. Crit. Care Med. 2021, 49, 112–126. [Google Scholar] [CrossRef]
- Skinner, D.L.; Hardcastle, T.C.; Rodseth, R.N.; Muckart, D.J. The incidence and outcomes of acute kidney injury amongst patients admitted to a level I trauma unit. Injury 2014, 45, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Matsushima, K. Posttraumatic contrast-induced acute kidney injury: Minimal consequences or significant threat? J. Trauma 2011, 70, 415–419; discussion 419–420. [Google Scholar] [CrossRef]
- Bethea, A.; Keslar, L.; Silhy, R.; Samanta, D.; Chumbe, J.T. An evaluation of the relationship between traumatic injuries and the development of contrast-associated acute kidney injury. Trauma 2017, 20, 146–152. [Google Scholar] [CrossRef]
- Giles, T.; Weaver, N.; Varghese, A.; Way, T.L.; Abel, C.; Choi, P.; Briggs, G.D.; Balogh, Z.J. Acute kidney injury development in polytrauma and the safety of early repeated contrast studies: A retrospective cohort study. J. Trauma Acute Care Surg. 2022, 93, 872–881. [Google Scholar] [CrossRef] [PubMed]
- Kelemen, J.A.; Kaserer, A.; Jensen, K.O.; Stein, P.; Seifert, B.; Simmen, H.P.; Spahn, D.R.; Pape, H.C.; Neuhaus, V. Prevalence and outcome of contrast-induced nephropathy in major trauma patients. Eur. J. Trauma Emerg. Surg. 2022, 48, 907–913. [Google Scholar] [CrossRef]
- Vincent, J.L.; De Backer, D. Circulatory shock. N. Engl. J. Med. 2013, 369, 1726–1734. [Google Scholar] [CrossRef]
- Smith, N.; Lopez, R.A.; Silberman, M. Distributive Shock. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2025. [Google Scholar]
- Mizock, B.A. Alterations in fuel metabolism in critical illness: Hyperglycaemia. Best. Pract. Res. Clin. Endocrinol. Metab. 2001, 15, 533–551. [Google Scholar] [CrossRef]
- Cuthbertson, D.P.; Angeles Valero Zanuy, M.A.; León Sanz, M.L. Post-shock metabolic response. 1942. Nutr. Hosp. 2001, 16, 176–182; discussion 175–176. [Google Scholar] [PubMed]
- Cupples, W.A. Interactions contributing to kidney blood flow autoregulation. Curr. Opin. Nephrol. Hypertens. 2007, 16, 39–45. [Google Scholar] [CrossRef]
- Marik, P.E.; Baram, M.; Vahid, B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 2008, 134, 172–178. [Google Scholar] [CrossRef]
- Maciel, A.T. Urine electrolyte measurement as a “window” into renal microcirculatory stress assessment in critically ill patients. J. Crit. Care 2018, 48, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Ince, C. The central role of renal microcirculatory dysfunction in the pathogenesis of acute kidney injury. Nephron Clin. Pract. 2014, 127, 124–128. [Google Scholar] [CrossRef]
- Kwiatkowska, E.; Kwiatkowski, S.; Dziedziejko, V.; Tomasiewicz, I.; Domański, L. Renal Microcirculation Injury as the Main Cause of Ischemic Acute Kidney Injury Development. Biology 2023, 12, 327. [Google Scholar] [CrossRef]
- Franzén, S.; DiBona, G.; Frithiof, R. Anesthesia and the renal sympathetic nervous system in perioperative AKI. Semin. Nephrol. 2022, 42, 151283. [Google Scholar] [CrossRef]
- Şimşek, T.; Şimşek, H.U.; Cantürk, N.Z. Response to trauma and metabolic changes: Posttraumatic metabolism. Ulus. Cerrahi Derg. 2014, 30, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X. Reducing Oxygen Demand to Alleviate Acute Kidney Injury. Front. Biosci. 2023, 28, 62. [Google Scholar] [CrossRef]
- Aksu, U.; Demirci, C.; Ince, C. The pathogenesis of acute kidney injury and the toxic triangle of oxygen, reactive oxygen species and nitric oxide. Contrib. Nephrol. 2011, 174, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Wei, Q. The metabolic pathway regulation in kidney injury and repair. Front. Physiol. 2023, 14, 1344271. [Google Scholar] [CrossRef]
- Salvo, N.; Charles, A.M.; Mohr, A.M. The Intersection of Trauma and Immunity: Immune Dysfunction Following Hemorrhage. Biomedicines 2024, 12, 2889. [Google Scholar] [CrossRef]
- Dobson, G.P.; Morris, J.L.; Letson, H.L. Immune dysfunction following severe trauma: A systems failure from the central nervous system to mitochondria. Front. Med. 2022, 9, 968453. [Google Scholar] [CrossRef]
- Hauser, C.J.; Otterbein, L.E. Danger signals from mitochondrial DAMPS in trauma and post-injury sepsis. Eur. J. Trauma Emerg. Surg. 2018, 44, 317–324. [Google Scholar] [CrossRef]
- Ganster, F.; Burban, M.; de la Bourdonnaye, M.; Fizanne, L.; Douay, O.; Loufrani, L.; Mercat, A.; Calès, P.; Radermacher, P.; Henrion, D.; et al. Effects of hydrogen sulfide on hemodynamics, inflammatory response and oxidative stress during resuscitated hemorrhagic shock in rats. Crit. Care 2010, 14, R165. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Xia, H. Serum levels of NLRP3 and HMGB-1 are associated with the prognosis of patients with severe blunt abdominal trauma. Clinics 2019, 74, e729. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Ye, J.J.; Gan, L.; Zhang, M.; Sun, D.; Li, Y.; Wang, T.; Chang, P. Traumatic inflammatory response: Pathophysiological role and clinical value of cytokines. Eur. J. Trauma Emerg. Surg. 2024, 50, 1313–1330. [Google Scholar] [CrossRef] [PubMed]
- Bock, M.; Bergmann, C.B.; Jung, S.; Biberthaler, P.; Heimann, L.; Hanschen, M. Platelets differentially modulate CD4+ Treg activation via GPIIa/IIIb-, fibrinogen-, and PAR4-dependent pathways. Immunol. Res. 2022, 70, 185–196. [Google Scholar] [CrossRef]
- Periayah, M.H.; Halim, A.S.; Mat Saad, A.Z. Mechanism Action of Platelets and Crucial Blood Coagulation Pathways in Hemostasis. Int. J. Hematol. Oncol. Stem Cell Res. 2017, 11, 319–327. [Google Scholar]
- Zanza, C.; Romenskaya, T.; Racca, F.; Rocca, E.; Piccolella, F.; Piccioni, A.; Saviano, A.; Formenti-Ujlaki, G.; Savioli, G.; Franceschi, F.; et al. Severe Trauma-Induced Coagulopathy: Molecular Mechanisms Underlying Critical Illness. Int. J. Mol. Sci. 2023, 24, 7118. [Google Scholar] [CrossRef]
- Wang, D.; Sant, S.; Ferrell, N. A Biomimetic In Vitro Model of the Kidney Filtration Barrier Using Tissue-Derived Glomerular Basement Membrane. Adv. Healthc. Mater. 2021, 10, e2002275. [Google Scholar] [CrossRef]
- Martin, P.Y.; de Seigneux, S. Nitric oxide protects against AKI by reprogramming metabolism. Nat. Rev. Nephrol. 2019, 15, 195–196. [Google Scholar] [CrossRef]
- Peng, Q.; Li, K.; Smyth, L.A.; Xing, G.; Wang, N.; Meader, L.; Lu, B.; Sacks, S.H.; Zhou, W. C3a and C5a promote renal ischemia-reperfusion injury. J. Am. Soc. Nephrol. 2012, 23, 1474–1485. [Google Scholar] [CrossRef]
- Finnerty, C.C.; Herndon, D.N.; Przkora, R.; Pereira, C.T.; Oliveira, H.M.; Queiroz, D.M.; Rocha, A.M.; Jeschke, M.G. Cytokine expression profile over time in severely burned pediatric patients. Shock 2006, 26, 13–19. [Google Scholar] [CrossRef]
- Huber-Lang, M.; Sarma, V.J.; Lu, K.T.; McGuire, S.R.; Padgaonkar, V.A.; Guo, R.F.; Younkin, E.M.; Kunkel, R.G.; Ding, J.; Erickson, R.; et al. Role of C5a in multiorgan failure during sepsis. J. Immunol. 2001, 166, 1193–1199. [Google Scholar] [CrossRef]
- Ramnath, R.D.; Satchell, S.C. Glomerular Endothelial Cells: Assessment of Barrier Properties In Vitro. Methods Mol. Biol. 2020, 2067, 145–151. [Google Scholar] [CrossRef]
- Ebefors, K.; Wiener, R.J.; Yu, L.; Azeloglu, E.U.; Yi, Z.; Jia, F.; Zhang, W.; Baron, M.H.; He, J.C.; Haraldsson, B.; et al. Endothelin receptor-A mediates degradation of the glomerular endothelial surface layer via pathologic crosstalk between activated podocytes and glomerular endothelial cells. Kidney Int. 2019, 96, 957–970. [Google Scholar] [CrossRef]
- Pippin, J.W.; Durvasula, R.; Petermann, A.; Hiromura, K.; Couser, W.G.; Shankland, S.J. DNA damage is a novel response to sublytic complement C5b-9-induced injury in podocytes. J. Clin. Investig. 2003, 111, 877–885. [Google Scholar] [CrossRef]
- Asanuma, K.; Mundel, P. The role of podocytes in glomerular pathobiology. Clin. Exp. Nephrol. 2003, 7, 255–259. [Google Scholar] [CrossRef]
- Schult, L.; Halbgebauer, R.; Karasu, E.; Huber-Lang, M. Glomerular injury after trauma, burn, and sepsis. J. Nephrol. 2023, 36, 2417–2429. [Google Scholar] [CrossRef]
- Pack, L.R.; Daigh, L.H.; Chung, M.; Meyer, T. Clinical CDK4/6 inhibitors induce selective and immediate dissociation of p21 from cyclin D-CDK4 to inhibit CDK2. Nat. Commun. 2021, 12, 3356. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.L.; Li, X.Y.; Zhou, Y.; Wang, B.; Lv, L.L.; Liu, B.C. Renal tubular epithelial cells response to injury in acute kidney injury. EBioMedicine 2024, 107, 105294. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, H.; Yi, X.; Dou, Q.; Yang, X.; He, Y.; Chen, J.; Chen, K. Cellular senescence of renal tubular epithelial cells in acute kidney injury. Cell Death Discov. 2024, 10, 62. [Google Scholar] [CrossRef] [PubMed]
- Tammaro, A.; Kers, J.; Scantlebery, A.M.L.; Florquin, S. Metabolic Flexibility and Innate Immunity in Renal Ischemia Reperfusion Injury: The Fine Balance Between Adaptive Repair and Tissue Degeneration. Front. Immunol. 2020, 11, 1346. [Google Scholar] [CrossRef]
- Lieberthal, W.; Nigam, S.K. Acute renal failure. I. Relative importance of proximal vs. distal tubular injury. Am. J. Physiol. 1998, 275, F623–F631. [Google Scholar] [CrossRef] [PubMed]
- Wicherska-Pawłowska, K.; Wróbel, T.; Rybka, J. Toll-Like Receptors (TLRs), NOD-Like Receptors (NLRs), and RIG-I-Like Receptors (RLRs) in Innate Immunity. TLRs, NLRs, and RLRs Ligands as Immunotherapeutic Agents for Hematopoietic Diseases. Int. J. Mol. Sci. 2021, 22, 13397. [Google Scholar] [CrossRef]
- Liao, Z.; Su, J. Progresses on three pattern recognition receptor families (TLRs, RLRs and NLRs) in teleost. Dev. Comp. Immunol. 2021, 122, 104131. [Google Scholar] [CrossRef]
- Peng, Q.; Wu, W.; Wu, K.Y.; Cao, B.; Qiang, C.; Li, K.; Sacks, S.H.; Zhou, W. The C5a/C5aR1 axis promotes progression of renal tubulointerstitial fibrosis in a mouse model of renal ischemia/reperfusion injury. Kidney Int. 2019, 96, 117–128. [Google Scholar] [CrossRef]
- Jin, L.; Yu, B.; Armando, I.; Han, F. Mitochondrial DNA-Mediated Inflammation in Acute Kidney Injury and Chronic Kidney Disease. Oxid. Med. Cell. Longev. 2021, 2021, 9985603. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Jia, Z.; Gong, W. Circulating Mitochondrial DNA Stimulates Innate Immune Signaling Pathways to Mediate Acute Kidney Injury. Front. Immunol. 2021, 12, 680648. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Xiao, Z.; Zhao, H.; An, Y. Urinary dickkopf-3 as a predictor for postoperative acute kidney injury in the intensive care unit. Am. J. Med. Sci. 2025, 369, 434–442. [Google Scholar] [CrossRef]
- Zewinger, S.; Rauen, T.; Rudnicki, M.; Federico, G.; Wagner, M.; Triem, S.; Schunk, S.J.; Petrakis, I.; Schmit, D.; Wagenpfeil, S.; et al. Dickkopf-3 (DKK3) in Urine Identifies Patients with Short-Term Risk of eGFR Loss. J. Am. Soc. Nephrol. 2018, 29, 2722–2733. [Google Scholar] [CrossRef] [PubMed]
- Ferenbach, D.A.; Bonventre, J.V. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat. Rev. Nephrol. 2015, 11, 264–276. [Google Scholar] [CrossRef]
- Sakyi, S.A.; Ephraim, R.K.D.; Adoba, P.; Amoani, B.; Buckman, T.; Mantey, R.; Eghan, B.A. Tissue inhibitor metalloproteinase 2 (TIMP-2) and insulin-like growth factor binding protein 7 (IGFBP7) best predicts the development of acute kidney injury. Heliyon 2021, 7, e07960. [Google Scholar] [CrossRef]
- Emlet, D.R.; Pastor-Soler, N.; Marciszyn, A.; Wen, X.; Gomez, H.; Humphries, W.H.t.; Morrisroe, S.; Volpe, J.K.; Kellum, J.A. Insulin-like growth factor binding protein 7 and tissue inhibitor of metalloproteinases-2: Differential expression and secretion in human kidney tubule cells. Am. J. Physiol. Ren. Physiol. 2017, 312, F284–F296. [Google Scholar] [CrossRef] [PubMed]
- McCullough, J.W.; Renner, B.; Thurman, J.M. The role of the complement system in acute kidney injury. Semin. Nephrol. 2013, 33, 543–556. [Google Scholar] [CrossRef] [PubMed]
- Pressly, J.D.; Park, F. DNA repair in ischemic acute kidney injury. Am. J. Physiol. Ren. Physiol. 2017, 312, F551–F555. [Google Scholar] [CrossRef]
- Meng, X.; Jin, J.; Lan, H.Y. Driving role of macrophages in transition from acute kidney injury to chronic kidney disease. Chin. Med. J. 2022, 135, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Lemos, D.R.; Marsh, G.; Huang, A.; Campanholle, G.; Aburatani, T.; Dang, L.; Gomez, I.; Fisher, K.; Ligresti, G.; Peti-Peterdi, J.; et al. Maintenance of vascular integrity by pericytes is essential for normal kidney function. Am. J. Physiol. Ren. Physiol. 2016, 311, F1230–F1242. [Google Scholar] [CrossRef]
- Freitas, F.; Attwell, D. Pericyte-mediated constriction of renal capillaries evokes no-reflow and kidney injury following ischaemia. Elife 2022, 11, e74211. [Google Scholar] [CrossRef]
- da Silva, F.C.; de Araújo, B.J.; Cordeiro, C.S.; Arruda, V.M.; Faria, B.Q.; Guerra, J.; Araújo, T.G.; Fürstenau, C.R. Endothelial dysfunction due to the inhibition of the synthesis of nitric oxide: Proposal and characterization of an in vitro cellular model. Front. Physiol. 2022, 13, 978378. [Google Scholar] [CrossRef]
- Parikh, S.M. Angiopoietins and Tie2 in vascular inflammation. Curr. Opin. Hematol. 2017, 24, 432–438. [Google Scholar] [CrossRef]
- Sack, K.D.; Kellum, J.A.; Parikh, S.M. The Angiopoietin-Tie2 Pathway in Critical Illness. Crit. Care Clin. 2020, 36, 201–216. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Y.; Wu, J.; Zhang, J.; Cao, P.; Sun, Z.; Wang, W. The role of extracellular traps in ischemia reperfusion injury. Front. Immunol. 2022, 13, 1022380. [Google Scholar] [CrossRef]
- Andersson, U.; Tracey, K.J. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu. Rev. Immunol. 2011, 29, 139–162. [Google Scholar] [CrossRef]
- Giles, T.; King, K.; Meakes, S.; Weaver, N.; Balogh, Z.J. Traumatic rhabdomyolysis: Rare but morbid, potentially lethal, and inconsistently monitored. Eur. J. Trauma Emerg. Surg. 2024, 50, 1063–1071. [Google Scholar] [CrossRef]
- Storgaard, M.; Rasmussen, K.; Ebskov, B. Traumatic rhabdomyolysis. Physiopathology and treatment. Ugeskr. Laeger 1998, 160, 987–990. [Google Scholar]
- Odeh, M. The role of reperfusion-induced injury in the pathogenesis of the crush syndrome. N. Engl. J. Med. 1991, 324, 1417–1422. [Google Scholar] [CrossRef]
- Zimmerman, J.L.; Shen, M.C. Rhabdomyolysis. Chest 2013, 144, 1058–1065. [Google Scholar] [CrossRef] [PubMed]
- Weibrecht, K.; Dayno, M.; Darling, C.; Bird, S.B. Liver aminotransferases are elevated with rhabdomyolysis in the absence of significant liver injury. J. Med. Toxicol. 2010, 6, 294–300. [Google Scholar] [CrossRef]
- Torres, P.A.; Helmstetter, J.A.; Kaye, A.M.; Kaye, A.D. Rhabdomyolysis: Pathogenesis, diagnosis, and treatment. Ochsner J. 2015, 15, 58–69. [Google Scholar] [PubMed]
- Chatzizisis, Y.S.; Misirli, G.; Hatzitolios, A.I.; Giannoglou, G.D. The syndrome of rhabdomyolysis: Complications and treatment. Eur. J. Intern. Med. 2008, 19, 568–574. [Google Scholar] [CrossRef]
- Murata, I.; Sugai, T.; Murakawa, Y.; Miyamoto, Y.; Kobayashi, J.; Inoue, Y.; Kanamoto, I. Salvianolic acid B improves the survival rate, acute kidney dysfunction, inflammation and NETosis-mediated antibacterial action in a crush syndrome rat model. Exp. Ther. Med. 2022, 23, 320. [Google Scholar] [CrossRef] [PubMed]
- Peiris, D. A historical perspective on crush syndrome: The clinical application of its pathogenesis, established by the study of wartime crush injuries. J. Clin. Pathol. 2017, 70, 277–281. [Google Scholar] [CrossRef]
- Zager, R.A.; Gamelin, L.M. Pathogenetic mechanisms in experimental hemoglobinuric acute renal failure. Am. J. Physiol. 1989, 256, F446–F455. [Google Scholar] [CrossRef]
- Bosch, X.; Poch, E.; Grau, J.M. Rhabdomyolysis and acute kidney injury. N. Engl. J. Med. 2009, 361, 62–72. [Google Scholar] [CrossRef]
- Zager, R.A.; Foerder, C.A. Effects of inorganic iron and myoglobin on in vitro proximal tubular lipid peroxidation and cytotoxicity. J. Clin. Investig. 1992, 89, 989–995. [Google Scholar] [CrossRef] [PubMed]
- Reeder, B.J.; Wilson, M.T. Hemoglobin and myoglobin associated oxidative stress: From molecular mechanisms to disease States. Curr. Med. Chem. 2005, 12, 2741–2751. [Google Scholar] [CrossRef] [PubMed]
- Holt, S.G.; Moore, K.P. Pathogenesis and treatment of renal dysfunction in rhabdomyolysis. Intensive Care Med. 2001, 27, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Semenikhina, M.; Lipschutz, J.H.; Palygin, O. Breaking New Ground: The Crucial Role of Animal Research in the Advancement of Rhabdomyolysis-Induced AKI Treatment and Prevention. Function 2023, 4, zqad039. [Google Scholar] [CrossRef]
- Afolabi, J.M.; Kanthakumar, P.; Williams, J.D.; Kumar, R.; Soni, H.; Adebiyi, A. Post-injury Inhibition of Endothelin-1 Dependent Renal Vasoregulation Mitigates Rhabdomyolysis-Induced Acute Kidney Injury. Function 2023, 4, zqad022. [Google Scholar] [CrossRef]
- Okubo, K.; Kurosawa, M.; Kamiya, M.; Urano, Y.; Suzuki, A.; Yamamoto, K.; Hase, K.; Homma, K.; Sasaki, J.; Miyauchi, H.; et al. Macrophage extracellular trap formation promoted by platelet activation is a key mediator of rhabdomyolysis-induced acute kidney injury. Nat. Med. 2018, 24, 232–238. [Google Scholar] [CrossRef]
- Qiao, O.; Wang, X.; Wang, Y.; Li, N.; Gong, Y. Ferroptosis in acute kidney injury following crush syndrome: A novel target for treatment. J. Adv. Res. 2023, 54, 211–222. [Google Scholar] [CrossRef]
- Brown, C.V.; Rhee, P.; Chan, L.; Evans, K.; Demetriades, D.; Velmahos, G.C. Preventing renal failure in patients with rhabdomyolysis: Do bicarbonate and mannitol make a difference? J. Trauma 2004, 56, 1191–1196. [Google Scholar] [CrossRef]
- Vangstad, M.; Bjornaas, M.A.; Jacobsen, D. Rhabdomyolysis: A 10-year retrospective study of patients treated in a medical department. Eur. J. Emerg. Med. 2019, 26, 199–204. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Wang, F.; Li, G.; Chen, X.; Liao, C.; Zou, Y.; Zhang, Y.; Kang, Z.; Yang, X.; Wang, L. Crush syndrome and acute kidney injury in the Wenchuan Earthquake. J. Trauma 2011, 70, 1213–1217. [Google Scholar] [CrossRef] [PubMed]
- Stewart, I.J.; Faulk, T.I.; Sosnov, J.A.; Clemens, M.S.; Elterman, J.; Ross, J.D.; Howard, J.T.; Fang, R.; Zonies, D.H.; Chung, K.K. Rhabdomyolysis among critically ill combat casualties: Associations with acute kidney injury and mortality. J. Trauma Acute Care Surg. 2016, 80, 492–498. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, J.; Wang, X.; Wang, S.; Tang, Y.; Yang, L. Risk factors for severe acute kidney injury among patients with rhabdomyolysis. BMC Nephrol. 2020, 21, 498. [Google Scholar] [CrossRef] [PubMed]
- Simpson, J.P.; Taylor, A.; Sudhan, N.; Menon, D.K.; Lavinio, A. Rhabdomyolysis and acute kidney injury: Creatine kinase as a prognostic marker and validation of the McMahon Score in a 10-year cohort: A retrospective observational evaluation. Eur. J. Anaesthesiol. 2016, 33, 906–912. [Google Scholar] [CrossRef]
- Hamlah, A.; Tarabishy, A.A.; Al-Madhagi, H. Mini Review of Biochemical Basis, Diagnosis and Management of Crush Syndrome. Acta Medica Litu. 2023, 30, 133–138. [Google Scholar] [CrossRef]
- Garcia, A.F.; Manzano-Nunez, R.; Bayona, J.G.; Naranjo, M.P.; Villa, D.N.; Moreno, M.; Ossa, S.; Martinez, J.M.; Martinez, N.; Puyana, J.C. Acute kidney injury in severely injured patients admitted to the intensive care unit. Mil. Med. Res. 2020, 7, 47. [Google Scholar] [CrossRef]
- Sharp, L.S.; Rozycki, G.S.; Feliciano, D.V. Rhabdomyolysis and secondary renal failure in critically ill surgical patients. Am. J. Surg. 2004, 188, 801–806. [Google Scholar] [CrossRef]
- Huerta-Alardín, A.L.; Varon, J.; Marik, P.E. Bench-to-bedside review: Rhabdomyolysis—An overview for clinicians. Crit. Care 2005, 9, 158–169. [Google Scholar] [CrossRef]
- Giannoglou, G.D.; Chatzizisis, Y.S.; Misirli, G. The syndrome of rhabdomyolysis: Pathophysiology and diagnosis. Eur. J. Intern. Med. 2007, 18, 90–100. [Google Scholar] [CrossRef]
- Mikkelsen, T.S.; Toft, P. Prognostic value, kinetics and effect of CVVHDF on serum of the myoglobin and creatine kinase in critically ill patients with rhabdomyolysis. Acta Anaesthesiol. Scand. 2005, 49, 859–864. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Thorson, P.; Penmatsa, K.R.; Gupta, P. Rhabdomyolysis: Revisited. Ulst. Med. J. 2021, 90, 61–69. [Google Scholar]
- El-Abdellati, E.; Eyselbergs, M.; Sirimsi, H.; Hoof, V.V.; Wouters, K.; Verbrugghe, W.; Jorens, P.G. An observational study on rhabdomyolysis in the intensive care unit. Exploring its risk factors and main complication: Acute kidney injury. Ann. Intensive Care 2013, 3, 8. [Google Scholar] [CrossRef]
- Kasaoka, S.; Todani, M.; Kaneko, T.; Kawamura, Y.; Oda, Y.; Tsuruta, R.; Maekawa, T. Peak value of blood myoglobin predicts acute renal failure induced by rhabdomyolysis. J. Crit. Care 2010, 25, 601–604. [Google Scholar] [CrossRef] [PubMed]
- Vanholder, R.; Sever, M.S.; Erek, E.; Lameire, N. Acute renal failure related to the crush syndrome: Towards an era of seismo-nephrology? Nephrol. Dial. Transplant. 2000, 15, 1517–1521. [Google Scholar] [CrossRef]
- Rroji, M.; Seferi, S.; Barbullushi, M. An Overview of Treatment of Crush Syndrome. Albanian J. Trauma Emerg. Surg. 2021, 5, 797–801. [Google Scholar] [CrossRef]
- Wiedermann, C.J. Moderator Effect of Hypoalbuminemia in Volume Resuscitation and Plasma Expansion with Intravenous Albumin Solution. Int. J. Mol. Sci. 2022, 23, 14175. [Google Scholar] [CrossRef]
- John, A.K.; Norbert, L.; Peter, A.; Rashad, S.B.; Emmanuel, A.B.; Stuart, L.G.; Charles, A.H.; Michael, J.; Andreas, K.; Andrew, S.L. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int. Suppl. 2012, 2, 1–138. [Google Scholar]
- Li, J.; Zheng, S.; Fan, Y.; Tan, K. Emerging significance and therapeutic targets of ferroptosis: A potential avenue for human kidney diseases. Cell Death Dis. 2023, 14, 628. [Google Scholar] [CrossRef]
- Coccolini, F.; Improta, M.; Picetti, E.; Branca Vergano, L.; Catena, F.; de’Angelis, N.; Bertolucci, A.; Kirkpatrick, A.W.; Sartelli, M.; Fugazzola, P.; et al. Timing of surgical intervention for compartment syndrome in different body region: Systematic review of the literature. World J. Emerg. Surg. 2020, 15, 60. [Google Scholar] [CrossRef]
- Kodadek, L.; Carmichael Ii, S.P.; Seshadri, A.; Pathak, A.; Hoth, J.; Appelbaum, R.; Michetti, C.P.; Gonzalez, R.P. Rhabdomyolysis: An American Association for the Surgery of Trauma Critical Care Committee Clinical Consensus Document. Trauma Surg. Acute Care Open 2022, 7, e000836. [Google Scholar] [CrossRef]
- Huang, Z.Y.; Liu, Y.; Huang, H.F.; Huang, S.H.; Wang, J.X.; Tian, J.F.; Zeng, W.X.; Lv, R.G.; Jiang, S.; Gao, J.L.; et al. Acute kidney injury in traumatic brain injury intensive care unit patients. World J. Clin. Cases 2022, 10, 2751–2763. [Google Scholar] [CrossRef]
- Luu, D.; Komisarow, J.; Mills, B.M.; Vavilala, M.S.; Laskowitz, D.T.; Mathew, J.; James, M.L.; Hernandez, A.; Sampson, J.; Fuller, M.; et al. Association of Severe Acute Kidney Injury with Mortality and Healthcare Utilization Following Isolated Traumatic Brain Injury. Neurocritical Care 2021, 35, 434–440. [Google Scholar] [CrossRef]
- Steyerberg, E.W.; Wiegers, E.; Sewalt, C.; Buki, A.; Citerio, G.; De Keyser, V.; Ercole, A.; Kunzmann, K.; Lanyon, L.; Lecky, F.; et al. Case-mix, care pathways, and outcomes in patients with traumatic brain injury in CENTER-TBI: A European prospective, multicentre, longitudinal, cohort study. Lancet Neurol. 2019, 18, 923–934. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Sriganesh, K.; Vinay, B.; Umamaheswara Rao, G.S. Acute kidney injury in survivors of surgery for severe traumatic brain injury: Incidence, risk factors, and outcome from a tertiary neuroscience center in India. Br. J. Neurosurg. 2015, 29, 544–548. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.Y.; Lee, A.Y.W. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front. Cell. Neurosci. 2019, 13, 528. [Google Scholar] [CrossRef] [PubMed]
- Shao, F.; Wang, X.; Wu, H.; Wu, Q.; Zhang, J. Microglia and Neuroinflammation: Crucial Pathological Mechanisms in Traumatic Brain Injury-Induced Neurodegeneration. Front. Aging Neurosci. 2022, 14, 825086. [Google Scholar] [CrossRef]
- Civiletti, F.; Assenzio, B.; Mazzeo, A.T.; Medica, D.; Giaretta, F.; Deambrosis, I.; Fanelli, V.; Ranieri, V.M.; Cantaluppi, V.; Mascia, L. Acute Tubular Injury is Associated with Severe Traumatic Brain Injury: In Vitro Study on Human Tubular Epithelial Cells. Sci. Rep. 2019, 9, 6090. [Google Scholar] [CrossRef]
- Lee, S.; Hwang, H.; Yamal, J.M.; Goodman, J.C.; Aisiku, I.P.; Gopinath, S.; Robertson, C.S. IMPACT probability of poor outcome and plasma cytokine concentrations are associated with multiple organ dysfunction syndrome following traumatic brain injury. J. Neurosurg. 2019, 131, 1931–1937. [Google Scholar] [CrossRef]
- McDonald, S.J.; Sharkey, J.M.; Sun, M.; Kaukas, L.M.; Shultz, S.R.; Turner, R.J.; Leonard, A.V.; Brady, R.D.; Corrigan, F. Beyond the Brain: Peripheral Interactions after Traumatic Brain Injury. J. Neurotrauma 2020, 37, 770–781. [Google Scholar] [CrossRef]
- De Vlieger, G.; Meyfroidt, G. Kidney Dysfunction After Traumatic Brain Injury: Pathophysiology and General Management. Neurocritical Care 2023, 38, 504–516. [Google Scholar] [CrossRef]
- Lu, J.; Goh, S.J.; Tng, P.Y.; Deng, Y.Y.; Ling, E.A.; Moochhala, S. Systemic inflammatory response following acute traumatic brain injury. Front. Biosci. 2009, 14, 3795–3813. [Google Scholar] [CrossRef]
- Schwulst, S.J.; Trahanas, D.M.; Saber, R.; Perlman, H. Traumatic brain injury-induced alterations in peripheral immunity. J. Trauma Acute Care Surg. 2013, 75, 780–788. [Google Scholar] [CrossRef]
- Yang, W.; Yuan, Q.; Li, Z.; Du, Z.; Wu, G.; Yu, J.; Hu, J. Translocation and Dissemination of Gut Bacteria after Severe Traumatic Brain Injury. Microorganisms 2022, 10, 2082. [Google Scholar] [CrossRef] [PubMed]
- Pyles, R.B.; Miller, A.L.; Urban, R.J.; Sheffield-Moore, M.; Wright, T.J.; Maxwell, C.A.; Randolph, K.M.; Danesi, C.P.; McGovern, K.A.; Vargas, J.; et al. The altered TBI fecal microbiome is stable and functionally distinct. Front. Mol. Neurosci. 2024, 17, 1341808. [Google Scholar] [CrossRef]
- Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 2015, 28, 203–209. [Google Scholar] [PubMed]
- Satoh, M.; Hayashi, H.; Watanabe, M.; Ueda, K.; Yamato, H.; Yoshioka, T.; Motojima, M. Uremic toxins overload accelerates renal damage in a rat model of chronic renal failure. Nephron Exp. Nephrol. 2003, 95, e111–e118. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Kim, C.J.; Go, Y.S.; Lee, H.Y.; Kim, M.G.; Oh, S.W.; Cho, W.Y.; Im, S.H.; Jo, S.K. Intestinal microbiota control acute kidney injury severity by immune modulation. Kidney Int. 2020, 98, 932–946. [Google Scholar] [CrossRef]
- Chou, Y.T.; Kan, W.C.; Shiao, C.C. Acute Kidney Injury and Gut Dysbiosis: A Narrative Review Focus on Pathophysiology and Treatment. Int. J. Mol. Sci. 2022, 23, 3658. [Google Scholar] [CrossRef]
- Gong, J.; Noel, S.; Pluznick, J.L.; Hamad, A.R.A.; Rabb, H. Gut Microbiota-Kidney Cross-Talk in Acute Kidney Injury. Semin. Nephrol. 2019, 39, 107–116. [Google Scholar] [CrossRef]
- Lee, T.H.; Park, D.; Kim, Y.J.; Lee, I.; Kim, S.; Oh, C.T.; Kim, J.Y.; Yang, J.; Jo, S.K. Lactobacillus salivarius BP121 prevents cisplatin-induced acute kidney injury by inhibition of uremic toxins such as indoxyl sulfate and p-cresol sulfate via alleviating dysbiosis. Int. J. Mol. Med. 2020, 45, 1130–1140. [Google Scholar] [CrossRef]
- Yang, J.; Ji, G.E.; Park, M.S.; Seong, Y.J.; Go, Y.S.; Lee, H.Y.; Fang, Y.; Kim, M.G.; Oh, S.W.; Cho, W.Y.; et al. Probiotics partially attenuate the severity of acute kidney injury through an immunomodulatory effect. Kidney Res. Clin. Pract. 2021, 40, 620–633. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Liang, Y.; Chigurupati, S.; Lathia, J.D.; Pletnikov, M.; Sun, Z.; Crow, M.; Ross, C.A.; Mattson, M.P.; Rabb, H. Acute kidney injury leads to inflammation and functional changes in the brain. J. Am. Soc. Nephrol. 2008, 19, 1360–1370. [Google Scholar] [CrossRef] [PubMed]
- Cook, A.M.; Morgan Jones, G.; Hawryluk, G.W.J.; Mailloux, P.; McLaughlin, D.; Papangelou, A.; Samuel, S.; Tokumaru, S.; Venkatasubramanian, C.; Zacko, C.; et al. Guidelines for the Acute Treatment of Cerebral Edema in Neurocritical Care Patients. Neurocritical Care 2020, 32, 647–666. [Google Scholar] [CrossRef]
- Lin, S.Y.; Tang, S.C.; Tsai, L.K.; Yeh, S.J.; Shen, L.J.; Wu, F.L.; Jeng, J.S. Incidence and Risk Factors for Acute Kidney Injury Following Mannitol Infusion in Patients with Acute Stroke: A Retrospective Cohort Study. Medicine 2015, 94, e2032. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, M.; Hervé, C.; Mandin, L.; Raynaud, P. Mortality prognostic factors in chest injury. J. Trauma 1990, 30, 93–96. [Google Scholar] [CrossRef]
- Yimam, A.E. Mortality rate and factors associated with death in traumatic chest injury patients: A retrospective study. Int. J. Surg. Open 2021, 37, 100420. [Google Scholar] [CrossRef]
- Marts, B.; Durham, R.; Shapiro, M.; Mazuski, J.E.; Zuckerman, D.; Sundaram, M.; Luchtefeld, W.B. Computed tomography in the diagnosis of blunt thoracic injury. Am. J. Surg. 1994, 168, 688–692. [Google Scholar] [CrossRef]
- Blair, E.; Topuzlu, C.; Davis, J.H. Delayed or missed diagnosis in blunt chest trauma. J. Trauma 1971, 11, 129–145. [Google Scholar] [CrossRef]
- Harrison, M. Traumatic pneumothorax: A review of current practices. Br. J. Hosp. Med. 2014, 75, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Demirhan, R.; Onan, B.; Oz, K.; Halezeroglu, S. Comprehensive analysis of 4205 patients with chest trauma: A 10-year experience. Interact. Cardiovasc. Thorac. Surg. 2009, 9, 450–453. [Google Scholar] [CrossRef] [PubMed]
- Eghbalzadeh, K.; Sabashnikov, A.; Zeriouh, M.; Choi, Y.H.; Bunck, A.C.; Mader, N.; Wahlers, T. Blunt chest trauma: A clinical chameleon. Heart 2018, 104, 719–724. [Google Scholar] [CrossRef]
- Askenazi, D.J.; Heung, M.; Connor, M.J., Jr.; Basu, R.K.; Cerdá, J.; Doi, K.; Koyner, J.L.; Bihorac, A.; Golestaneh, L.; Vijayan, A.; et al. Optimal Role of the Nephrologist in the Intensive Care Unit. Blood Purif. 2017, 43, 68–77. [Google Scholar] [CrossRef]
- Jastrow, K.M., 3rd; Gonzalez, E.A.; McGuire, M.F.; Suliburk, J.W.; Kozar, R.A.; Iyengar, S.; Motschall, D.A.; McKinley, B.A.; Moore, F.A.; Mercer, D.W. Early cytokine production risk stratifies trauma patients for multiple organ failure. J. Am. Coll. Surg. 2009, 209, 320–331. [Google Scholar] [CrossRef]
- Park, C.; Lee, J. Massive hemothorax due to intercostal arterial bleeding after percutaneous catheter removal in a multiple-trauma patient: A case report. World J. Clin. Cases 2021, 9, 9942–9947. [Google Scholar] [CrossRef]
- Parry, G.W.; Morgan, W.E.; Salama, F.D. Management of haemothorax. Ann. R. Coll. Surg. Engl. 1996, 78, 325–326. [Google Scholar]
- Ganie, F.A.; Lone, H.; Lone, G.N.; Wani, M.L.; Singh, S.; Dar, A.M.; Wani, N.U.; Wani, S.N.; Nazeer, N.U. Lung Contusion: A Clinico-Pathological Entity with Unpredictable Clinical Course. Bull. Emerg. Trauma 2013, 1, 7–16. [Google Scholar]
- Benites, M.H.; Suarez-Sipmann, F.; Kattan, E.; Cruces, P.; Retamal, J. Ventilation-induced acute kidney injury in acute respiratory failure: Do PEEP levels matter? Crit. Care 2025, 29, 130. [Google Scholar] [CrossRef] [PubMed]
- Jentzer, J.C.; Bihorac, A.; Brusca, S.B.; Del Rio-Pertuz, G.; Kashani, K.; Kazory, A.; Kellum, J.A.; Mao, M.; Moriyama, B.; Morrow, D.A.; et al. Contemporary Management of Severe Acute Kidney Injury and Refractory Cardiorenal Syndrome: JACC Council Perspectives. J. Am. Coll. Cardiol. 2020, 76, 1084–1101, Erratum in J. Am. Coll. Cardiol. 2021, 77, 107–109. [Google Scholar] [CrossRef]
- Claure-Del Granado, R.; Bouchard, J. Acid-base and electrolyte abnormalities during renal support for acute kidney injury: Recognition and management. Blood Purif. 2012, 34, 186–193. [Google Scholar] [CrossRef]
- Ki, Y.J.; Jo, Y.G.; Park, Y.C.; Kang, W.S. The Efficacy and Safety of Laparoscopy for Blunt Abdominal Trauma: A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 1853. [Google Scholar] [CrossRef]
- Ntundu, S.H.; Herman, A.M.; Kishe, A.; Babu, H.; Jahanpour, O.F.; Msuya, D.; Chugulu, S.G.; Chilonga, K. Patterns and outcomes of patients with abdominal trauma on operative management from northern Tanzania: A prospective single centre observational study. BMC Surg. 2019, 19, 69. [Google Scholar] [CrossRef]
- Vunvulea, V.; Budișcă, O.A.; Arbănași, E.M.; Mureșan, A.V.; Arbănași, E.M.; Brînzaniuc, K.; Niculescu, R.; Cocuz, I.G.; Ivănescu, A.D.; Hălmaciu, I.; et al. The Predictive Role of Systemic Inflammatory Markers in the Development of Acute Kidney Failure and Mortality in Patients with Abdominal Trauma. J. Pers. Med. 2022, 12, 2045. [Google Scholar] [CrossRef]
- Gad, M.A.; Saber, A.; Farrag, S.; Shams, M.E.; Ellabban, G.M. Incidence, patterns, and factors predicting mortality of abdominal injuries in trauma patients. N. Am. J. Med. Sci. 2012, 4, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Gönültaş, F.; Kutlutürk, K.; Gok, A.F.K.; Barut, B.; Sahin, T.T.; Yilmaz, S. Analysis of risk factors of mortality in abdominal trauma. Ulus. Travma Acil Cerrahi Derg. 2020, 26, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Pekkari, P.; Bylund, P.O.; Lindgren, H.; Öman, M. Abdominal injuries in a low trauma volume hospital--a descriptive study from northern Sweden. Scand. J. Trauma Resusc. Emerg. Med. 2014, 22, 48. [Google Scholar] [CrossRef]
- Smith, J.; Caldwell, E.; D’Amours, S.; Jalaludin, B.; Sugrue, M. Abdominal trauma: A disease in evolution. ANZ J. Surg. 2005, 75, 790–794. [Google Scholar] [CrossRef]
- Raza, M.; Abbas, Y.; Devi, V.; Prasad, K.V.; Rizk, K.N.; Nair, P.P. Non operative management of abdominal trauma—A 10 years review. World J. Emerg. Surg. 2013, 8, 14. [Google Scholar] [CrossRef]
- El-Menyar, A.; Abdelrahman, H.; Al-Hassani, A.; Peralta, R.; AbdelAziz, H.; Latifi, R.; Al-Thani, H. Single Versus Multiple Solid Organ Injuries Following Blunt Abdominal Trauma. World J. Surg. 2017, 41, 2689–2696. [Google Scholar] [CrossRef] [PubMed]
- García, I.C.; Villalba, J.S.; Iovino, D.; Franchi, C.; Iori, V.; Pettinato, G.; Inversini, D.; Amico, F.; Ietto, G. Liver Trauma: Until When We Have to Delay Surgery? A Review. Life 2022, 12, 694. [Google Scholar] [CrossRef]
- Stene, J.K. Renal failure in the trauma patient. Crit. Care Clin. 1990, 6, 111–119. [Google Scholar] [CrossRef]
- Letteri, J.M. Post traumatic acute renal failure. Adv. Exp. Med. Biol. 1987, 212, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Leon, M.; Chavez, L.; Surani, S. Abdominal compartment syndrome among surgical patients. World J. Gastrointest. Surg. 2021, 13, 330–339. [Google Scholar] [CrossRef]
- Miao, S.; Yang, M.; Li, W.; Yan, J. Elevated IAP in critically ill patients associated with increased AKI incidence: A cohort study from the MIMIC-IV database. Sci. Rep. 2025, 15, 8245. [Google Scholar] [CrossRef]
- Li, G.; Wang, S.; Fan, Z. Oxidative Stress in Intestinal Ischemia-Reperfusion. Front. Med. 2021, 8, 750731. [Google Scholar] [CrossRef]
- Kaller, R.; Arbănași, E.M.; Mureșan, A.V.; Voidăzan, S.; Arbănași, E.M.; Horváth, E.; Suciu, B.A.; Hosu, I.; Halmaciu, I.; Brinzaniuc, K.; et al. The Predictive Value of Systemic Inflammatory Markers, the Prognostic Nutritional Index, and Measured Vessels’ Diameters in Arteriovenous Fistula Maturation Failure. Life 2022, 12, 1447. [Google Scholar] [CrossRef] [PubMed]
- Mureșan, A.V.; Russu, E.; Arbănași, E.M.; Kaller, R.; Hosu, I.; Arbănași, E.M.; Voidăzan, S.T. The Predictive Value of NLR, MLR, and PLR in the Outcome of End-Stage Kidney Disease Patients. Biomedicines 2022, 10, 1272. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.B.; Zhang, J.; Ren, Y.F.; Du, Z.Q.; Wu, Z.; Lv, Y.; Wu, R.Q. Neutrophil-to-lymphocyte ratio predicts acute kidney injury occurrence after gastrointestinal and hepatobiliary surgery. World J. Gastrointest. Surg. 2020, 12, 326–335. [Google Scholar] [CrossRef]
- Rau, C.S.; Wu, S.C.; Tsai, C.H.; Chou, S.E.; Su, W.T.; Hsu, S.Y.; Hsieh, C.H. Association of White Blood Cell Subtypes and Derived Ratios with a Mortality Outcome in Adult Patients with Polytrauma. Healthcare 2022, 10, 1384. [Google Scholar] [CrossRef]
- Brown, H.J.; Lock, H.R.; Wolfs, T.G.; Buurman, W.A.; Sacks, S.H.; Robson, M.G. Toll-like receptor 4 ligation on intrinsic renal cells contributes to the induction of antibody-mediated glomerulonephritis via CXCL1 and CXCL2. J. Am. Soc. Nephrol. 2007, 18, 1732–1739. [Google Scholar] [CrossRef]
- Mohr, A.E.; Crawford, M.; Jasbi, P.; Fessler, S.; Sweazea, K.L. Lipopolysaccharide and the gut microbiota: Considering structural variation. FEBS Lett. 2022, 596, 849–875. [Google Scholar] [CrossRef]
- Parra-Romero, G.; Contreras-Cantero, G.; Orozco-Guibaldo, D.; Domínguez-Estrada, A.; Campo, J.; Bravo-Cuéllar, L. Abdominal trauma: Experience of 4961 cases in Western Mexico. Cirugía Cir. 2019, 87, 183–189. [Google Scholar] [CrossRef]
- Romagnoli, S.; Ricci, Z. Postoperative acute kidney injury. Minerva Anestesiol. 2015, 81, 684–696. [Google Scholar] [PubMed]
- Prowle, J.R.; Forni, L.G.; Bell, M.; Chew, M.S.; Edwards, M.; Grams, M.E.; Grocott, M.P.W.; Liu, K.D.; McIlroy, D.; Murray, P.T.; et al. Postoperative acute kidney injury in adult non-cardiac surgery: Joint consensus report of the Acute Disease Quality Initiative and PeriOperative Quality Initiative. Nat. Rev. Nephrol. 2021, 17, 605–618. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, J.D.; Hashmi, M.F.; Hithe, C.C. Perioperative Acute Kidney Injury. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2025. [Google Scholar]
- Bihorac, A.; Yavas, S.; Subbiah, S.; Hobson, C.E.; Schold, J.D.; Gabrielli, A.; Layon, A.J.; Segal, M.S. Long-term risk of mortality and acute kidney injury during hospitalization after major surgery. Ann. Surg. 2009, 249, 851–858. [Google Scholar] [CrossRef]
- Zarbock, A.; Weiss, R.; Albert, F.; Rutledge, K.; Kellum, J.A.; Bellomo, R.; Grigoryev, E.; Candela-Toha, A.M.; Demir, Z.A.; Legros, V.; et al. Epidemiology of surgery associated acute kidney injury (EPIS-AKI): A prospective international observational multi-center clinical study. Intensive Care Med. 2023, 49, 1441–1455. [Google Scholar] [CrossRef]
- Boyer, N.; Eldridge, J.; Prowle, J.R.; Forni, L.G. Postoperative Acute Kidney Injury. Clin. J. Am. Soc. Nephrol. 2022, 17, 1535–1545. [Google Scholar] [CrossRef] [PubMed]
- Bell, S.; Dekker, F.W.; Vadiveloo, T.; Marwick, C.; Deshmukh, H.; Donnan, P.T.; Van Diepen, M. Risk of postoperative acute kidney injury in patients undergoing orthopaedic surgery--development and validation of a risk score and effect of acute kidney injury on survival: Observational cohort study. BMJ 2015, 351, h5639. [Google Scholar] [CrossRef] [PubMed]
- Kheterpal, S.; Tremper, K.K.; Heung, M.; Rosenberg, A.L.; Englesbe, M.; Shanks, A.M.; Campbell, D.A., Jr. Development and validation of an acute kidney injury risk index for patients undergoing general surgery: Results from a national data set. Anesthesiology 2009, 110, 505–515. [Google Scholar] [CrossRef]
- Kellum, J.A.; Lameire, N. Diagnosis, evaluation, and management of acute kidney injury: A KDIGO summary (Part 1). Crit. Care 2013, 17, 204. [Google Scholar] [CrossRef] [PubMed]
- Bell, S.; Davey, P.; Nathwani, D.; Marwick, C.; Vadiveloo, T.; Sneddon, J.; Patton, A.; Bennie, M.; Fleming, S.; Donnan, P.T. Risk of AKI with gentamicin as surgical prophylaxis. J. Am. Soc. Nephrol. 2014, 25, 2625–2632. [Google Scholar] [CrossRef]
- Wahl, T.S.; Graham, L.A.; Morris, M.S.; Richman, J.S.; Hollis, R.H.; Jones, C.E.; Itani, K.M.; Wagner, T.H.; Mull, H.J.; Whittle, J.C.; et al. Association Between Preoperative Proteinuria and Postoperative Acute Kidney Injury and Readmission. JAMA Surg. 2018, 153, e182009. [Google Scholar] [CrossRef]
- Goren, O.; Matot, I. Perioperative acute kidney injury. Br. J. Anaesth. 2015, 115 (Suppl. 2), ii3–ii14. [Google Scholar] [CrossRef]
- Meersch, M.; Schmidt, C.; Zarbock, A. Perioperative Acute Kidney Injury: An Under-Recognized Problem. Anesth. Analg. 2017, 125, 1223–1232. [Google Scholar] [CrossRef]
- Sun, L.Y.; Wijeysundera, D.N.; Tait, G.A.; Beattie, W.S. Association of intraoperative hypotension with acute kidney injury after elective noncardiac surgery. Anesthesiology 2015, 123, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Salmasi, V.; Maheshwari, K.; Yang, D.; Mascha, E.J.; Singh, A.; Sessler, D.I.; Kurz, A. Relationship between Intraoperative Hypotension, Defined by Either Reduction from Baseline or Absolute Thresholds, and Acute Kidney and Myocardial Injury after Noncardiac Surgery: A Retrospective Cohort Analysis. Anesthesiology 2017, 126, 47–65. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Vecino, J.M.; Ripollés-Melchor, J.; Mythen, M.G.; Casans-Francés, R.; Balik, A.; Artacho, J.P.; Martínez-Hurtado, E.; Serrano Romero, A.; Fernández Pérez, C.; Asuero de Lis, S. Effect of goal-directed haemodynamic therapy on postoperative complications in low-moderate risk surgical patients: A multicentre randomised controlled trial (FEDORA trial). Br. J. Anaesth. 2018, 120, 734–744. [Google Scholar] [CrossRef]
- Shiba, A.; Uchino, S.; Fujii, T.; Takinami, M.; Uezono, S. Association Between Intraoperative Oliguria and Acute Kidney Injury After Major Noncardiac Surgery. Anesth. Analg. 2018, 127, 1229–1235. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Feng, Z. Analysis of Risk Factors for Perioperative Acute Kidney Injury and Management Strategies. Front. Med. 2021, 8, 751793. [Google Scholar] [CrossRef]
- Prowle, J.; Bagshaw, S.M.; Bellomo, R. Renal blood flow, fractional excretion of sodium and acute kidney injury: Time for a new paradigm? Curr. Opin. Crit. Care 2012, 18, 585–592. [Google Scholar] [CrossRef]
- Fliser, D.; Laville, M.; Covic, A.; Fouque, D.; Vanholder, R.; Juillard, L.; Van Biesen, W. A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) clinical practice guidelines on acute kidney injury: Part 1: Definitions, conservative management and contrast-induced nephropathy. Nephrol. Dial. Transplant. 2012, 27, 4263–4272. [Google Scholar] [CrossRef]
- van der Molen, A.J.; Reimer, P.; Dekkers, I.A.; Bongartz, G.; Bellin, M.F.; Bertolotto, M.; Clement, O.; Heinz-Peer, G.; Stacul, F.; Webb, J.A.W.; et al. Post-contrast acute kidney injury—Part 1: Definition, clinical features, incidence, role of contrast medium and risk factors: Recommendations for updated ESUR Contrast Medium Safety Committee guidelines. Eur. Radiol. 2018, 28, 2845–2855. [Google Scholar] [CrossRef]
- Davenport, M.S.; Perazella, M.A.; Yee, J.; Dillman, J.R.; Fine, D.; McDonald, R.J.; Rodby, R.A.; Wang, C.L.; Weinreb, J.C. Use of Intravenous Iodinated Contrast Media in Patients with Kidney Disease: Consensus Statements from the American College of Radiology and the National Kidney Foundation. Radiology 2020, 294, 660–668. [Google Scholar] [CrossRef]
- Davenport, M.S.; Wang, C.L.; Asch, D.S.; Cavallo, J.M.; Cohan, R.H.; Dillman, J.R.; Ellis, J.H.; Forbes-Amrhein, M.M.; Gilligan, L.A.; Krishnamurthy, R.; et al. ACR Committee on Drugs and Contrast Media. ACR manual on contrast media. In Contrast-Associated Acute Kidney Injury and Contrast-Induced Acute Kidney Injury in Adults; ACR Committee on Drugs and Contrast Media: Reston, VA, USA, 2021; pp. 33–43. [Google Scholar]
- Davenport, M.S.; Cohan, R.H.; Khalatbari, S.; Ellis, J.H. The challenges in assessing contrast-induced nephropathy: Where are we now? AJR Am. J. Roentgenol. 2014, 202, 784–789. [Google Scholar] [CrossRef]
- Wilhelm-Leen, E.; Montez-Rath, M.E.; Chertow, G. Estimating the Risk of Radiocontrast-Associated Nephropathy. J. Am. Soc. Nephrol. 2017, 28, 653–659. [Google Scholar] [CrossRef]
- Yoo Mi An, M.D.; Soon Chang Park, M.D.; Hyung Bin Kim, M.D.; Young Mo Cho, M.D. The Risk Factors for Developing Kontrast-induced Nephropathy after the Evaluation of Trauma Patients at a Regional Trauma Center in Korea. J. Trauma Inj. 2016, 29, 124–128. [Google Scholar]
- Heyman, S.N.; Brezis, M.; Epstein, F.H.; Spokes, K.; Silva, P.; Rosen, S. Early renal medullary hypoxic injury from radiocontrast and indomethacin. Kidney Int. 1991, 40, 632–642. [Google Scholar] [CrossRef]
- Caldicott, W.J.; Hollenberg, N.K.; Abrams, H.L. Characteristics of response of renal vascular bed to contrast media. Evidence for vasoconstriction induced by renin-angiotensin system. Investig. Radiol. 1970, 5, 539–547. [Google Scholar] [CrossRef]
- Myers, S.I.; Wang, L.; Liu, F.; Bartula, L.L. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis. J. Vasc. Surg. 2006, 44, 383–391. [Google Scholar] [CrossRef]
- Liss, P.; Nygren, A.; Olsson, U.; Ulfendahl, H.R.; Erikson, U. Effects of contrast media and mannitol on renal medullary blood flow and red cell aggregation in the rat kidney. Kidney Int. 1996, 49, 1268–1275. [Google Scholar] [CrossRef] [PubMed]
- Somkereki, C.; Palfi, R.; Scridon, A. Prevention of contrast-associated acute kidney injury in an era of increasingly complex interventional procedures. Front. Med. 2023, 10, 1180861. [Google Scholar] [CrossRef]
- Tumlin, J.; Stacul, F.; Adam, A.; Becker, C.R.; Davidson, C.; Lameire, N.; McCullough, P.A. Pathophysiology of contrast-induced nephropathy. Am. J. Cardiol. 2006, 98, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Bakris, G.L.; Lass, N.; Gaber, A.O.; Jones, J.D.; Burnett, J.C., Jr. Radiocontrast medium-induced declines in renal function: A role for oxygen free radicals. Am. J. Physiol. 1990, 258, F115–F120. [Google Scholar] [CrossRef]
- Cantley, L.G.; Spokes, K.; Clark, B.; McMahon, E.G.; Carter, J.; Epstein, F.H. Role of endothelin and prostaglandins in radiocontrast-induced renal artery constriction. Kidney Int. 1993, 44, 1217–1223. [Google Scholar] [CrossRef]
- Hardiek, K.; Katholi, R.E.; Ramkumar, V.; Deitrick, C. Proximal tubule cell response to radiographic contrast media. Am. J. Physiol. Ren. Physiol. 2001, 280, F61–F70. [Google Scholar] [CrossRef]
- Hisamune, R.; Yamakawa, K.; Umemura, Y.; Ushio, N.; Mochizuki, K.; Inokuchi, R.; Doi, K.; Takasu, A. Association Between IV Contrast Media Exposure and Acute Kidney Injury in Patients Requiring Emergency Admission: A Nationwide Observational Study in Japan. Crit. Care Explor. 2024, 6, e1142. [Google Scholar] [CrossRef]
- Wu, M.J.; Tsai, S.F. Patients with Different Stages of Chronic Kidney Disease Undergoing Intravenous Contrast-Enhanced Computed Tomography-The Incidence of Contrast-Associated Acute Kidney Injury. Diagnostics 2022, 12, 864. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Wu, Y.T.; Cheng, C.T.; Fu, C.Y.; Liao, C.H.; Chen, H.W.; Hsieh, C.H. Risk of acute kidney injury following repeated contrast exposure in trauma patients. Eur. J. Trauma Emerg. Surg. 2025, 51, 77. [Google Scholar] [CrossRef]
- Aspelin, P.; Aubry, P.; Fransson, S.G.; Strasser, R.; Willenbrock, R.; Berg, K.J. Nephrotoxic effects in high-risk patients undergoing angiography. N. Engl. J. Med. 2003, 348, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Schneider, A.; Gallaher, J.; Purcell, L.N.; Raff, L.; Eckert, M.; Charles, A. Risk of acute kidney injury requiring hemodialysis after contrast-enhanced imaging after traumatic injury: A National Trauma Databank analysis. Surgery 2022, 171, 1085–1091. [Google Scholar] [CrossRef]
- Seibert, F.S.; Heringhaus, A.; Pagonas, N.; Rudolf, H.; Rohn, B.; Bauer, F.; Timmesfeld, N.; Trappe, H.J.; Babel, N.; Westhoff, T.H. Biomarkers in the prediction of contrast media induced nephropathy—The BITCOIN study. PLoS ONE 2020, 15, e0234921. [Google Scholar] [CrossRef]
- Yan, P.; Duan, S.B.; Luo, X.Q.; Zhang, N.Y.; Deng, Y.H. Effects of intravenous hydration in preventing post-contrast acute kidney injury in patients with eGFR < 30 mL/min/1.73 m2. Eur. Radiol. 2023, 33, 9434–9443. [Google Scholar] [CrossRef]
- Goldenberg, I.; Matetzky, S. Nephropathy induced by contrast media: Pathogenesis, risk factors and preventive strategies. Can. Med Assoc. J. 2005, 172, 1461–1471. [Google Scholar] [CrossRef] [PubMed]
- Weisbord, S.D.; Gallagher, M.; Jneid, H.; Garcia, S.; Cass, A.; Thwin, S.S.; Conner, T.A.; Chertow, G.M.; Bhatt, D.L.; Shunk, K.; et al. Outcomes after Angiography with Sodium Bicarbonate and Acetylcysteine. N. Engl. J. Med. 2018, 378, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Cruz, E.Y.; Aparicio-Trejo, O.E.; Hammami, F.A.; Bar-Shalom, D.; Tepel, M.; Pedraza-Chaverri, J.; Scholze, A. N-acetylcysteine in Kidney Disease: Molecular Mechanisms, Pharmacokinetics, and Clinical Effectiveness. Kidney Int. Rep. 2024, 9, 2883–2903. [Google Scholar] [CrossRef] [PubMed]
- Sandilands, E.A.; Rees, J.M.B.; Raja, K.; Dhaun, N.; Morrison, E.E.; Hickson, K.; Wraight, J.; Gray, T.; Briody, L.; Cameron, S.; et al. Acetylcysteine has No Mechanistic Effect in Patients at Risk of Contrast-Induced Nephropathy: A Failure of Academic Clinical Science. Clin. Pharmacol. Ther. 2022, 111, 1222–1238. [Google Scholar] [CrossRef]
- Yusuf, J.; Prakash, G.; Safal, S.; Mehta, V.; Mukhopadhyay, S. Efficacy of nicorandil and ranolazine in prevention of contrast-induced nephropathy in patients with mild-to-moderate renal dysfunction: A randomized controlled trial. Coron. Artery Dis. 2024, 35, 186–192. [Google Scholar] [CrossRef]
- Butt, A.I.; Afzal, F.; Raza, S.; Namal, F.N.U.; Ahmed, D.; Abid, H.; Hudaib, M.; Sarwar, Z.S.A.; Bashir, S.; Khalid, A.; et al. Efficacy and safety of nicorandil for prevention of contrast-induced nephropathy in patients undergoing coronary procedures: A systematic review and meta-analysis. Int. Urol. Nephrol. 2025, 57, 2181–2194. [Google Scholar] [CrossRef]
- Heshmatzadeh Behzadi, A.; Amoozgar, B.; Jain, S.; Velasco, N.; Zahid, U.; Abbasi, H.; Alasadi, L.; Prince, M.R. Trimetazidine reduces contrast-induced nephropathy in patients with renal insufficiency undergoing coronary angiography and angioplasty: A systematic review and meta-analysis (PRISMA). Medicine 2021, 100, e24603. [Google Scholar] [CrossRef]
- Thompson, K.; Razi, R.; Lee, M.S.; Shen, A.; Stone, G.W.; Hiremath, S.; Mehran, R.; Brar, S.S. Statin use prior to angiography for the prevention of contrast-induced acute kidney injury: A meta-analysis of 19 randomised trials. EuroIntervention 2016, 12, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Brivet, F.G.; Kleinknecht, D.J.; Loirat, P.; Landais, P.J. Acute renal failure in intensive care units--causes, outcome, and prognostic factors of hospital mortality; a prospective, multicenter study. French Study Group on Acute Renal Failure. Crit. Care Med. 1996, 24, 192–198. [Google Scholar] [CrossRef]
- Mehta, R.L.; Pascual, M.T.; Soroko, S.; Savage, B.R.; Himmelfarb, J.; Ikizler, T.A.; Paganini, E.P.; Chertow, G.M. Spectrum of acute renal failure in the intensive care unit: The PICARD experience. Kidney Int. 2004, 66, 1613–1621. [Google Scholar] [CrossRef]
- Uchino, S.; Kellum, J.A.; Bellomo, R.; Doig, G.S.; Morimatsu, H.; Morgera, S.; Schetz, M.; Tan, I.; Bouman, C.; Macedo, E.; et al. Acute renal failure in critically ill patients: A multinational, multicenter study. JAMA 2005, 294, 813–818. [Google Scholar] [CrossRef]
- Chawla, L.S.; Bellomo, R.; Bihorac, A.; Goldstein, S.L.; Siew, E.D.; Bagshaw, S.M.; Bittleman, D.; Cruz, D.; Endre, Z.; Fitzgerald, R.L.; et al. Acute kidney disease and renal recovery: Consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat. Rev. Nephrol. 2017, 13, 241–257. [Google Scholar] [CrossRef]
- Menon, S.; Kirkendall, E.S.; Nguyen, H.; Goldstein, S.L. Acute kidney injury associated with high nephrotoxic medication exposure leads to chronic kidney disease after 6 months. J. Pediatr. 2014, 165, 522–527.E2. [Google Scholar] [CrossRef]
- Kohli, H.S.; Bhaskaran, M.C.; Muthukumar, T.; Thennarasu, K.; Sud, K.; Jha, V.; Gupta, K.L.; Sakhuja, V. Treatment-related acute renal failure in the elderly: A hospital-based prospective study. Nephrol. Dial. Transplant. 2000, 15, 212–217. [Google Scholar] [CrossRef]
- Cartin-Ceba, R.; Kashiouris, M.; Plataki, M.; Kor, D.J.; Gajic, O.; Casey, E.T. Risk factors for development of acute kidney injury in critically ill patients: A systematic review and meta-analysis of observational studies. Crit. Care Res. Pract. 2012, 2012, 691013. [Google Scholar] [CrossRef]
- Awdishu, L. Drug-induced kidney disease in the ICU: Mechanisms, susceptibility, diagnosis and management strategies. Curr. Opin. Crit. Care 2017, 23, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, S.L.; Jaber, B.L.; Faubel, S.; Chawla, L.S. AKI transition of care: A potential opportunity to detect and prevent CKD. Clin. J. Am. Soc. Nephrol. 2013, 8, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Chawla, L.S.; Eggers, P.W.; Star, R.A.; Kimmel, P.L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 2014, 371, 58–66. [Google Scholar] [CrossRef]
- Chawla, L.S.; Amdur, R.L.; Amodeo, S.; Kimmel, P.L.; Palant, C.E. The severity of acute kidney injury predicts progression to chronic kidney disease. Kidney Int. 2011, 79, 1361–1369. [Google Scholar] [CrossRef]
- Hsu, C.Y. Yes, AKI truly leads to CKD. J. Am. Soc. Nephrol. 2012, 23, 967–969. [Google Scholar] [CrossRef]
- Karimzadeh, I.; Barreto, E.F.; Kellum, J.A.; Awdishu, L.; Murray, P.T.; Ostermann, M.; Bihorac, A.; Mehta, R.L.; Goldstein, S.L.; Kashani, K.B.; et al. Moving toward a contemporary classification of drug-induced kidney disease. Crit. Care 2023, 27, 435. [Google Scholar] [CrossRef]
- Perazella, M.A.; Rosner, M.H. Drug-Induced Acute Kidney Injury. Clin. J. Am. Soc. Nephrol. 2022, 17, 1220–1233. [Google Scholar] [CrossRef]
- Kane-Gill, S.L. New perspectives of drug related kidney diseases and disorders. Curr. Opin. Crit. Care 2024, 30, 563–570. [Google Scholar] [CrossRef]
- Bidulka, P.; Fu, E.L.; Leyrat, C.; Kalogirou, F.; McAllister, K.S.L.; Kingdon, E.J.; Mansfield, K.E.; Iwagami, M.; Smeeth, L.; Clase, C.M.; et al. Stopping renin-angiotensin system blockers after acute kidney injury and risk of adverse outcomes: Parallel population-based cohort studies in English and Swedish routine care. BMC Med. 2020, 18, 195. [Google Scholar] [CrossRef] [PubMed]
- Campbell, R.E.; Chen, C.H.; Edelstein, C.L. Overview of Antibiotic-Induced Nephrotoxicity. Kidney Int. Rep. 2023, 8, 2211–2225. [Google Scholar] [CrossRef] [PubMed]
- Nagai, J.; Takano, M. Entry of aminoglycosides into renal tubular epithelial cells via endocytosis-dependent and endocytosis-independent pathways. Biochem. Pharmacol. 2014, 90, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Blair, M.; Côté, J.M.; Cotter, A.; Lynch, B.; Redahan, L.; Murray, P.T. Nephrotoxicity from Vancomycin Combined with Piperacillin-Tazobactam: A Comprehensive Review. Am. J. Nephrol. 2021, 52, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Yano, T.; Itoh, Y.; Kawamura, E.; Maeda, A.; Egashira, N.; Nishida, M.; Kurose, H.; Oishi, R. Amphotericin B-induced renal tubular cell injury is mediated by Na+ Influx through ion-permeable pores and subsequent activation of mitogen-activated protein kinases and elevation of intracellular Ca2+ concentration. Antimicrob. Agents Chemother. 2009, 53, 1420–1426. [Google Scholar] [CrossRef]
- Gwee, K.A.; Goh, V.; Lima, G.; Setia, S. Coprescribing proton-pump inhibitors with nonsteroidal anti-inflammatory drugs: Risks versus benefits. J. Pain. Res. 2018, 11, 361–374. [Google Scholar] [CrossRef]
- Al-Aly, Z.; Maddukuri, G.; Xie, Y. Proton Pump Inhibitors and the Kidney: Implications of Current Evidence for Clinical Practice and When and How to Deprescribe. Am. J. Kidney Dis. 2020, 75, 497–507. [Google Scholar] [CrossRef]
- Yasrebi-de Kom, I.A.R.; Dongelmans, D.A.; Abu-Hanna, A.; Schut, M.C.; de Lange, D.W.; van Roon, E.N.; de Jonge, E.; Bouman, C.S.C.; de Keizer, N.F.; Jager, K.J.; et al. Acute kidney injury associated with nephrotoxic drugs in critically ill patients: A multicenter cohort study using electronic health record data. Clin. Kidney J. 2023, 16, 2549–2558. [Google Scholar] [CrossRef] [PubMed]
- Gray, M.P.; Barreto, E.F.; Schreier, D.J.; Kellum, J.A.; Suh, K.; Kashani, K.B.; Rule, A.D.; Kane-Gill, S.L. Consensus Obtained for the Nephrotoxic Potential of 167 Drugs in Adult Critically Ill Patients Using a Modified Delphi Method. Drug Saf. 2022, 45, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; George, K.C.; Shang, W.F.; Zeng, R.; Ge, S.W.; Xu, G. Proton-pump inhibitors use, and risk of acute kidney injury: A meta-analysis of observational studies. Drug Des. Devel Ther. 2017, 11, 1291–1299. [Google Scholar] [CrossRef]
- Pan, Q.; Lu, X.; Zhao, C.; Liao, S.; Chen, X.; Guo, F.; Yang, C.; Liu, H.F. Metformin: The updated protective property in kidney disease. Aging 2020, 12, 8742–8759. [Google Scholar] [CrossRef] [PubMed]
- Soares, D.B.; Mambrini, J.V.M.; Botelho, G.R.; Girundi, F.F.; Botoni, F.A.; Martins, M.A.P. Drug therapy and other factors associated with the development of acute kidney injury in critically ill patients: A cross-sectional study. PeerJ 2018, 6, e5405. [Google Scholar] [CrossRef]
- Lapi, F.; Azoulay, L.; Yin, H.; Nessim, S.J.; Suissa, S. Concurrent use of diuretics, angiotensin converting enzyme inhibitors, and angiotensin receptor blockers with non-steroidal anti-inflammatory drugs and risk of acute kidney injury: Nested case-control study. BMJ 2013, 346, e8525. [Google Scholar] [CrossRef]
- Feidakis, A.; Panagiotou, M.R.; Tsoukakis, E.; Bacharaki, D.; Gounari, P.; Nikolopoulos, P.; Marathias, K.P.; Lionaki, S.; Vlahakos, D. Impact of Angiotensin-Converting Enzyme Inhibitors or Angiotensin Receptor Blockers on Acute Kidney Injury in Emergency Medical Admissions. J. Clin. Med. 2021, 10, 412. [Google Scholar] [CrossRef]
- Suberviola, B.; Rodrigo, E.; González-Castro, A.; Serrano, M.; Heras, M.; Castellanos-Ortega, Á. Association between exposure to angiotensin-converting enzyme inhibitors and angiotensin receptor blockers prior to septic shock and acute kidney injury. Med. Intensiv. 2017, 41, 21–27. [Google Scholar] [CrossRef]
- Blakeman, T.; Harding, S.; O’Donoghue, D. Acute kidney injury in the community: Why primary care has an important role. Br. J. Gen. Pract. 2013, 63, 173–174. [Google Scholar] [CrossRef]
- Zhu, X.; Xue, J.; Liu, Z.; Dai, W.; Xiang, J.; Xu, H.; Zhou, Q.; Zhou, Q.; Wei, X.; Chen, W. The effects of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in critically ill patients with acute kidney injury: An observational study using the MIMIC database. Front. Pharmacol. 2022, 13, 918385. [Google Scholar] [CrossRef]
- Anguissola, G.; Leu, D.; Simonetti, G.D.; Simonetti, B.G.; Lava, S.A.G.; Milani, G.P.; Bianchetti, M.G.; Scoglio, M. Kidney tubular injury induced by valproic acid: Systematic literature review. Pediatr. Nephrol. 2023, 38, 1725–1731. [Google Scholar] [CrossRef]
- Murray, P.T.; Mehta, R.L.; Shaw, A.; Ronco, C.; Endre, Z.; Kellum, J.A.; Chawla, L.S.; Cruz, D.; Ince, C.; Okusa, M.D. Potential use of biomarkers in acute kidney injury: Report and summary of recommendations from the 10th Acute Dialysis Quality Initiative consensus conference. Kidney Int. 2014, 85, 513–521. [Google Scholar] [CrossRef]
- van Meer, L.; Moerland, M.; Cohen, A.F.; Burggraaf, J. Urinary kidney biomarkers for early detection of nephrotoxicity in clinical drug development. Br. J. Clin. Pharmacol. 2014, 77, 947–957. [Google Scholar] [CrossRef]
- Liu, K.D.; Thompson, B.T.; Ancukiewicz, M.; Steingrub, J.S.; Douglas, I.S.; Matthay, M.A.; Wright, P.; Peterson, M.W.; Rock, P.; Hyzy, R.C.; et al. Acute kidney injury in patients with acute lung injury: Impact of fluid accumulation on classification of acute kidney injury and associated outcomes. Crit. Care Med. 2011, 39, 2665–2671. [Google Scholar] [CrossRef]
- Doi, K.; Yuen, P.S.; Eisner, C.; Hu, X.; Leelahavanichkul, A.; Schnermann, J.; Star, R.A. Reduced production of creatinine limits its use as marker of kidney injury in sepsis. J. Am. Soc. Nephrol. 2009, 20, 1217–1221. [Google Scholar] [CrossRef]
- Waikar, S.S.; Betensky, R.A.; Emerson, S.C.; Bonventre, J.V. Imperfect gold standards for kidney injury biomarker evaluation. J. Am. Soc. Nephrol. 2012, 23, 13–21. [Google Scholar] [CrossRef]
- Basile, D.P.; Donohoe, D.; Roethe, K.; Osborn, J.L. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am. J. Physiol. Ren. Physiol. 2001, 281, F887–F899. [Google Scholar] [CrossRef]
- Basile, D.P.; Fredrich, K.; Alausa, M.; Vio, C.P.; Liang, M.; Rieder, M.R.; Greene, A.S.; Cowley, A.W., Jr. Identification of persistently altered gene expression in the kidney after functional recovery from ischemic acute renal failure. Am. J. Physiol. Ren. Physiol. 2005, 288, F953–F963. [Google Scholar] [CrossRef]
- Grubb, A.; Nyman, U.; Björk, J.; Lindström, V.; Rippe, B.; Sterner, G.; Christensson, A. Simple cystatin C-based prediction equations for glomerular filtration rate compared with the modification of diet in renal disease prediction equation for adults and the Schwartz and the Counahan-Barratt prediction equations for children. Clin. Chem. 2005, 51, 1420–1431. [Google Scholar] [CrossRef]
- Dharnidharka, V.R.; Kwon, C.; Stevens, G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: A meta-analysis. Am. J. Kidney Dis. 2002, 40, 221–226. [Google Scholar] [CrossRef]
- Stevens, L.A.; Coresh, J.; Schmid, C.H.; Feldman, H.I.; Froissart, M.; Kusek, J.; Rossert, J.; Van Lente, F.; Bruce, R.D., 3rd; Zhang, Y.L.; et al. Estimating GFR using serum cystatin C alone and in combination with serum creatinine: A pooled analysis of 3,418 individuals with CKD. Am. J. Kidney Dis. 2008, 51, 395–406. [Google Scholar] [CrossRef]
- Roos, J.F.; Doust, J.; Tett, S.E.; Kirkpatrick, C.M. Diagnostic accuracy of cystatin C compared to serum creatinine for the estimation of renal dysfunction in adults and children--a meta-analysis. Clin. Biochem. 2007, 40, 383–391. [Google Scholar] [CrossRef]
- Zand, F.M.; Sabetian, G.M.; Abbasi, G.M.; Rezaianzadeh, A.M.P.; Salehi, A.M.P.; Khosravi, A.M.; Geramizadeh, B.M.; Taregh, S.U.M.; Javadpour, S.M. Early Acute Kidney Injury based on Serum Creatinine or Cystatin C in Intensive Care Unit after Major Trauma. Iran. J. Med. Sci. 2015, 40, 485–492. [Google Scholar]
- Soto, K.; Coelho, S.; Rodrigues, B.; Martins, H.; Frade, F.; Lopes, S.; Cunha, L.; Papoila, A.L.; Devarajan, P. Cystatin C as a marker of acute kidney injury in the emergency department. Clin. J. Am. Soc. Nephrol. 2010, 5, 1745–1754. [Google Scholar] [CrossRef]
- Bongiovanni, C.; Magrini, L.; Salerno, G.; Gori, C.S.; Cardelli, P.; Hur, M.; Buggi, M.; Di Somma, S. Serum Cystatin C for the Diagnosis of Acute Kidney Injury in Patients Admitted in the Emergency Department. Dis. Markers 2015, 2015, 416059. [Google Scholar] [CrossRef]
- Bolignano, D.; Donato, V.; Coppolino, G.; Campo, S.; Buemi, A.; Lacquaniti, A.; Buemi, M. Neutrophil gelatinase-associated lipocalin (NGAL) as a marker of kidney damage. Am. J. Kidney Dis. 2008, 52, 595–605. [Google Scholar] [CrossRef]
- Mishra, J.; Ma, Q.; Prada, A.; Mitsnefes, M.; Zahedi, K.; Yang, J.; Barasch, J.; Devarajan, P. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J. Am. Soc. Nephrol. 2003, 14, 2534–2543. [Google Scholar] [CrossRef]
- Mårtensson, J.; Bellomo, R. The rise and fall of NGAL in acute kidney injury. Blood Purif. 2014, 37, 304–310. [Google Scholar] [CrossRef]
- Albert, C.; Zapf, A.; Haase, M.; Röver, C.; Pickering, J.W.; Albert, A.; Bellomo, R.; Breidthardt, T.; Camou, F.; Chen, Z.; et al. Neutrophil Gelatinase-Associated Lipocalin Measured on Clinical Laboratory Platforms for the Prediction of Acute Kidney Injury and the Associated Need for Dialysis Therapy: A Systematic Review and Meta-analysis. Am. J. Kidney Dis. 2020, 76, 826–841.e1. [Google Scholar] [CrossRef]
- Xu, C.; Lin, S.; Mao, L.; Li, Z. Neutrophil gelatinase-associated lipocalin as predictor of acute kidney injury requiring renal replacement therapy: A systematic review and meta-analysis. Front. Med. 2022, 9, 859318. [Google Scholar] [CrossRef]
- Frelich, M.; Vodička, V.; Jor, O.; Burša, F.; Sklienka, P. Predicting Acute Kidney Injury in Trauma Patients: Biomarkers as Early Indicators. Med. Sci. Monit. 2024, 30, e942271. [Google Scholar] [CrossRef]
- Frelich, M.; Pavlicek, J.; Bursa, F.; Vodicka, V.; Salounova, D.; Sklienka, P. Urinary tract trauma as a predictor of acute kidney injury in severely injured patients: A retrospective analysis of observational studies. Biomed. Pap. 2024. [Google Scholar] [CrossRef]
- Yang, H.; Chen, Y.; He, J.; Li, Y.; Feng, Y. Advances in the diagnosis of early biomarkers for acute kidney injury: A literature review. BMC Nephrol. 2025, 26, 115. [Google Scholar] [CrossRef]
- Peters, H.P.; Waanders, F.; Meijer, E.; van den Brand, J.; Steenbergen, E.J.; van Goor, H.; Wetzels, J.F. High urinary excretion of kidney injury molecule-1 is an independent predictor of end-stage renal disease in patients with IgA nephropathy. Nephrol. Dial. Transplant. 2011, 26, 3581–3588. [Google Scholar] [CrossRef]
- Geng, J.; Qiu, Y.; Qin, Z.; Su, B. The value of kidney injury molecule 1 in predicting acute kidney injury in adult patients: A systematic review and Bayesian meta-analysis. J. Transl. Med. 2021, 19, 105. [Google Scholar] [CrossRef]
- Li, Q.; Huang, Y.; Shang, W.; Zhang, Y.; Liu, Y.; Xu, G. The Predictive Value of Urinary Kidney Injury Molecular 1 for the Diagnosis of Contrast-Induced Acute Kidney Injury after Cardiac Catheterization: A Meta-Analysis. J. Interv. Cardiol. 2020, 2020, 4982987. [Google Scholar] [CrossRef]
- Qin, Z.; Li, H.; Jiao, P.; Jiang, L.; Geng, J.; Yang, Q.; Liao, R.; Su, B. The value of urinary interleukin-18 in predicting acute kidney injury: A systematic review and meta-analysis. Ren. Fail. 2022, 44, 1717–1731. [Google Scholar] [CrossRef]
- Lin, X.; Yuan, J.; Zhao, Y.; Zha, Y. Urine interleukin-18 in prediction of acute kidney injury: A systemic review and meta-analysis. J. Nephrol. 2015, 28, 7–16. [Google Scholar] [CrossRef]
- Ganda, I.J.; Kasri, Y.; Susanti, M.; Hamzah, F.; Rauf, S.; Albar, H.; Aras, J.; Fikri, B.; Lawang, S.A.; Daud, D.; et al. Kidney injury molecule type-1, interleukin-18, and insulin-like growth factor binding protein 7 levels in urine to predict acute kidney injury in pediatric sepsis. Front. Pediatr. 2022, 10, 1024713. [Google Scholar] [CrossRef]
- Qian, B.S.; Jia, H.M.; Weng, Y.B.; Li, X.C.; Chen, C.D.; Guo, F.X.; Han, Y.Z.; Huang, L.F.; Zheng, Y.; Li, W.X. Analysis of urinary C-C motif chemokine ligand 14 (CCL14) and first-generation urinary biomarkers for predicting renal recovery from acute kidney injury: A prospective exploratory study. J. Intensive Care 2023, 11, 11. [Google Scholar] [CrossRef]
- Hoste, E.; Bihorac, A.; Al-Khafaji, A.; Ortega, L.M.; Ostermann, M.; Haase, M.; Zacharowski, K.; Wunderink, R.; Heung, M.; Lissauer, M.; et al. Identification and validation of biomarkers of persistent acute kidney injury: The RUBY study. Intensive Care Med. 2020, 46, 943–953. [Google Scholar] [CrossRef]
- Koyner, J.L.; Chawla, L.S.; Bihorac, A.; Gunnerson, K.J.; Schroeder, R.; Demirjian, S.; Hodgson, L.; Frey, J.A.; Wilber, S.T.; Kampf, J.P.; et al. Performance of a Standardized Clinical Assay for Urinary C-C Motif Chemokine Ligand 14 (CCL14) for Persistent Severe Acute Kidney Injury. Kidney360 2022, 3, 1158–1168. [Google Scholar] [CrossRef]
- Schunk, S.J.; Zarbock, A.; Meersch, M.; Küllmar, M.; Kellum, J.A.; Schmit, D.; Wagner, M.; Triem, S.; Wagenpfeil, S.; Gröne, H.J.; et al. Association between urinary dickkopf-3, acute kidney injury, and subsequent loss of kidney function in patients undergoing cardiac surgery: An observational cohort study. Lancet 2019, 394, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Xiao, Z.; Zhao, H.; An, Y. Serum Dickkopf-3 as a biomarker for predicting acute kidney injury in postoperative intensive care patients. Minerva Anestesiol. 2025, 91, 306–313. [Google Scholar] [CrossRef]
- Seibert, F.S.; Heringhaus, A.; Pagonas, N.; Rohn, B.; Bauer, F.; Trappe, H.J.; Landmesser, U.; Babel, N.; Westhoff, T.H. Dickkopf-3 in the prediction of contrast media induced acute kidney injury. J. Nephrol. 2021, 34, 821–828. [Google Scholar] [CrossRef] [PubMed]
- McMahon, B.A.; Galligan, M.; Redahan, L.; Martin, T.; Meaney, E.; Cotter, E.J.; Murphy, N.; Hannon, C.; Doran, P.; Marsh, B.; et al. Biomarker Predictors of Adverse Acute Kidney Injury Outcomes in Critically Ill Patients: The Dublin Acute Biomarker Group Evaluation Study. Am. J. Nephrol. 2019, 50, 19–28. [Google Scholar] [CrossRef]
- Noiri, E.; Doi, K.; Negishi, K.; Tanaka, T.; Hamasaki, Y.; Fujita, T.; Portilla, D.; Sugaya, T. Urinary fatty acid-binding protein 1: An early predictive biomarker of kidney injury. Am. J. Physiol. Ren. Physiol. 2009, 296, F669-679. [Google Scholar] [CrossRef]
- Doi, K.; Noiri, E.; Maeda-Mamiya, R.; Ishii, T.; Negishi, K.; Hamasaki, Y.; Fujita, T.; Yahagi, N.; Koide, H.; Sugaya, T.; et al. Urinary L-type fatty acid-binding protein as a new biomarker of sepsis complicated with acute kidney injury. Crit. Care Med. 2010, 38, 2037–2042. [Google Scholar] [CrossRef]
- Suzuki, G.; Ichibayashi, R.; Yamamoto, S.; Serizawa, H.; Nakamichi, Y.; Watanabe, M.; Honda, M. Urinary liver-type fatty acid-binding protein variation as a predictive value of short-term mortality in intensive care unit patients. Ren. Fail. 2021, 43, 1041–1048. [Google Scholar] [CrossRef]
- Sato, R.; Suzuki, Y.; Takahashi, G.; Kojika, M.; Inoue, Y.; Endo, S. A newly developed kit for the measurement of urinary liver-type fatty acid-binding protein as a biomarker for acute kidney injury in patients with critical care. J. Infect. Chemother. 2015, 21, 165–169. [Google Scholar] [CrossRef]
- Susantitaphong, P.; Siribamrungwong, M.; Doi, K.; Noiri, E.; Terrin, N.; Jaber, B.L. Performance of urinary liver-type fatty acid-binding protein in acute kidney injury: A meta-analysis. Am. J. Kidney Dis. 2013, 61, 430–439. [Google Scholar] [CrossRef]
- Yasuda, R.; Suzuki, K.; Okada, H.; Ishihara, T.; Minamiyama, T.; Kamidani, R.; Kitagawa, Y.; Fukuta, T.; Suzuki, K.; Miyake, T.; et al. Urinary liver-type fatty acid-binding protein levels may be associated with the occurrence of acute kidney injury induced by trauma. Front. Med. 2024, 11, 1346183. [Google Scholar] [CrossRef]
- Singh, R.; Watchorn, J.C.; Zarbock, A.; Forni, L.G. Prognostic biomarkers and AKI: Potential to enhance the identification of post-operative patients at risk of loss of renal function. Res. Rep. Urol. 2024, 16, 65–78. [Google Scholar] [CrossRef]
- Hayek, S.S.; Leaf, D.E.; Samman Tahhan, A.; Raad, M.; Sharma, S.; Waikar, S.S.; Sever, S.; Camacho, A.; Wang, X.; Dande, R.R.; et al. Soluble Urokinase Receptor and Acute Kidney Injury. N. Engl. J. Med. 2020, 382, 416–426. [Google Scholar] [CrossRef]
- Hoste, E.A.; Vaara, S.T.; De Loor, J.; Haapio, M.; Nuytinck, L.; Demeyere, K.; Pettilä, V.; Meyer, E. Urinary cell cycle arrest biomarkers and chitinase 3-like protein 1 (CHI3L1) to detect acute kidney injury in the critically ill: A post hoc laboratory analysis on the FINNAKI cohort. Crit. Care 2020, 24, 144. [Google Scholar] [CrossRef]
- Albeltagy, E.S.; Abdul-Mohymen, A.M.; Taha, D.R.A. Early diagnosis of acute kidney injury by urinary YKL-40 in critically ill patients in ICU: A pilot study. Int. Urol. Nephrol. 2020, 52, 351–361. [Google Scholar] [CrossRef]
- Engelman, D.T.; Ben Ali, W.; Williams, J.B.; Perrault, L.P.; Reddy, V.S.; Arora, R.C.; Roselli, E.E.; Khoynezhad, A.; Gerdisch, M.; Levy, J.H.; et al. Guidelines for Perioperative Care in Cardiac Surgery: Enhanced Recovery After Surgery Society Recommendations. JAMA Surg. 2019, 154, 755–766. [Google Scholar] [CrossRef]
- Mayer, T.; Bolliger, D.; Scholz, M.; Reuthebuch, O.; Gregor, M.; Meier, P.; Grapow, M.; Seeberger, M.D.; Fassl, J. Urine Biomarkers of Tubular Renal Cell Damage for the Prediction of Acute Kidney Injury After Cardiac Surgery-A Pilot Study. J. Cardiothorac. Vasc. Anesth. 2017, 31, 2072–2079. [Google Scholar] [CrossRef]
- Yang, H.S.; Hur, M.; Lee, K.R.; Kim, H.; Kim, H.Y.; Kim, J.W.; Chua, M.T.; Kuan, W.S.; Chua, H.R.; Kitiyakara, C.; et al. Biomarker Rule-in or Rule-out in Patients with Acute Diseases for Validation of Acute Kidney Injury in the Emergency Department (BRAVA): A Multicenter Study Evaluating Urinary TIMP-2/IGFBP7. Ann. Lab. Med. 2022, 42, 178–187. [Google Scholar] [CrossRef]
- Yang, B.; Xie, Y.; Garzotto, F.; Ankawi, G.; Passannante, A.; Brendolan, A.; Bonato, R.; Carta, M.; Giavarina, D.; Vidal, E.; et al. Influence of patients’ clinical features at intensive care unit admission on performance of cell cycle arrest biomarkers in predicting acute kidney injury. Clin. Chem. Lab. Med. 2020, 59, 333–342. [Google Scholar] [CrossRef]
- Faust, H.E.; Oniyide, O.; Wang, Y.; Forker, C.M.; Dunn, T.; Yang, W.; Lanken, P.N.; Sims, C.A.; Yehya, N.; Christie, J.D.; et al. Early Plasma Nuclear DNA, Mitochondrial DNA, and Nucleosome Concentrations Are Associated with Acute Kidney Injury in Critically Ill Trauma Patients. Crit. Care Explor. 2022, 4, e0663. [Google Scholar] [CrossRef]
- Schmidt, I.M.; Surapaneni, A.L.; Zhao, R.; Upadhyay, D.; Yeo, W.J.; Schlosser, P.; Huynh, C.; Srivastava, A.; Palsson, R.; Kim, T.; et al. Plasma proteomics of acute tubular injury. Nat. Commun. 2024, 15, 7368. [Google Scholar] [CrossRef]
- Aktas, G.; Keller, F.; Siwy, J.; Latosinska, A.; Mischak, H.; Mayor, J.; Clausen, J.; Wilhelmi, M.; Brauckmann, V.; Sehmisch, S.; et al. Application of urinary peptide-biomarkers in trauma patients as a predictive tool for prognostic assessment, treatment and intervention timing. Sci. Rep. 2025, 15, 898. [Google Scholar] [CrossRef]
- Bellomo, R.; Bagshaw, S.; Langenberg, C.; Ronco, C. Pre-renal azotemia: A flawed paradigm in critically ill septic patients? Contrib. Nephrol. 2007, 156, 1–9. [Google Scholar] [CrossRef]
- Nejat, M.; Pickering, J.W.; Devarajan, P.; Bonventre, J.V.; Edelstein, C.L.; Walker, R.J.; Endre, Z.H. Some biomarkers of acute kidney injury are increased in pre-renal acute injury. Kidney Int. 2012, 81, 1254–1262. [Google Scholar] [CrossRef]
- Maciel, A.T. Breaking old and new paradigms regarding urinary sodium in acute kidney injury diagnosis and management. Crit. Care 2013, 17, 115. [Google Scholar] [CrossRef]
- Maciel, A.T.; Park, M.; Macedo, E. Physicochemical analysis of blood and urine in the course of acute kidney injury in critically ill patients: A prospective, observational study. BMC Anesthesiol. 2013, 13, 31. [Google Scholar] [CrossRef]
- Ergin, B.; Akin, S.; Ince, C. Kidney Microcirculation as a Target for Innovative Therapies in AKI. J. Clin. Med. 2021, 10, 4041. [Google Scholar] [CrossRef]
- Maciel, A.T.; Vitorio, D.; Osawa, E.A. Urine biochemistry assessment in the sequential evaluation of renal function: Time to think outside the box. Front. Med. 2022, 9, 912877. [Google Scholar] [CrossRef]
- Varela, C.F.; Greloni, G.; Schreck, C.; Bratti, G.; Medina, A.; Marenchino, R.; Pizarro, R.; Belziti, C.; Rosa-Diez, G. Assessment of fractional excretion of urea for early diagnosis of cardiac surgery associated acute kidney injury. Ren. Fail. 2015, 37, 327–331. [Google Scholar] [CrossRef]
- de Morais, D.G.; Sanches, T.R.C.; Santinho, M.A.R.; Yada, E.Y.; Segura, G.C.; Lowe, D.; Navarro, G.; Seabra, V.F.; Taniguchi, L.U.; Malbouisson, L.M.S.; et al. Urinary sodium excretion is low prior to acute kidney injury in patients in the intensive care unit. Front. Nephrol. 2022, 2, 929743. [Google Scholar] [CrossRef]
- Horpacsy, G.; Zinsmeyer, J.; Mebel, M. Continuous determination of various enzymes and sodium concentration in urine. a usable method for diagnosis of kidney graft rejection. Eur. Urol. 1978, 4, 334–337. [Google Scholar] [CrossRef]
- Dewitte, A.; Biais, M.; Petit, L.; Cochard, J.F.; Hilbert, G.; Combe, C.; Sztark, F. Fractional excretion of urea as a diagnostic index in acute kidney injury in intensive care patients. J. Crit. Care 2012, 27, 505–510. [Google Scholar] [CrossRef]
- Wlodzimirow, K.A.; Abu-Hanna, A.; Royakkers, A.A.; Spronk, P.E.; Hofstra, L.S.; Kuiper, M.A.; Schultz, M.J.; Bouman, C.S. Transient versus persistent acute kidney injury and the diagnostic performance of fractional excretion of urea in critically ill patients. Nephron Clin. Pract. 2014, 126, 8–13. [Google Scholar] [CrossRef]
- Darmon, M.; Vincent, F.; Dellamonica, J.; Schortgen, F.; Gonzalez, F.; Das, V.; Zeni, F.; Brochard, L.; Bernardin, G.; Cohen, Y.; et al. Diagnostic performance of fractional excretion of urea in the evaluation of critically ill patients with acute kidney injury: A multicenter cohort study. Crit. Care 2011, 15, R178. [Google Scholar] [CrossRef]
- Cox, Z.L.; Sury, K.; Rao, V.S.; Ivey-Miranda, J.B.; Griffin, M.; Mahoney, D.; Gomez, N.; Fleming, J.H.; Inker, L.A.; Coca, S.G.; et al. Effect of Loop Diuretics on the Fractional Excretion of Urea in Decompensated Heart Failure. J. Card. Fail. 2020, 26, 402–409. [Google Scholar] [CrossRef]
- Schmidt, C.; Höcherl, K.; Bucher, M. Cytokine-mediated regulation of urea transporters during experimental endotoxemia. Am. J. Physiol. Ren. Physiol. 2007, 292, F1479–F1489. [Google Scholar] [CrossRef]
- Trinh-Trang-Tan, M.M.; Geelen, G.; Teillet, L.; Corman, B. Urea transporter expression in aging kidney and brain during dehydration. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 285, R1355–R1365. [Google Scholar] [CrossRef]
- Kumar, N.S.; Kumar, G.N.; Misra, K.C.; Rao, M.; Chitithoti, S.; Prakash, S.Y. Association between Urinary Potassium Excretion and Acute Kidney Injury in Critically Ill Patients. Indian J. Crit. Care Med. 2021, 25, 768–772. [Google Scholar] [CrossRef]
- Burns, A.R.; Ho, K.M. Urinary potassium excretion and its association with acute kidney injury in the intensive care unit. J. Crit. Care 2018, 46, 58–62. [Google Scholar] [CrossRef]
- Maciel, A.T.; Nassar, A.P., Jr.; Vitorio, D. Very Transient Cases of Acute Kidney Injury in the Early Postoperative Period After Cardiac Surgery: The Relevance of More Frequent Serum Creatinine Assessment and Concomitant Urinary Biochemistry Evaluation. J. Cardiothorac. Vasc. Anesth. 2016, 30, 56–63. [Google Scholar] [CrossRef]
- Basu, R.K.; Zappitelli, M.; Brunner, L.; Wang, Y.; Wong, H.R.; Chawla, L.S.; Wheeler, D.S.; Goldstein, S.L. Derivation and validation of the renal angina index to improve the prediction of acute kidney injury in critically ill children. Kidney Int. 2014, 85, 659–667. [Google Scholar] [CrossRef]
- Basu, R.K.; Kaddourah, A.; Goldstein, S.L. Assessment of a renal angina index for prediction of severe acute kidney injury in critically ill children: A multicentre, multinational, prospective observational study. Lancet Child Adolesc. Health 2018, 2, 112–120. [Google Scholar] [CrossRef]
- Matsuura, R.; Srisawat, N.; Claure-Del Granado, R.; Doi, K.; Yoshida, T.; Nangaku, M.; Noiri, E. Use of the Renal Angina Index in Determining Acute Kidney Injury. Kidney Int. Rep. 2018, 3, 677–683. [Google Scholar] [CrossRef]
- Ortiz-Soriano, V.; Kabir, S.; Claure-Del Granado, R.; Stromberg, A.; Toto, R.D.; Moe, O.W.; Goldstein, S.L.; Neyra, J.A. Assessment of a modified renal angina index for AKI prediction in critically ill adults. Nephrol. Dial. Transplant. 2022, 37, 895–903. [Google Scholar] [CrossRef]
- Alas, K.P.; Pasilan, R.M. Diagnostic accuracy of modified renal angina index for predicting acute kidney injury among Filipino adults. Nephrol. Dial. Transplant. 2024, 39, S29. [Google Scholar]
- McMahon, G.M.; Zeng, X.; Waikar, S.S. A risk prediction score for kidney failure or mortality in rhabdomyolysis. JAMA Intern. Med. 2013, 173, 1821–1828. [Google Scholar] [CrossRef]
- Haines, R.W.; Lin, S.P.; Hewson, R.; Kirwan, C.J.; Torrance, H.D.; O’Dwyer, M.J.; West, A.; Brohi, K.; Pearse, R.M.; Zolfaghari, P.; et al. Acute Kidney Injury in Trauma Patients Admitted to Critical Care: Development and Validation of a Diagnostic Prediction Model. Sci. Rep. 2018, 8, 3665. [Google Scholar] [CrossRef]
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef]
- Ostermann, M.; Zarbock, A.; Goldstein, S.; Kashani, K.; Macedo, E.; Murugan, R.; Bell, M.; Forni, L.; Guzzi, L.; Joannidis, M.; et al. Recommendations on acute kidney injury biomarkers from the Acute Disease Quality Initiative Consensus Conference: A consensus statement. JAMA Netw. Open 2020, 3, e2019209. [Google Scholar] [CrossRef]
- Ostermann, M.; Legrand, M.; Meersch, M.; Srisawat, N.; Zarbock, A.; Kellum, J.A. Biomarkers in acute kidney injury. Ann. Intensive Care 2024, 14, 145. [Google Scholar] [CrossRef]
- Strauß, C.; Booke, H.; Forni, L.; Zarbock, A. Biomarkers of acute kidney injury: From discovery to the future of clinical practice. J. Clin. Anesth. 2024, 95, 111458. [Google Scholar] [CrossRef]
- Zarbock, A.; Küllmar, M.; Ostermann, M.; Lucchese, G.; Baig, K.; Cennamo, A.; Rajani, R.; McCorkell, S.; Arndt, C.; Wulf, H.; et al. Prevention of cardiac surgery-associated acute kidney injury by implementing the KDIGO guidelines in high-risk patients identified by biomarkers: The PrevAKI-Multicenter randomized controlled trial. Anesth. Analg. 2021, 133, 292–302. [Google Scholar] [CrossRef]
- Göcze, I.; Jauch, D.; Götz, M.; Kennedy, P.; Jung, B.; Zeman, F.; Gnewuch, C.; Graf, B.M.; Gnann, W.; Banas, B.; et al. Biomarker-guided intervention to prevent acute kidney injury after major surgery: The prospective randomized BigpAK study. Ann. Surg. 2018, 267, 1013–1020. [Google Scholar] [CrossRef]
- von Groote, T.; Meersch, M.; Romagnoli, S.; Ostermann, M.; Ripollés-Melchor, J.; Schneider, A.G.; Vandenberghe, W.; Monard, C.; De Rosa, S.; Cattin, L.; et al. Biomarker-guided intervention to prevent acute kidney injury after major surgery (BigpAK-2 trial): Study protocol for an international, prospective, randomised controlled multicentre trial. BMJ Open 2023, 13, e070240. [Google Scholar] [CrossRef]
- Sadjadi, M.; Strauß, C.; von Groote, T.; Booke, H.; Schöne, L.M.; Sauermann, L.; Wempe, C.; Gerss, J.; Kellum, J.; Meersch, M.; et al. Effects of an extended therapeutic strategy versus standard-of-care therapy on persistent acute kidney injury in high-risk patients after major surgery: Study protocol for the randomised controlled single-centre PrevProgAKI trial. BMJ Open 2025, 15, e097333. [Google Scholar] [CrossRef]
- Brazzelli, M.; Aucott, L.; Aceves-Martins, M.; Robertson, C.; Jacobsen, E.; Imamura, M.; Poobalan, A.; Manson, P.; Scotland, G.; Kaye, C.; et al. Biomarkers for assessing acute kidney injury for people who are being considered for admission to critical care: A systematic review and cost-effectiveness analysis. Health Technol. Assess. 2022, 26, 1–286. [Google Scholar] [CrossRef]
- Echeverri, J.; Martins, R.; Harenski, K.; Kampf, J.P.; McPherson, P.; Textoris, J.; Koyner, J.L. Exploring the cost-utility of a biomarker predicting persistent severe acute kidney injury: The case of C-C motif chemokine ligand 14 (CCL14). Clin. Outcomes Res. CEOR 2024, 16, 1–12. [Google Scholar] [CrossRef]
Biomarker | Functional Group | Pathway/What it Reflects | Specimen | Key Caveats/Practical Notes | References |
---|---|---|---|---|---|
Creatinine | Filtration | ↓ GFR (rises after ≥50% nephron loss) | Serum | Delayed 24–72 h; confounded by muscle mass and fluid shifts | [270,271,272,273,274] |
Cystatin C | Filtration plus | Freely filtered low-MW protein; more muscle-independent | Serum | Influenced by steroids, thyroid status, ethnicity; rises earlier than creatinine | [275,276,277,278,279,280,281] |
TIMP-2 × IGFBP-7 (NephroCheck™) | Early stress/cell cycle arrest | G1 cell cycle arrest in stressed tubular cells | Urine (20-min cartridge) | Repeat q12 h for 48 h; AUC ≈ 0.79 in trauma cohorts | [16,314,315,316] |
NGAL | Early stress/injury | Tubular and neutrophil release within 2–3 h | Plasma and urine | Systemic inflammation or UTI can elevate baseline | [282,283,284,285,286,287] |
L-FABP | Early stress/hypoxia | Tubular hypoxia and lipid peroxidation (appears ~2–4 h) | Urine | Also ↑ in liver and mesenteric injury; bedside semi-quant strip available | [301,303,304,307,308] |
KIM-1 | Structural injury | Shed from injured proximal tubule brush border | Urine | Baseline CKD and heavy-metal exposure reduce specificity | [269,292] |
Interleukin-18 (IL-18) | Structural injury and inflammation | Inflammasome cytokine from proximal tubules | Urine | ↑ in sepsis and TBI irrespective of AKI | [293,294,295] |
Monocyte chemoattractant protein-1 (MCP-1/CCL2) | Structural injury and inflammation | Chemokine recruiting monocytes to injured tubules | Urine | Elevated in systemic inflammation; complements IL-18 in sepsis/trauma panels | [293,294,295] |
CCL14 | Persistence/prognosis | Chemokine signaling sustained tubular injury | Urine | Strong predictor of persistent stage 2–3 AKI | [296,297,298] |
Dickkopf-3 (DKK3) | Stress/fibrosis risk | Wnt/β-catenin stress protein driving fibrosis | Urine/serum | High baseline marks susceptibility to AKI and future CKD | [299,300] |
suPAR | Prognostic/systemic | Chronic immune activation and endothelial dysfunction | Plasma (EDTA) or serum | Upper quartile ≈ 3-fold AKI risk; not kidney-specific | [309,310] |
CHI3L1/YKL-40 | Prognostic/systemic | Macrophage-derived glycoprotein (acute phase) | Plasma | Additive value with suPAR in sepsis/trauma | [311,312] |
Soluble TNF-R1/TNF-R2 | Prognostic/monitoring | Systemic inflammatory load and endothelial activation | Plasma | Lab-developed ELISA only; good for serial trending | [318] |
Mitochondrial DNA (mtDNA) | Cell-free DNA injury | DAMP released after cellular necrosis | Plasma | High admission levels predict AKI in trauma | [317] |
Nuclear DNA (nDNA) | Cell-free DNA injury | Chromatin fragments from necrotic cells | Plasma | Early rise precedes creatinine; correlates with severity | [317] |
Nucleosomes | Cell-free DNA injury | Histone–DNA complexes; severe tissue damage marker | Plasma | Mirrors nDNA; potential therapeutic target flag | [317] |
CKD273 (peptidomic panel) | Proteomic classifier | 273 urinary peptides (mostly collagen fragments) | Urine (CE-MS) | Early fibrosis/high-AKI-risk classifier | [319] |
AKI204 (peptidomic panel) | Proteomic classifier | 204 urinary peptides linked to tubular stress | Urine (CE-MS) | Predicts AKI and mortality in trauma cohorts | [319] |
Score System | Target Population | Key Variables | Scoring/Cutoff | Primary Outcome(s) Predicted | References |
---|---|---|---|---|---|
Renal Angina Index (RAI)/Modified RAI (mRAI) | Pediatric (RAI) and adult critically ill (mRAI) | –RAI: change in serum creatinine, fluid overload, and clinical risk factors. –mRAI: diabetes, sepsis, mechanical ventilation, vasopressors/inotropes, % change in creatinine, and fluid overload. | mRAI cutoff ≥ 10. | Moderate-to-severe AKI (stage 2 or higher). Major adverse kidney events (MAKEs). | [338,339,340,341,342] |
McMahon Score | Rhabdomyolysis (broadly including trauma) | Admission creatine kinase, initial creatinine, calcium, phosphate, bicarbonate, patient age, sex, and clinical origin (trauma vs. other causes). | <5: 3% RRT/death risk. ≥10: 52% risk. | Need for RRT and in-hospital mortality. High-volume fluid resuscitation needs. | [107,123,343] |
Haines Prediction Model | Trauma ICU patients | Age, serum creatinine, serum phosphate, and number of PRBC units transfused within 24 h. | Continuous risk model; high AUC-ROC. | AKI risk in the early phase of trauma ICU admission. | [344] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rroji, M.; Kasa, M.; Spahia, N.; Kuci, S.; Ibrahimi, A.; Sula, H. Kidneys on the Frontline: Nephrologists Tackling the Wilds of Acute Kidney Injury in Trauma Patients—From Pathophysiology to Early Biomarkers. Diagnostics 2025, 15, 2438. https://doi.org/10.3390/diagnostics15192438
Rroji M, Kasa M, Spahia N, Kuci S, Ibrahimi A, Sula H. Kidneys on the Frontline: Nephrologists Tackling the Wilds of Acute Kidney Injury in Trauma Patients—From Pathophysiology to Early Biomarkers. Diagnostics. 2025; 15(19):2438. https://doi.org/10.3390/diagnostics15192438
Chicago/Turabian StyleRroji, Merita, Marsida Kasa, Nereida Spahia, Saimir Kuci, Alfred Ibrahimi, and Hektor Sula. 2025. "Kidneys on the Frontline: Nephrologists Tackling the Wilds of Acute Kidney Injury in Trauma Patients—From Pathophysiology to Early Biomarkers" Diagnostics 15, no. 19: 2438. https://doi.org/10.3390/diagnostics15192438
APA StyleRroji, M., Kasa, M., Spahia, N., Kuci, S., Ibrahimi, A., & Sula, H. (2025). Kidneys on the Frontline: Nephrologists Tackling the Wilds of Acute Kidney Injury in Trauma Patients—From Pathophysiology to Early Biomarkers. Diagnostics, 15(19), 2438. https://doi.org/10.3390/diagnostics15192438